JPH0512557B2 - - Google Patents

Info

Publication number
JPH0512557B2
JPH0512557B2 JP21802585A JP21802585A JPH0512557B2 JP H0512557 B2 JPH0512557 B2 JP H0512557B2 JP 21802585 A JP21802585 A JP 21802585A JP 21802585 A JP21802585 A JP 21802585A JP H0512557 B2 JPH0512557 B2 JP H0512557B2
Authority
JP
Japan
Prior art keywords
pressure
slide valve
valve
compressor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21802585A
Other languages
Japanese (ja)
Other versions
JPS6278497A (en
Inventor
Seiji Yoshimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP21802585A priority Critical patent/JPS6278497A/en
Publication of JPS6278497A publication Critical patent/JPS6278497A/en
Publication of JPH0512557B2 publication Critical patent/JPH0512557B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/12Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves
    • F04C28/125Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves with sliding valves controlled by the use of fluid other than the working fluid

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はスライド弁式スクリユー圧縮機の消費
流量が急激に変動する例えばガスタービン等に使
用される場合に、ステツプ状変動消費流量に応じ
て運転する容量制御方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention is applicable to a slide valve type screw compressor that is used in a gas turbine or the like where the consumption flow rate fluctuates rapidly. This invention relates to a method for controlling the capacity of an operation.

(従来の技術) 互いに噛合う雌雄ロータ間に気体を閉込め圧縮
して吐出する気体閉込め容量を、上記ロータ周壁
の一部を形成するスライド弁に全開←―→全閉間
の所定位置をとらせて制御するスライド弁式スク
リユー圧縮機は公知である。而して当該圧縮機は
吐出圧力により容量制御するようにしている。
(Prior art) The gas confinement capacity for trapping, compressing and discharging gas between the male and female rotors meshing with each other is transferred to a slide valve forming a part of the rotor peripheral wall at a predetermined position between fully open and fully closed. A slide valve type screw compressor that is controlled by adjusting the compressor is known. The capacity of the compressor is controlled by the discharge pressure.

スライド弁式スクリユー圧縮機の従来制御方法
を第5図aに示すブロツク図に従つて説明する。
A conventional control method for a slide valve type screw compressor will be explained with reference to the block diagram shown in FIG. 5a.

図において、1は雌雄ロータおよびスライド弁
を内蔵するスライド弁式スクリユー圧縮機本体、
2はスライド弁の位置移動を掌る油圧シリンダ、
3は四方切換弁、4はスライド弁の位置検出をす
るスライド抵抗器、5はサージタンク、6は圧力
伝送器、7は圧力調節器、8は電/電ポジシヨ
ナ、9は安全弁である。尚、10は雌雄ロータの
回転駆動源である。
In the figure, 1 is the main body of a slide valve type screw compressor with built-in male and female rotors and a slide valve;
2 is a hydraulic cylinder that controls the position movement of the slide valve;
3 is a four-way switching valve, 4 is a slide resistor for detecting the position of the slide valve, 5 is a surge tank, 6 is a pressure transmitter, 7 is a pressure regulator, 8 is an electrical/electrical positioner, and 9 is a safety valve. Note that 10 is a rotational drive source for the male and female rotors.

圧縮機本体1は矢印Ginで示す気体の供給路か
ら取り入れた気体を圧縮して矢印Goutで示す吐
出路から吐出する。吐出された圧縮気体はサージ
タンク5に流入して調圧されたのち、消費され
る。この場合の吐出圧力制御は以下のようにして
行われる。
The compressor main body 1 compresses gas taken in from a gas supply path indicated by an arrow Gin, and discharges it from a discharge path indicated by an arrow Gout. The discharged compressed gas flows into the surge tank 5 and is pressure regulated before being consumed. Discharge pressure control in this case is performed as follows.

サージタンク5内……即ち吐出圧力部の圧力を
常時圧力伝送器6で検出し、検出信号を圧力調節
器7へ出力する。当該圧力調節器7は入力信号か
ら求め得る圧力変動が、所定圧力設定値Psetに対
して許容される所定偏差よりも大きな偏差を示し
たとき、電/電ポジシヨナ8へ信号を出力する。
当該電/電ポジシヨナ8は圧力調節器7からの入
力信号とスライド抵抗器4から入力するスライド
弁の位置検出信号とを付合わせつつ、スライド弁
に所定位置をとらしめるよう、四方切換弁3に切
り換え操作の制御指令を出力し、これにより油圧
シリンダ2は駆動となり、スライド弁に全開←―
→全閉間の所定位置をとらせて圧縮機本体1の気
体閉込め容量を制御するようにしている。
The pressure inside the surge tank 5 . The pressure regulator 7 outputs a signal to the electric/electric positioner 8 when the pressure fluctuation that can be obtained from the input signal shows a deviation larger than a predetermined deviation allowed from the predetermined pressure setting value Pset.
The electrical/electronic positioner 8 combines the input signal from the pressure regulator 7 with the slide valve position detection signal input from the slide resistor 4, and controls the four-way switching valve 3 so as to force the slide valve to a predetermined position. A control command for the switching operation is output, and the hydraulic cylinder 2 is driven and the slide valve is fully opened.
→The gas entrapment capacity of the compressor main body 1 is controlled by making the compressor take a predetermined position between fully closed.

(従来技術に存する問題点) 上記の如く、吐出圧力により閉込め気体容量を
制御する従来容量制御方法は、吐出圧力部から流
出する消費流量がなだらかに変動する場合には、
制御系が十分追随可能で何等の支障を生ずること
もない。
(Problems in the Prior Art) As described above, in the conventional capacity control method of controlling the trapped gas capacity by the discharge pressure, when the consumed flow rate flowing out from the discharge pressure section fluctuates gently,
The control system can follow this sufficiently and will not cause any trouble.

しかし乍ら、消費流量がステツプ状に変動する
場合……例えばガスタービン等に圧縮気体を供給
する場合には、当該圧縮器の制御系は、第5図b
の消費流量vを縦軸、時間tを横軸にとつた図表
上に示される消費流量特性線Vに対応して作動し
て吐出圧力部=サージタンク5の圧力低下を回復
せんとするが、スライド弁の移動速度には物理
的・機械的な限界があるため(例えば、ロード、
アンロードとするまでに要する時間は約60秒)、
サージタンク5内の吐出圧力pは、当該吐出圧力
pを縦軸、時間tを横軸にとつた第5図cの図表
上に描かれる圧力特性曲線Pとなる。即ち、当該
圧力特性曲線Pは当初所定の吐出圧力設定値Pset
を維持しているが、消費流量が図示の如くステツ
プ状に増大して吐出圧力部5の圧力が急激に下降
変動すると、制御系はこれに応じてスライド弁を
常態時位置からロード側方向へ大巾に移動させて
圧力変動量の回復を図るが、吐出圧力が設定値
Psetまで回復し、かつこれを検出してスライド弁
を移動位置から常態時位置に復帰するにあたり、
移動速度に限度があるため、移動開始から終了ま
でに要する時間が経過する間に、矢印で示す設定
値Psetを超えた圧力上昇が生じ、サージタンク5
内の吐出圧力が設定値Psetから大きくずれる場合
がある。かかる状態が発生すると、安全弁9が作
動したり、あるいは図示しないトリツプ回路が導
通する現象が時として惹起される。
However, when the consumption flow rate fluctuates in steps...for example, when supplying compressed gas to a gas turbine, etc., the control system of the compressor is as shown in Figure 5b.
The pressure drop in the discharge pressure section = surge tank 5 is to be recovered by operating in accordance with the consumption flow characteristic line V shown on the chart with the consumption flow rate v on the vertical axis and the time t on the horizontal axis. There are physical and mechanical limits to the movement speed of the slide valve (for example, load,
It takes about 60 seconds to unload)
The discharge pressure p in the surge tank 5 becomes a pressure characteristic curve P drawn on the chart of FIG. 5c, in which the vertical axis is the discharge pressure p and the horizontal axis is the time t. That is, the pressure characteristic curve P is initially set to a predetermined discharge pressure setting value Pset.
However, when the consumption flow rate increases stepwise as shown in the figure and the pressure in the discharge pressure section 5 suddenly fluctuates downward, the control system responds by moving the slide valve from its normal position toward the load side. I tried to recover the pressure fluctuation by moving it wide, but the discharge pressure remained at the set value.
In recovering to Pset and detecting this and returning the slide valve from the moving position to the normal position,
Since there is a limit to the movement speed, during the time required from the start to the end of movement, the pressure rises beyond the set value Pset indicated by the arrow, and the surge tank 5
The discharge pressure within may deviate significantly from the set value Pset. When such a situation occurs, the safety valve 9 is activated or a trip circuit (not shown) is sometimes rendered conductive.

上記安全弁9の作動やトリツプ回路の導通は圧
縮機自体の運転停止を伴い、これにより当該スク
リユー圧縮機から供給される圧縮気体を使用する
装置に多大の損害を及ぼすこととなる。
Activation of the safety valve 9 and conduction of the trip circuit are accompanied by a shutdown of the compressor itself, which causes great damage to equipment that uses compressed gas supplied from the screw compressor.

本来、安全弁9やトリツプ回路は異常時対策と
して設けられているものであるが、正常に制御・
運転されているにも拘わらず、ただスライド弁の
移動速度の緩慢に起因して異常時対策装置が働く
のは好ましくないので、このような事態に対処す
る解決策が希求されていた。
Originally, the safety valve 9 and the trip circuit were provided as a countermeasure in case of an abnormality, but they cannot be controlled and operated normally.
Since it is undesirable for the emergency countermeasure device to operate due to the slow movement speed of the slide valve even though the slide valve is in operation, a solution for dealing with such a situation has been desired.

(発明の目的) 本発明は、消費流量がステツプ状に変動する装
置に圧縮気体を供給するスライド弁式スクリユー
圧縮機の従来制御方法に存する上述した問題点を
解決するためになされたもので、正常な制御・運
転中に異常対策装置が働く事態を惹起する虞のな
いスライド弁式スクリユー圧縮機の容量制御方法
を提供することを目的とする。
(Object of the Invention) The present invention was made in order to solve the above-mentioned problems in the conventional control method of a slide valve type screw compressor that supplies compressed gas to a device whose consumption flow rate fluctuates in steps. It is an object of the present invention to provide a capacity control method for a slide valve type screw compressor that does not cause a situation in which an abnormality countermeasure device is activated during normal control and operation.

(発明の構成) 本発明の構成は、 (1) 互いに噛合う雌雄ロータ間に気体を閉じ込め
圧縮して吐出する気体閉じ込め容量を、吐出さ
れた気体が流入する吐出圧力部の圧力に応じ
て、上記ロータ周壁の一部を構成するスライド
弁に全開←―→全閉間の所定位置をとらせて制
御する圧縮機の、消費流量が急激に変動する場
合において、 (2) 上記圧縮機へ気体を供給する供給路と上記吐
出圧力部との間に常閉弁が介挿されたバイパス
を設けるとともに、 (3) 吐出圧力部の圧力上昇スピードを演算・測定
するように構成し、 (4) 吐出圧力部に設定されている設定値を超えた
所定圧力に達した時点で常閉弁を上記圧力上昇
スピードの大、小に応じたステツプ状大、小の
開度で開弁してバイパスを導通させて圧縮気体
を供給管へ還流させるように設定するととも
に、 (5) 当該常閉弁の閉弁動作を前記スライド弁が圧
力制御可能な緩いスピードに設定したことを特
徴とするスライド弁式スクリユー圧縮機の容量
制御方法にある。
(Structure of the Invention) The structure of the present invention is as follows. (2) When the consumption flow rate of the compressor, which is controlled by controlling the slide valve that forms part of the rotor peripheral wall to take a predetermined position between fully open and fully closed, is to A bypass in which a normally closed valve is inserted is provided between the supply path for supplying the water and the discharge pressure section, and (3) the pressure rise speed of the discharge pressure section is calculated and measured, and (4) When a predetermined pressure exceeding the set value set in the discharge pressure section is reached, the normally closed valve is opened with a step-like opening of large or small depending on the speed of pressure rise mentioned above to create a bypass. (5) A slide valve type characterized in that the normally closed valve is set to close at a slow speed at which the slide valve can control the pressure. A method for controlling the capacity of a screw compressor.

(発明の作用) 本発明は、スライド弁式スクリユー圧縮機の消
費流量がステツプ状に変動する場合、スライド弁
の不可避的移動動作所要時間に起因して惹起され
る、吐出圧力部圧力の設定値を大巾に超える上昇
を阻止し、吐出圧力による容量制御を可能とする
作用を発揮する。
(Function of the Invention) The present invention provides a set value of the discharge pressure part pressure caused by the time required for the unavoidable movement of the slide valve when the consumption flow rate of a slide valve type screw compressor fluctuates in steps. This function prevents the pump from rising by a large amount and enables capacity control using the discharge pressure.

(実施例) 本発明制御方法を第1図に示す実施例ブロツク
図に従つて以下に詳述する。
(Embodiment) The control method of the present invention will be described in detail below with reference to the embodiment block diagram shown in FIG.

図において、1は雌雄ロータおよびスライド弁
を内蔵するスライド弁式スクリユー圧縮機本体、
2はスライド弁の位置移動を掌る油圧シリンダ、
3は四方切換弁、4はスライド弁の位置検出をす
るスライド抵抗器、5はサージタンク、6は圧力
伝送器、8は電/電ポジシヨナ、10は雌雄ロー
タの回転駆動源であつて、上記諸機器は従来装置
と異ならない。
In the figure, 1 is the main body of a slide valve type screw compressor with built-in male and female rotors and a slide valve;
2 is a hydraulic cylinder that controls the position movement of the slide valve;
3 is a four-way switching valve, 4 is a slide resistor for detecting the position of the slide valve, 5 is a surge tank, 6 is a pressure transmitter, 8 is an electric/electrical positioner, 10 is a rotational drive source for the male and female rotors, and the above The equipment is no different from conventional equipment.

しかし乍ら、本発明は上記諸機器が配置された
回路に、従来圧力調節器7に替つて演算器11を
配置し、また圧縮機本体1に気体を供給する供給
路Ginとサージタンク5との間にバイパスBPを
配設し、かつ当該バイパスBPに常閉弁12を介
挿した構成とする。
However, the present invention arranges a computing unit 11 in place of the conventional pressure regulator 7 in the circuit in which the above-mentioned various devices are arranged, and also connects the supply path Gin that supplies gas to the compressor body 1 and the surge tank 5. A bypass BP is disposed between them, and a normally closed valve 12 is inserted in the bypass BP.

上記構成において、圧縮機本体1は供給路Gin
から取り入れた気体を圧縮して矢印Goutで示す
吐出路から吐出し、吐出された圧縮気体はサージ
タンク5に流入して調圧されたのち消費され、当
該消費流量に応じてサージタンク5内の圧力の変
動が圧力伝送器6で検知され、信号出力される点
は従来同様である。
In the above configuration, the compressor main body 1 is connected to the supply path G
The compressed gas taken in is compressed and discharged from the discharge path indicated by the arrow Gout, and the discharged compressed gas flows into the surge tank 5, is pressure regulated, and is consumed. The pressure fluctuation is detected by the pressure transmitter 6 and a signal is output as in the conventional case.

本発明は、圧力伝送器6の信号出力を演算器1
1に入力するようにし、当該演算器11に従来の
圧力設定器7と同様に、吐出圧力変動の偏差が所
定許容偏差以上であると電/電ポジシヨナ8へ出
力してスライド弁の位置制御をなさしめるととも
に、以下の動作を実行するように設定される。
In the present invention, the signal output of the pressure transmitter 6 is
1, and in the same way as the conventional pressure setting device 7, the calculation unit 11 outputs an output to the electric/electric positioner 8 to control the position of the slide valve when the deviation of the discharge pressure fluctuation exceeds a predetermined allowable deviation. It is set to perform the following actions.

まず、演算器11は入力信号から吐出圧力上昇
スピードを測定する。
First, the computing unit 11 measures the speed of increase in discharge pressure from the input signal.

即ち、消費流量がステツプ状に減少する場合、
制御系はサージタンク5内の低下した圧力を所定
設定値Psetに復元すべく作動するが、前述の如く
スライド弁の移動開始から終了までには時間がか
かり、その間に取り込まれる気体の容量はスライ
ド弁の開度に応じて変化するので、サージタンク
5内の圧力上昇スピードは消費流量の減少巾によ
り変化する。この関係を第2図aおよびbに示
す。サージタンク5内圧力pを縦軸、時間tを横
軸にとつた図表a上の圧力特性線Pの設定値Pset
を超える上昇は、消費流量vを縦軸、時間tを横
軸にとつた図表b上の消費流量特性線Vに応じ
て、例えば消費流量変化が小の消費流量特性線V
イに対してはPイ、中の消費流量特性線Vロに対
してはPロ、大の消費流量特性線Vハに対しては
Pハで描かれる挙動を示すこととなる。
In other words, when the consumption flow rate decreases in steps,
The control system operates to restore the reduced pressure in the surge tank 5 to the predetermined set value Pset, but as mentioned above, it takes time from the start to the end of the movement of the slide valve, and the volume of gas taken in during that time is reduced by the slide valve. Since it changes according to the opening degree of the valve, the pressure increase speed in the surge tank 5 changes depending on the reduction range of the consumption flow rate. This relationship is shown in Figures 2a and b. Setting value Pset of the pressure characteristic line P on chart a with the pressure p inside the surge tank 5 on the vertical axis and the time t on the horizontal axis
For example, an increase exceeding the consumption flow rate characteristic line V with a small change in the consumption flow rate is determined according to the consumption flow rate characteristic line V on the chart b in which the consumption rate v is plotted on the vertical axis and the time t is plotted on the horizontal axis.
The behavior is shown as Pb for A, Pb for the medium consumption flow characteristic line VB, and Pc for the large consumption flow characteristic line VC.

それ故、演算器11に第3図aの縦軸に圧力
p、横軸に時間tをとつた図表上に示す如く単位
時間Tあたりの上昇圧力変化量△pを演算・測定
させるか、あるいは第3図bの縦軸に圧力p、横
軸に時間tをとつた図表上に示す如く所定圧力値
P1からP2まで上昇するに要する時間T1を演算・
測定させるかして、吐出力上昇スピードΔPを求
めるように設定可能である。
Therefore, either the calculating unit 11 calculates and measures the amount of increase in pressure change △ p per unit time T as shown in the chart of FIG. The predetermined pressure value is as shown in the diagram of Fig. 3b with pressure p on the vertical axis and time t on the horizontal axis.
Calculate the time T1 required to rise from P1 to P2.
It can be set to determine the ejection force increase speed ΔP by measuring it.

さらに、演算器11に、上記吐出圧力上昇スピ
ードΔPから消費流量vを演算させ、当該消費流
量vから流量変化量△Vを求めさせ、後述する常
開弁12の閉弁動作速度との関係において、常開
弁12の開度%を演算・決定するよう設定可能で
ある。
Furthermore, the computing unit 11 is caused to calculate the consumption flow rate v from the above-mentioned discharge pressure increase speed ΔP, and the flow rate change amount ΔV is determined from the consumption flow rate v, and in relation to the closing operation speed of the normally open valve 12, which will be described later. , the opening degree % of the normally open valve 12 can be set to be calculated and determined.

而して、本発明はサージタンク5内圧力pが設
定値Psetを超えた所定圧力P3に到達した時点で、
演算器11が求め得た吐出圧力上昇スピードΔP
および決定した常閉弁12の開度%に対応した信
号を、当該演算器11から電/電ポジシヨナ8へ
出力するように設定し、かつ当該信号が入力する
電/電ポジシヨナ8が常閉弁12へ入力信号に応
じた開弁動作指令を出力するように設定する。
Therefore, in the present invention, when the internal pressure p of the surge tank 5 reaches a predetermined pressure P3 exceeding the set value Pset,
Discharge pressure increase speed ΔP obtained by the calculator 11
A signal corresponding to the determined opening degree % of the normally closed valve 12 is set to be output from the computing unit 11 to the electric/electrical positioner 8, and the electric/electrical positioner 8 to which the signal is input is a normally closed valve. 12 to output a valve opening operation command according to the input signal.

本発明は演算器11に上記の如き設定をする一
方、他方では常閉弁12の閉弁動作が緩慢なスピ
ードとなるように設定しておく。何故ならば、閉
弁を急速に行うと、前述スライド弁の位置制御動
作完了前に閉弁となり、再びサージタンク5内圧
力が所定圧力P3に到達し、演算器11が電/電
ポジシヨナ8へ信号出力するからである。
In the present invention, the arithmetic unit 11 is set as described above, and on the other hand, the normally closed valve 12 is set to close at a slow speed. This is because if the valve is closed rapidly, the valve will be closed before the position control operation of the slide valve is completed, and the pressure inside the surge tank 5 will reach the predetermined pressure P3 again, and the calculator 11 will move to the electric/electrical positioner 8. This is because it outputs a signal.

従つて、電/電ポジシヨナ8の出力する開弁動
作指令により、常閉弁12は第3図cに示すよう
に圧力上昇スピードΔPの程度に応じ、それが大
であれば開度%を大とし、小であれば開度%を小
として開弁されることとなる。当該常閉弁12の
開弁によりバイパスBPは導通し、サージタンク
5の圧縮気体は当該バイパスBPを介して流出し、
当該サージタンク5内の圧力が設定値Psetを超え
た所定圧力P3から順次低下するとともに、流量
変化量ΔV相当分の圧縮気体が供給管Ginへ還流
されることとなる。
Therefore, according to the valve opening operation command output from the electric/electric positioner 8, the normally closed valve 12 increases the opening degree in % according to the pressure increase speed ΔP as shown in FIG. 3c. If it is small, the valve will be opened with the opening degree % small. By opening the normally closed valve 12, the bypass BP becomes conductive, and the compressed gas in the surge tank 5 flows out through the bypass BP.
The pressure in the surge tank 5 gradually decreases from the predetermined pressure P3 exceeding the set value Pset, and the compressed gas corresponding to the flow rate change amount ΔV is returned to the supply pipe Gin.

本発明を実施した圧縮機の各部の動作を第4図
a〜dの線図に示す。bのステツプ状消費流量の
変動に対応して制御系が作動し、これに伴いサー
ジタンク5内圧力が上昇し、圧力上昇が設定値
Psetを超えて所定圧力P3に到達するとa、演算
器11から信号が出力されて常閉弁12は所定開
度で開弁したのち、徐々にほぼ閉弁状態へと復帰
するc。この間、スライド弁は、サージタンク5
内圧力が上昇して設定値Psetを示した時点で演算
器11からの出力信号により移動を開始し、当該
スライド弁の開度がdに示す如くロード側閉方向
位置からアンロード側開方向位置へと変化し、そ
の移動の終了時と上記常閉弁12の閉弁状態復帰
時とがほぼ同調する。
The operation of each part of a compressor embodying the present invention is shown in the diagrams of FIGS. 4a to 4d. The control system operates in response to the fluctuation in the step-like consumption flow rate b, and the pressure inside the surge tank 5 increases accordingly, and the pressure rise reaches the set value.
When Pset is exceeded and the predetermined pressure P3 is reached (a), a signal is output from the computing unit 11, and the normally closed valve 12 opens at a predetermined opening degree, and then gradually returns to a substantially closed state (c). During this time, the slide valve is closed to the surge tank 5.
When the internal pressure rises and reaches the set value Pset, movement is started based on the output signal from the calculator 11, and the opening degree of the slide valve changes from the load side close position to the unload side open position as shown in d. The end of the movement and the return of the normally closed valve 12 to the closed state are almost synchronized.

従つて、サージタンク5内の吐出圧力は安全弁
やトリツプ回路が作動する前に効果的に圧力低下
され、かつスライド弁の吐出圧力による容量制御
は何等の支障もなく継続して実施されることとな
る。
Therefore, the discharge pressure in the surge tank 5 is effectively reduced before the safety valve or trip circuit is activated, and the capacity control based on the discharge pressure of the slide valve can be continued without any hindrance. Become.

(発明の効果) 本発明を実施することにより、消費流量がステ
ツプ状に変動する場合でも、正常な制御による運
転中に異常時対策装置が作動する虞がなくなり、
信頼してスライド弁式スクリユー圧縮機を吐出圧
力により容量制御運転することが出来、当該スラ
イド弁式スクリユー圧縮機により製造される圧縮
気体を使用する装置の運転が確保される。また、
吐出圧力上昇スピードを検出する設定となつてい
ることから、消費流量の変動巾を推定し得るの
で、当該推定値を基礎とした最適容量制御が可能
となる。そのうえ、安全弁等作動時の開弁し放し
で圧縮気体を外部に放出する状態とは異なり、常
閉弁は開弁後ただちにほぼ閉弁し、ほぼ常時スラ
イド弁移動で容量制御がなされていることから、
軸動力が改善されるなど、齎される効果は甚大で
ある。
(Effects of the Invention) By implementing the present invention, even if the consumption flow rate fluctuates in steps, there is no possibility that the abnormality countermeasure device will operate during normal control operation.
The slide valve type screw compressor can be operated with capacity control based on the discharge pressure in a reliable manner, and the operation of a device using the compressed gas produced by the slide valve type screw compressor is ensured. Also,
Since the setting is to detect the discharge pressure increase speed, it is possible to estimate the range of fluctuation in the consumption flow rate, so it is possible to perform optimal capacity control based on the estimated value. Furthermore, unlike a safety valve that is left open when activated and releases compressed gas to the outside, a normally closed valve closes almost immediately after opening, and capacity is controlled almost constantly by moving the slide valve. from,
The effects brought about are enormous, such as improved shaft power.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明制御方法の実施例ブロツク図、
第2図aおよびbはそれぞれサージタンク5内の
設定値を超える圧力上昇挙動と消費流量との関係
を示す圧力特性線図および消費流量特性線図、第
3図aおよびbはそれぞれ演算器11による圧力
上昇スピードの求めかたを説明する線図、第3図
cは演算器11による常閉弁の開度決定方法を説
明する線図、第4図a〜dはそれぞれ本発明方法
を実施したスライド弁式スクリユー圧縮器の各部
の動作を示す線図、第5図aはスライド弁式スク
リユー圧縮機の従来制御方法を説明するブロツク
図、第5図bおよびcはそれぞれ消費流量がステ
ツプ状に変動する場合の消費流量特性線図および
サージタンク内吐出圧力特性線図である。 1……圧縮器本体、5……吐出圧力部(サージ
タンク)、12……常閉弁、BP……バイパス、
Gin……気体供給路。
FIG. 1 is a block diagram of an embodiment of the control method of the present invention.
2A and 2B are pressure characteristic diagrams and consumption flow rate characteristic diagrams showing the relationship between the pressure increase behavior exceeding the set value in the surge tank 5 and the consumption flow rate, respectively, and FIGS. 3A and 3B are respectively the arithmetic unit 11 Fig. 3c is a diagram explaining how to determine the opening of a normally closed valve using the calculator 11, and Figs. Fig. 5a is a block diagram illustrating the conventional control method of a slide valve type screw compressor, and Fig. 5b and c are diagrams showing the operation of each part of a slide valve type screw compressor. FIG. 2 is a consumption flow characteristic diagram and a surge tank discharge pressure characteristic diagram when the fuel consumption changes. 1...Compressor body, 5...Discharge pressure section (surge tank), 12...Normally closed valve, BP...Bypass,
Gin...Gas supply path.

Claims (1)

【特許請求の範囲】[Claims] 1 互いに噛合う雌雄ロータ間に気体を閉じ込め
圧縮して吐出する気体閉じ込め容量を、吐出され
た気体が流入する吐出圧力部の圧力に応じて、上
記ロータ周壁の一部を構成するスライド弁に全開
←―→全閉間の所定位置をとらせて制御する圧縮
機の、消費流量が急激に変動する場合において、
上記圧縮機へ気体を供給する供給路と上記吐出圧
力部との間に常閉弁が介挿されたバイパスを設け
るとともに、吐出圧力部の圧力上昇スピードを演
算・測定するように構成し、吐出圧力部に設定さ
れている設定値を超えた所定圧力に達した時点で
常閉弁を上記圧力上昇スピードの大、小に応じた
ステツプ状大、小の開度で開弁してバイパスを導
通させて圧縮気体を供給管へ還流させるように設
定するとともに、当該常閉弁の閉弁動作を前記ス
ライド弁が圧力制御可能な緩いスピードに設定し
たことを特徴とするスライド弁式スクリユー圧縮
機の容量制御方法。
1 The gas confinement capacity, which traps gas between the male and female rotors that mesh with each other, compresses it, and discharges it, is fully opened to the slide valve that forms part of the rotor peripheral wall in accordance with the pressure of the discharge pressure section into which the discharged gas flows. ←――→When the consumption flow rate of a compressor that is controlled by keeping it at a predetermined position between fully closed and fluctuates rapidly,
A bypass in which a normally closed valve is inserted between the supply path for supplying gas to the compressor and the discharge pressure section is provided, and the pressure rise speed of the discharge pressure section is calculated and measured. When a predetermined pressure exceeding the set value set in the pressure section is reached, the normally closed valve is opened at a step-like opening degree depending on the speed of pressure rise mentioned above to open the bypass. A slide valve type screw compressor, characterized in that the compressed gas is returned to the supply pipe by the slide valve, and the closing operation of the normally closed valve is set to a slow speed at which the slide valve can control the pressure. Capacity control method.
JP21802585A 1985-10-02 1985-10-02 Delivery control method of slide valve type screw compressor Granted JPS6278497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21802585A JPS6278497A (en) 1985-10-02 1985-10-02 Delivery control method of slide valve type screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21802585A JPS6278497A (en) 1985-10-02 1985-10-02 Delivery control method of slide valve type screw compressor

Publications (2)

Publication Number Publication Date
JPS6278497A JPS6278497A (en) 1987-04-10
JPH0512557B2 true JPH0512557B2 (en) 1993-02-18

Family

ID=16713453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21802585A Granted JPS6278497A (en) 1985-10-02 1985-10-02 Delivery control method of slide valve type screw compressor

Country Status (1)

Country Link
JP (1) JPS6278497A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4110123B2 (en) 2004-07-12 2008-07-02 株式会社神戸製鋼所 Screw compressor
JP5379421B2 (en) * 2008-07-28 2013-12-25 株式会社神戸製鋼所 Compression device

Also Published As

Publication number Publication date
JPS6278497A (en) 1987-04-10

Similar Documents

Publication Publication Date Title
JP2754079B2 (en) Control method and control device for compressor system
CA2231444C (en) Surge recurrence prevention control system for dynamic compressors
US20020021969A1 (en) Compressor, its control device and control method
CN101688384A (en) The engine control system of building machinery
AU2016259718B2 (en) A control system for controlling a subsea gas compression system
JPH0512557B2 (en)
JP6997648B2 (en) Compressor system
JP2539514B2 (en) Boiler water supply control device
JP2509612B2 (en) Bypass controller
JPH109147A (en) Reciprocating compressor control method
JP2892744B2 (en) On-off valve operation diagnostic device
JPS5968572A (en) Monitoring and controlling method of abnormality in plant
JPH08280159A (en) Hydrogen gas supply device for hydrogen-cooled rotating electric machine
JPS6154925B2 (en)
JPS6226648Y2 (en)
JPH0510153A (en) Fuel gas feeder for gas turbine
JP2585204B2 (en) Feed water pump recirculation valve controller
JPS6153559B2 (en)
JPS6139112A (en) Electric speed governor
JPS5854241B2 (en) Steam turbine inlet steam pressure control device
JPH0340114A (en) Method and device for controlling fluid flow rate
JPS63120880A (en) Controller for recirculation flow of water supply pump
JPH06337103A (en) Controller for water supply flow rate in water supply pump
JPH059604B2 (en)
JPS63131908A (en) Method of controlling recirculation of feed pump

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees