JPH05125569A - Method for preventing work flow corrosion of stainless steel - Google Patents

Method for preventing work flow corrosion of stainless steel

Info

Publication number
JPH05125569A
JPH05125569A JP3315339A JP31533991A JPH05125569A JP H05125569 A JPH05125569 A JP H05125569A JP 3315339 A JP3315339 A JP 3315339A JP 31533991 A JP31533991 A JP 31533991A JP H05125569 A JPH05125569 A JP H05125569A
Authority
JP
Japan
Prior art keywords
stainless steel
per unit
corrosion
irradiation
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3315339A
Other languages
Japanese (ja)
Other versions
JP2696632B2 (en
Inventor
Takayuki Nagai
崇之 永井
Seiichiro Takeda
誠一郎 武田
Toshihiro Kato
利弘 加藤
Kazunori Kawanobe
一則 川野辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan, Power Reactor and Nuclear Fuel Development Corp filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP3315339A priority Critical patent/JP2696632B2/en
Publication of JPH05125569A publication Critical patent/JPH05125569A/en
Application granted granted Critical
Publication of JP2696632B2 publication Critical patent/JP2696632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel

Landscapes

  • Laser Beam Processing (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To improve the corrosion resistance on the work flow face of a stainless steel to prevent the generation of work flow corrosion, to attain the prolongation of the service life and lightening of an apparatus and to improve manufacturing accuracy. CONSTITUTION:The work flow face 12 of a stainless steel pipe 10 is irradiated with a laser beam 14. This laser beam 14 has a wavelength capable of being transmitted through an optical fiber cable and condensing irradiation energy per unit time and unit area is regulated to 100 to 2000MW/m<2>. The laser irradiation is executed in an atmosphere shielded by an inert gas; a condensing spot 18 is moved so as to regulate irradiation energy per unit area to 300 to 3000MJ/m<2>; and scanning is executed over the whole body of the work flow face to be exposed to a corrosive environment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ステンレス鋼材の加工
フロー腐食の発生を防止する方法に関し、更に詳しく述
べると、ステンレス鋼材のメタルフロー方向と交差する
面にレーザビームを照射して表面を改質することによ
り、腐食性環境に曝される機器の耐食性を向上させる方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preventing the occurrence of machining flow corrosion of stainless steel material. More specifically, the surface of stainless steel material is irradiated with a laser beam to modify its surface. The present invention relates to a method for improving corrosion resistance of a device exposed to a corrosive environment by improving the quality.

【0002】[0002]

【従来の技術】腐食性物質を取り扱う各種の機器や部品
では、化学物質による機器材料の腐食が原因と考えられ
る故障がしばしば発生している。特にステンレス鋼製の
機器や部品において、メタルフロー方向(伸展加工方
向)と交差する面(これを加工フロー面という)が腐食
性環境に曝された場合、メタルフロー方向に沿って加工
フロー腐食(孔食)が発生する。腐食が進行すると、遂
には部材の裏側まで貫通して機器のトラブルを引き起こ
す。この原因は、ステンレス鋼塊の凝固過程における介
在物やクロム炭化物などの偏析が、圧延加工などにより
メタルフローとして連続し、それに沿って粒界腐食が選
択的に進行するためである。
2. Description of the Related Art In various types of equipment and parts that handle corrosive substances, failures that are considered to be caused by corrosion of equipment materials by chemical substances often occur. Particularly in stainless steel equipment and parts, when the surface intersecting the metal flow direction (extension processing direction) (this is called the processing flow surface) is exposed to a corrosive environment, the processing flow corrosion along the metal flow direction ( Pitting corrosion occurs. When the corrosion progresses, it finally penetrates to the back side of the member and causes troubles of the equipment. This is because the segregation of inclusions and chromium carbides in the solidification process of the stainless steel ingot continues as a metal flow due to the rolling process and the intergranular corrosion selectively progresses along the metal flow.

【0003】この問題を解決するため、従来技術では、
予想される腐食の程度に応じて、機器全体の寿命に見合
った腐食しろをとる方法、あるいは肉盛り溶接(クラッ
ド溶接)を施して加工フロー腐食の発生を防止してき
た。
In order to solve this problem, in the prior art,
Depending on the expected degree of corrosion, a method of taking a corrosion margin corresponding to the life of the entire equipment or overlay welding (clad welding) has been applied to prevent the occurrence of processing flow corrosion.

【0004】[0004]

【発明が解決しようとする課題】しかし、加工フロー腐
食の発生の程度は、素材の品質のばらつきや腐食性環境
によって大きく左右されるため、適正な腐食しろの設定
が難しく、過剰設計となってしまう場合が多い。そのた
め機器の重量やコストが増大する問題が生じる。またク
ラッド溶接を施すと、熱影響部に新たな腐食要因を与え
る可能性があると共に、加工寸法が狂うことから、装置
の製作精度が悪くなる等の欠点がある。
However, since the degree of occurrence of machining flow corrosion is largely influenced by the variation in material quality and the corrosive environment, it is difficult to set an appropriate corrosion allowance, and it becomes an overdesign. It often happens. Therefore, there arises a problem that the weight and cost of the device increase. Further, when clad welding is performed, there is a possibility that a new corrosion factor may be given to the heat-affected zone, and the processing dimension is deviated, so that the manufacturing accuracy of the device is deteriorated.

【0005】本発明の目的は、簡便にステンレス鋼材の
加工フロー面そのものの耐食性を向上させて加工フロー
腐食の発生を防止することができ、そのため機器の長寿
命化を図ることができると共に、腐食しろを薄くして機
器を軽量化でき、機器の製作精度を向上させることがで
きる方法を提供することである。
An object of the present invention is to easily improve the corrosion resistance of the processing flow surface itself of a stainless steel material and prevent the occurrence of processing flow corrosion. Therefore, it is possible to prolong the life of the equipment and to prevent corrosion. It is an object of the present invention to provide a method capable of thinning a margin to reduce the weight of a device and improving the manufacturing accuracy of the device.

【0006】[0006]

【課題を解決するための手段】本発明はステンレス鋼材
の加工フロー面にレーザビームを照射することにより照
射部分を改質して加工フロー腐食の発生を防止する方法
である。照射するレーザビームは、光ファイバケーブル
を伝送可能な波長(0.17〜4μm)の光であり、且
つ単位時間単位面積当たりの照射エネルギーが100〜
2000MW/m2 となるように集光したものである。
レーザ照射は不活性ガスで遮蔽した雰囲気中で行う。前
記のレーザビームによる集光スポットを、単位面積当た
りの照射エネルギーが300〜3000MJ/m2 とな
るように移動させて、少なくとも腐食性環境に曝される
加工フロー面のほぼ全体にわたって走査する。
The present invention is a method for irradiating a laser beam on a machining flow surface of a stainless steel material to modify the irradiated portion to prevent the occurrence of machining flow corrosion. The laser beam to be radiated is light having a wavelength (0.17 to 4 μm) that can be transmitted through the optical fiber cable, and the irradiation energy per unit time and unit area is 100 to.
The light is condensed so as to be 2000 MW / m 2 .
Laser irradiation is performed in an atmosphere shielded with an inert gas. The focused spot by the laser beam is moved so that the irradiation energy per unit area is 300 to 3000 MJ / m 2, and at least almost the entire processing flow surface exposed to the corrosive environment is scanned.

【0007】レーザ発振器としては、例えばNd3+−Y
AGレーザ(波長:1.06μm)が好ましい。不活性
ガスとしてはアルゴンガスや窒素ガス等を用いる。不活
性ガスは照射面に向かって吹き付けるようにするのがよ
い。
As a laser oscillator, for example, Nd 3+ -Y
AG laser (wavelength: 1.06 μm) is preferable. Argon gas, nitrogen gas, or the like is used as the inert gas. The inert gas is preferably blown toward the irradiation surface.

【0008】[0008]

【作用】レーザビームを照射したステンレス鋼材の加工
フロー面は、レーザビームの高い照射エネルギーのため
に、表層のみが極めて短い時間で溶融する。その後、集
光スポットの移動あるいは照射停止によって、照射され
た部位は急速に凝固し、金属組織は均一且つ微細な組織
に改質される。このため加工フロー腐食の原因である介
在物やクロム炭化物の偏析を拡散、消滅させると共に、
微細化によって侵食深さが低減することにより耐食性が
向上するのである。
In the processing flow surface of the stainless steel material irradiated with the laser beam, only the surface layer is melted in an extremely short time due to the high irradiation energy of the laser beam. After that, by moving the focused spot or stopping the irradiation, the irradiated portion is rapidly solidified, and the metal structure is modified into a uniform and fine structure. For this reason, the segregation of inclusions and chromium carbide, which are the causes of processing flow corrosion, is diffused and eliminated, and
Corrosion resistance is improved by reducing the erosion depth due to miniaturization.

【0009】ステンレス鋼材の加工フロー面に照射する
レーザビームの単位時間単位面積当たりの照射エネルギ
ーを100〜2000MW/m2 とするのは、100M
W/m2 未満では改質層の厚さが薄くなるため実用的な
耐食性が得られず、2000MW/m2 を超えると改質
層にクラックが発生する虞れがあるからである。またレ
ーザビームによる集光スポットを、単位面積当たりの照
射エネルギーが300〜3000MJ/m2となるよう
に移動させるのは、300MJ/m2 未満では単位時間
単位面積当たりの照射エネルギーが低い場合は殆ど改質
されず、また単位時間単位面積当たりの照射エネルギー
が高い場合は改質層にクラックが発生するし、3000
MJ/m2 を超えると改質層の組織粒が肥大化すると共
にレーザ照射熱による母材部の鋭敏化(700℃程度で
熱処理すること)が起こるため耐食性が悪化するからで
ある。なおレーザ照射条件を単位時間単位面積当たりの
照射エネルギーと単位面積当たりの照射エネルギーの両
方で規定しているのは、両者が、「単位時間単位面積当
たりの照射エネルギー」×「照射時間」=「単位面積当
たりの照射エネルギー」という関係にあり、「単位面積
当たりの照射エネルギー」が等しいからといって必ずし
も同じ表層改質効果が得られる訳ではないからである。
The irradiation energy per unit time and unit area of the laser beam for irradiating the processing flow surface of the stainless steel material is 100 to 2000 MW / m 2 is 100 M.
If it is less than W / m 2 , the thickness of the modified layer becomes thin so that practical corrosion resistance cannot be obtained, and if it exceeds 2000 MW / m 2 , cracks may occur in the modified layer. Also the condensing spot by the laser beam, the irradiation energy per unit area is moved so that 300~3000MJ / m 2, when the irradiation energy per unit time per unit area is less than 300 MJ / m 2 is low almost If it is not modified and the irradiation energy per unit area per unit time is high, cracks occur in the modified layer, and 3000
If it exceeds MJ / m 2 , the texture grains of the modified layer will be enlarged, and the base material portion will be sensitized by the heat of laser irradiation (heat treatment at about 700 ° C.), resulting in deterioration of corrosion resistance. Note that the laser irradiation condition is defined by both irradiation energy per unit time per unit area and irradiation energy per unit area is that both are “irradiation energy per unit time unit area” × “irradiation time” = “irradiation energy” This is because there is a relation of "irradiation energy per unit area", and even if "irradiation energy per unit area" is equal, the same surface layer modifying effect is not necessarily obtained.

【0010】光ファイバケーブルを伝送可能な波長のレ
ーザビームを使用することで、表面改質処理作業時にレ
ーザ発振器を移動する必要性を無くし、作業性を高め、
照射装置のコンパクト化を図っている。照射部近傍を遮
蔽する不活性ガス雰囲気は、照射部の酸化及び組成変化
を防止する。照射面に向かって不活性ガスを吹き付ける
と、集光ヘッド(レーザ照射装置の先端)及びレーザ照
射面の過熱を防ぎ、また照射面の塵埃を除去することが
できる。
By using a laser beam having a wavelength that can be transmitted through the optical fiber cable, it is possible to eliminate the need to move the laser oscillator during the surface modification treatment work and to improve the workability.
The irradiation device is being made compact. The inert gas atmosphere that shields the vicinity of the irradiation part prevents oxidation and composition change of the irradiation part. By blowing the inert gas toward the irradiation surface, it is possible to prevent the condensing head (the tip of the laser irradiation device) and the laser irradiation surface from overheating, and to remove dust on the irradiation surface.

【0011】[0011]

【実施例】図1は本発明方法をステンレス鋼管の断面に
適用した例を示している。ステンレス鋼管10は展伸操
作によって成形され、中心軸方向がメタルフロー方向M
Fである。従って端面はメタルフロー方向に対し垂直と
なり加工フロー面12となる。この加工フロー面12に
レーザビーム14を照射して、加工フロー腐食の発生を
防止するのが本発明方法である。レーザビームは集光ヘ
ッド16によって集光し、加工フロー面12で単位時間
単位面積当たりの照射エネルギーが100〜2000M
W/m2 となる集光スポット18が得られるようにす
る。この集光スポット18を、単位面積当たりの照射エ
ネルギーが300〜3000MJ/m2 となるように移
動させて、腐食性環境に曝される加工フロー面12の表
面ほぼ全体にわたってジグザグ状に走査する。この時、
不活性ガスを集光ヘッド16の側方から導いて照射面に
吹き付け、照射面を不活性ガスで遮蔽する。ここでレー
ザビーム照射による改質部分を符号20で示し、集光ス
ポット18の中心の軌跡を符号22で示す。
EXAMPLE FIG. 1 shows an example in which the method of the present invention is applied to a cross section of a stainless steel pipe. The stainless steel pipe 10 is formed by a stretching operation, and the central axis direction is the metal flow direction M.
It is F. Therefore, the end face becomes perpendicular to the metal flow direction and becomes the processing flow face 12. The method of the present invention is to irradiate the processing flow surface 12 with the laser beam 14 to prevent the occurrence of processing flow corrosion. The laser beam is condensed by the condensing head 16, and the irradiation energy per unit time and unit area of the processing flow surface 12 is 100 to 2000M.
The focused spot 18 with W / m 2 is obtained. The focused spot 18 is moved so that the irradiation energy per unit area is 300 to 3000 MJ / m 2, and the zigzag scanning is performed over almost the entire surface of the processing flow surface 12 exposed to the corrosive environment. At this time,
The inert gas is guided from the side of the condenser head 16 and blown onto the irradiation surface, and the irradiation surface is shielded by the inert gas. Here, reference numeral 20 indicates a modified portion by laser beam irradiation, and reference numeral 22 indicates a center locus of the focused spot 18.

【0012】図2は本発明で使用するレーザビーム照射
装置の全体構成例を示している。レーザ発振器30から
のレーザビームは入射ユニット32に入り、光ファイバ
ケーブル34を介して集光ヘッド(集光レンズ内蔵)3
6まで伝送され、集光レンズによって集光する。集光ヘ
ッド36の側面に不活性ガス供給管38を接続し、不活
性ガスをレーザビームとともに照射対象物40に向けて
吹き付けることができるようになっている。なお入射ユ
ニット32の上面には光路調整窓42が設けられ、レー
ザ発振器30からのレーザビームが効率よく集光ヘッド
36へ伝送されるように光路調整できるようになってい
る。
FIG. 2 shows an example of the entire structure of the laser beam irradiation apparatus used in the present invention. The laser beam from the laser oscillator 30 enters the incident unit 32, and passes through the optical fiber cable 34 to the condensing head (built-in condensing lens) 3
It is transmitted up to 6 and is condensed by a condenser lens. An inert gas supply pipe 38 is connected to the side surface of the condenser head 36 so that the inert gas can be sprayed toward the irradiation target 40 together with the laser beam. An optical path adjusting window 42 is provided on the upper surface of the incident unit 32, and the optical path can be adjusted so that the laser beam from the laser oscillator 30 is efficiently transmitted to the focusing head 36.

【0013】図3は計装用ノズル50の先端への適用例
を示している。この場合、腐食性環境に曝されるのはノ
ズル外面であるから、メタルフロー方向MFに垂直な先
端面(これが加工フロー面となる)全体にわたって前述
したような所定の照射条件でレーザビームを走査し、表
面改質を行う。斜線で表した領域が改質部分52を示し
ている。図4はくり抜き加工で製作した反応塔頭部54
への適用例を示している。この場合、腐食性環境に曝さ
れるのは反応塔頭部内面であるから、メタルフロー方向
MFに垂直な内面(これが加工フロー面となる)全体に
わたって前述したような所定の照射条件でレーザビーム
を走査し、表面改質を行う。斜線で表した領域が改質部
分56を示している。
FIG. 3 shows an example of application to the tip of the instrumentation nozzle 50. In this case, since it is the nozzle outer surface that is exposed to the corrosive environment, the laser beam is scanned under the predetermined irradiation conditions as described above over the entire tip surface (this is the processing flow surface) perpendicular to the metal flow direction MF. Then, the surface is modified. The hatched area indicates the modified portion 52. Figure 4 shows the reaction tower head 54 made by hollowing.
The application example to is shown. In this case, since it is the inner surface of the reaction tower head that is exposed to the corrosive environment, the laser beam is irradiated under the predetermined irradiation conditions as described above over the entire inner surface perpendicular to the metal flow direction MF (this is the processing flow surface). The surface is modified by scanning. The hatched area indicates the modified portion 56.

【0014】本発明方法においてレーザ照射処理する加
工フロー面は、メタルフロー方向に対して垂直な面に限
られるものではなく、ある角度をもって交差する面(メ
タルフロー方向に平行していない面)も含まれることは
言うまでもない。
In the method of the present invention, the processing flow surface to be laser-irradiated is not limited to a surface perpendicular to the metal flow direction, and a surface intersecting at a certain angle (a surface not parallel to the metal flow direction) may be used. Needless to say, it is included.

【0015】次に加工フロー面にレーザビームを照射し
た試験片の腐食試験結果について述べる。試験条件は以
下の通りである。 試験片(素材) :R−SUS310Nb レーザ照射条件 レーザ発振器 :Nd3+−YAGレーザ(波長:
1.06μm) 不活性ガス :窒素ガス 不活性ガス流量 :20リットル/分 ビーム照射送り速度:200mm/分 集光スポット径 :1mmφ 単位時間単位面積当たりの照射エネルギー:700M
W/m2 単位面積当たりの照射エネルギー :420M
J/m2 腐食試験条件 試験液組成 :8規定硝酸+V5+0.1モル/リット
ル 試験液温度 :沸点 浸漬腐食時間:288時間
Next, the corrosion test result of the test piece whose laser beam is irradiated on the processing flow surface will be described. The test conditions are as follows. Test piece (material): R-SUS310Nb laser irradiation condition Laser oscillator: Nd 3+ -YAG laser (wavelength:
1.06 μm) Inert gas: Nitrogen gas Inert gas flow rate: 20 liters / min Beam irradiation feed rate: 200 mm / min Focused spot diameter: 1 mmφ Irradiation energy per unit time unit area: 700 M
W / m 2 Irradiation energy per unit area: 420M
J / m 2 Corrosion test conditions Test solution composition: 8N nitric acid + V 5+ 0.1 mol / liter Test solution temperature: Boiling point Immersion corrosion time: 288 hours

【0016】上記の条件で腐食試験を行った結果を表1
に示す。
The results of the corrosion test under the above conditions are shown in Table 1.
Shown in.

【表1】 表1に示すように、ステンレス鋼材の加工フロー面に適
切な条件下でレーザ照射を行うことにより、母材のまま
の試験片に比べ、平均腐食速度が約60%低減し、加工
フロー腐食の発生は認められなかった。
[Table 1] As shown in Table 1, by performing laser irradiation on the processing flow surface of the stainless steel material under appropriate conditions, the average corrosion rate is reduced by about 60% compared to the test piece as it is as the base material, and the processing flow corrosion No outbreak was observed.

【0017】[0017]

【発明の効果】本発明では、ステンレス鋼材の加工フロ
ー面に、不活性ガス雰囲気中でレーザビームを照射する
ことにより、加工フロー面の耐食性が照射前よりも大幅
に向上し、腐食性環境で使用するステンレス鋼製の機器
や部品を長寿命化できる。その結果、腐食しろを薄くで
き機器などの軽量化を図ることができる他、クラッド溶
接加工の必要がなくなるため機器の製作精度が向上する
効果がある。
INDUSTRIAL APPLICABILITY According to the present invention, by irradiating the processing flow surface of a stainless steel material with a laser beam in an inert gas atmosphere, the corrosion resistance of the processing flow surface is greatly improved as compared with that before irradiation, and in a corrosive environment. The life of stainless steel equipment and parts used can be extended. As a result, it is possible to reduce the amount of corrosion and to reduce the weight of the device, and the effect of improving the manufacturing accuracy of the device is eliminated because clad welding is not required.

【0018】本発明方法では光ファイバケーブルを伝送
可能な波長のレーザビームを用いるため、レーザ発振器
を移動することなく、先端の集光ヘッドを動かす簡単な
作業でレーザビームを所望の加工フロー面に照射でき、
高耐食性のステンレス鋼製機器の製作が容易になる。
In the method of the present invention, since the laser beam having the wavelength that can be transmitted through the optical fiber cable is used, the laser beam can be directed to a desired processing flow surface by a simple operation of moving the focusing head at the tip without moving the laser oscillator. Can irradiate,
Manufacturing of stainless steel equipment with high corrosion resistance becomes easy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の説明図。FIG. 1 is an explanatory diagram of a method of the present invention.

【図2】本発明で使用するレーザビーム照射装置の全体
構成図。
FIG. 2 is an overall configuration diagram of a laser beam irradiation device used in the present invention.

【図3】本発明方法を計測用ノズル先端に適用した例を
示す説明図。
FIG. 3 is an explanatory diagram showing an example in which the method of the present invention is applied to the tip of a measurement nozzle.

【図4】本発明方法を反応塔頭部内面に適用した例を示
す説明図。
FIG. 4 is an explanatory view showing an example in which the method of the present invention is applied to the inner surface of the reaction tower head.

【符号の説明】[Explanation of symbols]

10 ステンレス鋼管 12 加工フロー面 14 レーザビーム 16 集光ヘッド 18 集光スポット 20 改質部分 10 Stainless Steel Pipe 12 Processing Flow Surface 14 Laser Beam 16 Focusing Head 18 Focusing Spot 20 Modified Area

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川野辺 一則 茨城県那珂郡東海村大字村松4番地33 動 力炉・核燃料開発事業団東海事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazunori Kawanobe 4-3 Muramatsu, Tokai-mura, Naka-gun, Ibaraki Prefecture 33 Reactor and Nuclear Fuel Development Corp. Tokai Plant

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバケーブルを伝送可能な波長を
有し且つ単位時間単位面積当たりの照射エネルギーが1
00〜2000MW/m2 となるように集光したレーザ
ビームを、不活性ガスで遮蔽した雰囲気中で、ステンレ
ス鋼材のメタルフロー方向と交差する加工フロー面に照
射し、単位面積当たりの照射エネルギーが300〜30
00MJ/m2 となるように集光スポットを移動して、
少なくとも腐食性環境に曝される加工フロー面のほぼ全
体にわたって走査することを特徴とするステンレス鋼材
の加工フロー腐食防止方法。
1. The irradiation energy per unit area per unit time has a wavelength that can be transmitted through an optical fiber cable.
A laser beam focused so as to be 00 to 2000 MW / m 2 is applied to a processing flow surface intersecting the metal flow direction of the stainless steel material in an atmosphere shielded with an inert gas, and the irradiation energy per unit area is 300-30
Move the focused spot so that it becomes 00 MJ / m 2 ,
A method for preventing corrosion of a processing flow of a stainless steel material, which comprises scanning almost the entire processing flow surface exposed to a corrosive environment.
JP3315339A 1991-11-02 1991-11-02 Method of preventing corrosion of machining flow of stainless steel Expired - Fee Related JP2696632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3315339A JP2696632B2 (en) 1991-11-02 1991-11-02 Method of preventing corrosion of machining flow of stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3315339A JP2696632B2 (en) 1991-11-02 1991-11-02 Method of preventing corrosion of machining flow of stainless steel

Publications (2)

Publication Number Publication Date
JPH05125569A true JPH05125569A (en) 1993-05-21
JP2696632B2 JP2696632B2 (en) 1998-01-14

Family

ID=18064222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3315339A Expired - Fee Related JP2696632B2 (en) 1991-11-02 1991-11-02 Method of preventing corrosion of machining flow of stainless steel

Country Status (1)

Country Link
JP (1) JP2696632B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750205A (en) * 1994-08-03 1998-05-12 Woodford Trading Limited Surface treatment of metals by shock-compressed plasma

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5750205A (en) * 1994-08-03 1998-05-12 Woodford Trading Limited Surface treatment of metals by shock-compressed plasma

Also Published As

Publication number Publication date
JP2696632B2 (en) 1998-01-14

Similar Documents

Publication Publication Date Title
JP3159593B2 (en) Laser processing method and apparatus
US6521864B2 (en) Method and apparatus for the laser cutting of mild steel or structural steel with a multifocus optical component
US5789720A (en) Method of repairing a discontinuity on a tube by welding
JP3392683B2 (en) Laser processing head
JP3079902B2 (en) Welding repair method for reactor internals
Ma et al. Laser-based welding of 17-4 PH martensitic stainless steel in a tubular butt joint configuration with a built-in backing bar
JPWO2007026493A1 (en) Shielding gas for hybrid welding and welding method using the gas
JPH05125569A (en) Method for preventing work flow corrosion of stainless steel
JPS6195769A (en) Fixing method corrosion preventing member to steam turbine blade
JP3249267B2 (en) Threading and rolling method in continuous cold rolling line for metal strip
JP2000254776A (en) Stress corrosion crack prevention method for atomic reactor-inside piping welded part
JPH05125432A (en) Method for improving corrosion resistance at weld zone of stainless steel
JPH04210883A (en) Laser beam irradiating apparatus
JPH04289154A (en) Turbine blade made of ti alloy and surface modifying method therefor
Willgoss et al. Laser welding of steels for power plant
JP2004017161A (en) Use of helium/nitrogen gas mixture in up to 8kw laser welding
Hella Material processing with high power lasers
JP3716583B2 (en) Laser welding method of high carbon steel
JPH04327387A (en) Laser beam welding equipment
JP2000246438A (en) Structure and its welding method
JP2004017160A (en) Use of helium/nitrogen gas mixture in up to 12kw laser welding
JPH09314368A (en) Method for welding carbon steel using laser beam
JPH03146286A (en) Underwater laser welding device
JP2001079663A (en) Surface treatment method for welded structure in nuclear reactor
JPH0978221A (en) Welding member, piping, piping system, welding method and clean room

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees