JPH05124894A - Production of carbon crystal thin film - Google Patents

Production of carbon crystal thin film

Info

Publication number
JPH05124894A
JPH05124894A JP3286647A JP28664791A JPH05124894A JP H05124894 A JPH05124894 A JP H05124894A JP 3286647 A JP3286647 A JP 3286647A JP 28664791 A JP28664791 A JP 28664791A JP H05124894 A JPH05124894 A JP H05124894A
Authority
JP
Japan
Prior art keywords
crystal
thin film
substrate
fullerene
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3286647A
Other languages
Japanese (ja)
Inventor
Hironori Matsunaga
宏典 松永
Masayoshi Koba
正義 木場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3286647A priority Critical patent/JPH05124894A/en
Publication of JPH05124894A publication Critical patent/JPH05124894A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain the (100) face oriented crystal thin film of a carbon crystal (fluorene crystal) by maintaining a single crystal substrate of RbBr, KI or RbI at a prescribed temp. and heating a carbon vapor deposition source (fluorene C60) to execute heteroepitaxial growth under a vacuum. CONSTITUTION:Raw materials of the (fluorene C60) are packed in a tantalum heater and the (100) cleavage plane substrate of the RbBr is set at about 5cm distance from a vapor deposition source; thereafter, the inside of a vacuum chamber is evacuated down to 1X10<-6>Torr. The vapor deposition for about one hour is executed by maintaining the substrate temp. at 10 to 60 deg.C and the raw material heating temp. at 300 to 400 deg.C. As a result, the bluish yellow thin film is obtd. on the (100) cleavage plane substrate. The film thickness is about 3000Angstrom . The result obtd. by investigating the crystallinity by an X-ray diffraction method reveals that the thin film is the (100) face oriented crystal thin film of the fluorene crystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素の同素体分子フラ
ーレン(C60)の高品質結晶薄膜の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high quality crystalline thin film of carbon allotrope molecule fullerene (C 60 ).

【0002】[0002]

【従来の技術】炭素元素だけから構成される物質として
は、ダイヤモンド(3次元格子)、グラファイト(2次
元格子)およびカルビン(1次元格子)が知られてい
る。最近、新たに60個の炭素原子からなる球状クラス
ター分子が見いだされ、その物性及び応用に興味がもた
れている。この分子は、12個の5角形の面と20個の
6角形の面からできたサッカーボール状の構造をしてお
りフラーレン(C60)と呼ばれている。(H.W.Kr
oto等:Nature 318(1985)16
2.)
2. Description of the Related Art Diamond (three-dimensional lattice), graphite (two-dimensional lattice) and carbine (one-dimensional lattice) are known as substances composed only of carbon element. Recently, a new spherical cluster molecule consisting of 60 carbon atoms has been found, and its physical properties and applications are of great interest. This molecule has a soccer ball-like structure consisting of 12 pentagonal faces and 20 hexagonal faces, and is called fullerene (C 60 ). (H.W.Kr
oto et al .: Nature 318 (1985) 16
2. )

【0003】フラーレン分子(C60)は集合体として面
心立方格子(空間群:Fm3、格子定数=14.17 Å)を
もつ分子性結晶(フラーライト)を作る事がX線回折実
験より明らかとなっており、更に、この結晶にアルカリ
金属元素(K,Rb)をドーピングする事により超電導
特性の現れる事が確認されている。その相転移温度は、
Kドーピングで約18K、Rbで約28Kと報告されて
おり、酸化物高温超電導物質を除いて最も高い値を示
す。(A.F.Hebard等:Nature 350
(1991)600.;M.J.Rosseinsky
等:Phys.rev.Lett. 66(1991)
2830.)しかしながら、これらの物性測定に供され
る試料は粒径数10ミクロンの結晶粒からなる多結晶体
や多結晶薄膜であり、より詳細な物性を調べる為には単
結晶又は高品質の結晶薄膜が必要となる。
X-ray diffraction experiments have revealed that fullerene molecules (C 60 ) form molecular crystals (fullerite) having a face-centered cubic lattice (space group: Fm3, lattice constant = 14.17 Å) as an aggregate. Furthermore, it has been confirmed that superconducting characteristics are exhibited by doping this crystal with an alkali metal element (K, Rb). Its phase transition temperature is
It is reported that K doping is about 18 K and Rb is about 28 K, which is the highest value excluding oxide high temperature superconducting materials. (A.F. Hebard et al .: Nature 350
(1991) 600. M .; J. Rosseinsky
Et al: Phys. rev. Lett. 66 (1991)
2830. However, the samples used for these physical property measurements are polycrystals or polycrystal thin films consisting of crystal grains with a grain size of several tens of microns, and in order to investigate more detailed physical properties, single crystal or high quality crystal thin films Is required.

【0004】フラーレン(C60)の作製法としては、グ
ラファイトをアルゴンやヘリウム等の稀ガス雰囲気(10
0 〜500Torr )中で、YAG レーザ照射やアーク放電する
事により蒸発させ、発生したススを原料としてベンゼン
やトルエン等の有機溶剤に分散、濾過した後、その濾液
を乾燥する事により多結晶粉末を得る。しかし、この段
階では、C60と共に70個の炭素原子からなるC70も含ま
れている為、クロマトグラフィー等により分離、精製す
る必要がある。一方、フラーレン(C60)の薄膜を得る
為には、原料スス又は精製したC60を真空中又は稀ガス
中で昇華し基板上に堆積する方法がとられている。フラ
ーレン(C60)分子は球形をなし、又その結合手は分子
内の結合で総て尽きている為、分子間の相互作用は、フ
ァン・デア・ワールス力のみである。従って、ガラス等
の非晶質基板上に堆積した場合、細密構造をなし基板面
上には6方対称の配列をとると予想される。実際、金基
板上でC60分子の6方格子配列がSTM(走査型トンネ
ル顕微鏡)により確認されている。(R.J.Wils
on等:Nature 348(1990)621.)
しかし、この配向膜の確認も微視的なスケールでの結果
であり、より広領域にわたる配向結晶膜の作製例はな
い。そこで、フラーレン結晶の配向性を制御し大面積の
結晶膜を得る為には、ヘテロエピタキシャル成長の実現
が可能な基板材料の探索が重要となる。
As a method for producing fullerene (C 60 ), graphite is used in an atmosphere of rare gas such as argon or helium (10
0 to 500 Torr), it is evaporated by YAG laser irradiation or arc discharge, the generated soot is dispersed as a raw material in an organic solvent such as benzene or toluene, filtered, and the filtrate is dried to form a polycrystalline powder. obtain. However, at this stage, because they also include C 70 composed of 70 carbon atoms with C 60, separated by chromatography or the like, it is necessary to purify. On the other hand, in order to obtain a fullerene (C 60 ) thin film, a method of sublimating raw material soot or purified C 60 in a vacuum or a rare gas and depositing it on a substrate is used. Since the fullerene (C 60 ) molecule has a spherical shape, and all its bonds are exhausted by intramolecular bonds, the interaction between molecules is only van der Waals force. Therefore, when deposited on an amorphous substrate such as glass, it is expected to have a fine structure and have a hexagonal array on the substrate surface. In fact, a hexagonal lattice arrangement of C 60 molecules has been confirmed by STM (scanning tunneling microscope) on a gold substrate. (R. J. Wils
on et al .: Nature 348 (1990) 621. )
However, confirmation of this alignment film is also a result on a microscopic scale, and there is no example of producing an alignment crystal film over a wider area. Therefore, in order to control the orientation of the fullerene crystal and obtain a large-area crystal film, it is important to search for a substrate material that can realize heteroepitaxial growth.

【0005】分子性結晶のヘテロエピタキシャル成長
は、一般に分子と基板との相互作用が小さい事から無機
結晶材料に比べて難しい。しかし、フタロシアニン等の
一部の分子性有機結晶では、臭化カリウム(KBr)等
のイオン性結晶基板上へのヘテロエピタキシャル成長が
実現されている。これは、基板表面の原子配列パターン
と周期がフタロシアニン結晶のそれと良く整合している
事による。すなわち、ヘテロエピタキシャル成長の成否
は、基板材料とその上に作製する材料との結晶構造の整
合性を十分吟味する事が重要となる。
Heteroepitaxial growth of molecular crystals is more difficult than that of inorganic crystalline materials because the interaction between molecules and the substrate is generally small. However, with some molecular organic crystals such as phthalocyanine, heteroepitaxial growth on an ionic crystal substrate such as potassium bromide (KBr) has been realized. This is because the atomic arrangement pattern on the substrate surface and the period match well with those of the phthalocyanine crystal. That is, for the success or failure of heteroepitaxial growth, it is important to thoroughly examine the matching of the crystal structures of the substrate material and the material to be formed thereon.

【0006】[0006]

【発明が解決しようとする課題】フラーン結晶の物性測
定には多結晶体が用いられている。この為、超電導特性
実験における相転移温度の測定では、マイスナー効果か
らは28K という高い値が得られているのに反して電気抵
抗測定からは明確な相転移温度の決定が困難となってい
る。これは、高品質の結晶が得られていない為に、ドー
ピングが均質になされていない事によると考えられる。
従って、フラーレンの詳細な物性を明らかにし、更に、
電気的、光学的な応用に供する為には、高品質の配向結
晶膜を作製する技術の確立が望まれる。
Polycrystalline materials are used for measuring the physical properties of flan crystals. Therefore, in the measurement of the phase transition temperature in the superconducting characteristic experiment, the high value of 28 K is obtained from the Meissner effect, whereas it is difficult to determine the clear phase transition temperature from the electrical resistance measurement. It is considered that this is because the high quality crystal has not been obtained and therefore the doping is not performed uniformly.
Therefore, clarifying the detailed physical properties of fullerenes,
In order to provide electrical and optical applications, it is desired to establish a technique for producing a high quality oriented crystal film.

【0007】[0007]

【課題を解決するための手段】この発明は、臭化ルビジ
ウム(RbBr)、ヨウ化カリウム(KI)またはヨウ
化ルビジウム(RbI)の単結晶の基板を約10〜60
℃に保持し、カーボン蒸着源(原料;フラーレンC60
を約300〜400℃に加熱し、真空下でヘテロエピタ
キシャル成長により、前記基板の(100)面にフラー
レン結晶(C60)の(100)面配向結晶薄膜を形成す
ることからなる炭素結晶薄膜の製造方法に関する。鋭意
研究を行った結果、本発明では適当な基板材料を選ぶ事
により、高品質でかつ配向性の制御が可能で、高品質な
結晶薄膜を作製しうる事実を見いだした。まず、フラー
レン結晶の結晶構造について検討し、ヘテロエピタキシ
ャル基板材料を選択した。
According to the present invention, a single crystal substrate of rubidium bromide (RbBr), potassium iodide (KI) or rubidium iodide (RbI) is used in an amount of about 10 to 60.
Carbon deposition source (raw material: fullerene C 60 )
Of (100) -oriented crystal thin film of fullerene crystal (C 60 ) on the (100) face of the substrate by heating the substrate to about 300 to 400 ° C. and performing heteroepitaxial growth under vacuum. Regarding the method. As a result of earnest studies, in the present invention, by selecting an appropriate substrate material, it was found that a high quality and controllable orientation can be achieved and a high quality crystal thin film can be produced. First, the crystal structure of a fullerene crystal was examined, and a heteroepitaxial substrate material was selected.

【0008】この様な基板材料として岩塩型構造をとる
イオン結晶であるアルカリハライドについて検討した。
格子定数をもとに格子整合性を検討した結果、多くのア
ルカリハライドの中でも臭化ルビジウム(RbBr)、ヨウ
化カリウム(KI)及びヨウ化ルビジウム(RbI)が適当
であった。これらの結晶の(100)面はフラーレン薄
膜の(100)面との格子不整合の値が臭化ルビジウム
(RbBr)では2.8%、ヨウ化カリウム(KI)では
0.3%、ヨウ化ルビジウム(RbI)では−3.6%であ
り、十分テロエピタキシャル成長の実現が期待できるほ
ど小さい値である。図1は、フラーレン結晶の室温での
結晶構造である。(P.A.Heiney:Phys.
Rev.Lett.66(1991)2911.)ここ
では、C60分子は球として示してある。C60分子自体の
大きさは直径約7Åであり、結晶構造は格子定数a=1
4.17 Åの面心立方格子(空間群Fmバー3)をなして
いる。一方、図2は、フラーレン結晶にカリウムをドー
ピングしたK3 60の結晶構造である。この物質はTC
=18K以下で超電導特性を示す。図より、ドーピングに
よってもC60分子の作る基本格子定数がa=14.24
Åへと僅かに大きくなっているだけである。空間群はF
mバー3である。ドーピングされたカリウム原子はC60
の作る格子の隙間に入っており、結晶全体の構造として
は岩塩型構造のz=1/4 と3/4 の面にカリウムの正方格
子(長さ=a/2 )が挿入された形となっているものと考
えられる。以上の、結果を考慮すると、基板としてa/2
の長さを周期とした立方晶の結晶を用いれば、フラーレ
ン結晶及びアルカリ金属元素をドーピングしたK3 60
やRb3 60等のヘテロエピタキシャル薄膜結晶成長が
可能となると推定できる。基板材料としてRbBr、KI及
びRbIなどの(100 )面を用いる事により、これまで得
られていなかった高品質のフラーレン結晶(100 )面配
向薄膜が得られるようになった。
As such a substrate material, an alkali halide which is an ionic crystal having a rock-salt type structure was examined.
As a result of examining the lattice matching based on the lattice constant, among many alkali halides, rubidium bromide (RbBr), potassium iodide (KI) and rubidium iodide (RbI) were suitable. The (100) plane of these crystals has a lattice mismatch with the (100) plane of the fullerene thin film of 2.8% for rubidium bromide (RbBr), 0.3% for potassium iodide (KI), and iodide. Rubidium (RbI) is -3.6%, which is a small value that can be expected to realize sufficient teloepitaxial growth. FIG. 1 is a crystal structure of a fullerene crystal at room temperature. (PA Heiney: Phys.
Rev. Lett. 66 (1991) 2911. ) C 60 molecules are shown here as spheres. The size of the C 60 molecule itself is about 7Å in diameter, and the crystal structure has a lattice constant a = 1.
4.17 Å face centered cubic lattice (space group Fm bar 3). On the other hand, FIG. 2 shows a crystal structure of K 3 C 60 obtained by doping a fullerene crystal with potassium. This substance is T C
It exhibits superconducting properties below 18K. From the figure, the basic lattice constant created by C 60 molecules by doping is a = 14.24.
It has only slightly increased to Å. Space group is F
It is m bar 3. The doped potassium atom is C 60
It is in the gap of the lattice made by and the structure of the whole crystal is that the square lattice of potassium (length = a / 2) is inserted in the z = 1/4 and 3/4 planes of the rock salt structure. It is thought that it has become. Considering the above results, a / 2 is used as the substrate.
If a cubic crystal having a period of the period is used, a fullerene crystal and an alkali metal element-doped K 3 C 60
It can be presumed that it is possible to grow a heteroepitaxial thin film crystal such as Rb 3 C 60 or Rb 3 C 60 . By using (100) plane such as RbBr, KI and RbI as a substrate material, it has become possible to obtain a high quality fullerene crystal (100) plane oriented thin film which has never been obtained.

【0009】蒸着源としてのフラーレン原料は前述した
ごとくグラファイトをアルゴンやへリウム等の稀ガス雰
囲気中(100 〜500 Torr)中で、YAG レーザー照射やア
ーク放電することにより、蒸発させ、発生したススから
精製したC60粉末を使う。市販品として例えばテキサス
フラーレン社製のC60が好適に利用できる。この製造中
に基板温度は約10〜60℃が好ましい。10℃以下である
と基板表面で不均一に凝集し、60℃以上であると多結
晶化がおこり不都合となる。さらに、フラーレンのカー
ボン原料蒸着源の温度は約300 〜400 ℃が好ましい。3
00℃以下であると蒸着速度が低くなり、400℃以上
であると結晶性が悪くなる。
As described above, the fullerene raw material as the vapor deposition source is a soot generated by evaporating graphite in a rare gas atmosphere (100 to 500 Torr) such as argon or helium by YAG laser irradiation or arc discharge. Use C 60 powder purified from. C 60 for example made of Texas Fullerene Corp. commercially can be suitably used. The substrate temperature during this manufacturing is preferably about 10-60 ° C. If the temperature is 10 ° C. or lower, the agglomerates are nonuniformly aggregated on the substrate surface, and if the temperature is 60 ° C. or higher, polycrystallization occurs, which is inconvenient. Further, the temperature of the vapor deposition source of carbon fullerene is preferably about 300 to 400 ° C. Three
If it is below 00 ° C, the vapor deposition rate will be low, and if it is above 400 ° C, the crystallinity will be poor.

【0010】[0010]

【実施例】以下に、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0011】実施例1 フラーレン(C60)原料としては市販品(テキサスフラ
ーレン社製のC60)を、基板材料としては臭化ルビジウ
ム(RbBr)単結晶の(100)ヘキ開面を用い、製膜法
としては真空蒸着法を用いた。真空蒸着装置には、蒸着
法としてタンタルボートヒーター、基板ホルダーとして
加熱用のタングステンヒーターと冷却用の銅製水冷チュ
ーブが装着されたものが組み込まれている。蒸着源と基
板の温度は、各々熱電対によってモニターする。また、
真空槽の排気はターボ分子ポンプにより行う。
Example 1 A commercial product (C 60 manufactured by Texas Fullerene Co., Ltd.) was used as a fullerene (C 60 ) raw material, and a (100) cleaved surface of a rubidium bromide (RbBr) single crystal was used as a substrate material. A vacuum deposition method was used as the film method. The vacuum vapor deposition apparatus incorporates a tantalum boat heater as a vapor deposition method, a tungsten heater for heating as a substrate holder, and a copper water cooling tube for cooling. The temperature of the vapor deposition source and the temperature of the substrate are each monitored by a thermocouple. Also,
The vacuum chamber is evacuated by a turbo molecular pump.

【0012】フラーレン(C60)原料約10mgをタン
タルボートヒーターに充填し、臭化ルビジウム(RbBr)
の(100 )ヘキ開面基板を蒸着源より約5cmの距離に
セットした後、真空槽内を1×10-6Torrまで排気した。
基板温度は10℃から60℃(この実施例では50
℃)、原料加熱温度は300℃から400℃(この実施
例では350℃)が適当である。基板温度50℃、原料
温度350℃で約1時間の蒸着を行った結果、青みがか
った、黄色の薄膜が得られていた。膜厚は、約3000
Åであった。得られた薄膜の結晶性について、X線回折
法により調べた。
About 10 mg of fullerene (C 60 ) raw material was charged into a tantalum boat heater, and rubidium bromide (RbBr) was added.
After setting the (100) cleaved surface substrate of No. 3 at a distance of about 5 cm from the vapor deposition source, the inside of the vacuum chamber was evacuated to 1 × 10 −6 Torr.
The substrate temperature is 10 ° C. to 60 ° C. (50 ° C. in this embodiment).
The appropriate heating temperature is 300 ° C to 400 ° C (350 ° C in this embodiment). As a result of vapor deposition at a substrate temperature of 50 ° C. and a raw material temperature of 350 ° C. for about 1 hour, a bluish, yellow thin film was obtained. The film thickness is about 3000
It was Å. The crystallinity of the obtained thin film was examined by an X-ray diffraction method.

【0013】図3にX線回折パターンを示す。基板RbBr
の(200)反射の他に、フラーレン結晶の(200)
及び(600)反射が認められる。この結果は、得られ
たフラーレン薄膜が予想どうり(100)配向結晶とな
っておりヘテロエピタキシャル成長が実現している事を
示している。基板材料として、ヨウ化ルビジウム(Rb
I)とヨウ化カリウム(KI)を用いた場合も同様な結
果が得られた。尚、基板及び原料の加熱方法は、本実施
例により制限されるものではなく、クヌードセンセル等
を使用する事も可能であるのは言うまでもない。
FIG. 3 shows an X-ray diffraction pattern. Substrate RbBr
In addition to (200) reflection of fullerene crystals,
And (600) reflections are observed. This result shows that the obtained fullerene thin film is (100) oriented crystal as expected and heteroepitaxial growth is realized. Rubidium iodide (Rb
Similar results were obtained when I) and potassium iodide (KI) were used. It is needless to say that the heating method of the substrate and the raw material is not limited to this embodiment, and it is also possible to use a Knudsen cell or the like.

【0014】[0014]

【発明の効果】本発明により、フラーレン結晶(C60
の高品質配向結晶薄膜が得られる事から、ドーピング等
による電気伝導性や光学特性等の正確な物性測定が可能
となり、フラーレンの応用面での進展が促進される。
According to the present invention, fullerene crystal (C 60 )
Since a high-quality oriented crystal thin film can be obtained, accurate physical properties such as electrical conductivity and optical properties due to doping and the like can be measured, and progress in application of fullerenes is promoted.

【図面の簡単な説明】[Brief description of drawings]

【図1】フラーレン結晶(C60)の室温結晶構造FIG. 1 Room temperature crystal structure of fullerene crystal (C 60 ).

【図2】超電導体(K360)の室温結晶構造FIG. 2 Room temperature crystal structure of superconductor (K 3 C 60 ).

【図3】実施例により作製された薄膜結晶のX線回折パ
ターン(X線源:CuKα、原料温度350℃、基板温
度50℃、膜厚3000Å)である。
FIG. 3 is an X-ray diffraction pattern (X-ray source: CuKα, raw material temperature 350 ° C., substrate temperature 50 ° C., film thickness 3000 Å) of the thin film crystal produced in the example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 臭化ルビジウム(RbBr)、ヨウ化カ
リウム(KI)またはヨウ化ルビジウム(RbI)の単
結晶の基板を約10〜60℃に保持し、カーボン蒸着源
(原料;フラーレンC60)を約300〜400℃に加熱
し、真空下でヘテロエピタキシャル成長により、前記基
板の(100)面にフラーレン結晶(C60)の(10
0)面配向結晶薄膜を形成することからなる炭素結晶薄
膜の製造方法。
1. A ruthenium bromide (RbBr), potassium iodide (KI) or rubidium iodide (RbI) single crystal substrate is held at about 10 to 60 ° C., and a carbon vapor deposition source (raw material: fullerene C 60 ) is used. Is heated to about 300 to 400 ° C., and heteroepitaxial growth is performed under vacuum to form (10) of fullerene crystal (C 60 ) on the (100) plane of the substrate.
0) A method for producing a carbon crystal thin film, which comprises forming a plane-oriented crystal thin film.
JP3286647A 1991-10-31 1991-10-31 Production of carbon crystal thin film Pending JPH05124894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3286647A JPH05124894A (en) 1991-10-31 1991-10-31 Production of carbon crystal thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3286647A JPH05124894A (en) 1991-10-31 1991-10-31 Production of carbon crystal thin film

Publications (1)

Publication Number Publication Date
JPH05124894A true JPH05124894A (en) 1993-05-21

Family

ID=17707135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3286647A Pending JPH05124894A (en) 1991-10-31 1991-10-31 Production of carbon crystal thin film

Country Status (1)

Country Link
JP (1) JPH05124894A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075863A (en) * 2000-09-01 2002-03-15 Inst Of Physical & Chemical Res Ultrafine structure and its method of manufacture
US7351284B2 (en) 2003-01-10 2008-04-01 Nippon Sheet Glass Company, Limited Fullerene crystal and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002075863A (en) * 2000-09-01 2002-03-15 Inst Of Physical & Chemical Res Ultrafine structure and its method of manufacture
JP4729760B2 (en) * 2000-09-01 2011-07-20 独立行政法人理化学研究所 Ultrafine structure and method for manufacturing the same
US7351284B2 (en) 2003-01-10 2008-04-01 Nippon Sheet Glass Company, Limited Fullerene crystal and method for producing same

Similar Documents

Publication Publication Date Title
Chopra et al. Amorphous versus crystalline GeTe films. I. Growth and structural behavior
Spitsyn et al. Vapor growth of diamond on diamond and other surfaces
Meng et al. Growth of large, defect‐free pure C60 single crystals
Ichihashi et al. Structures of C60 thin films fabricated on alkali halide substrates by organic MBE
Tanigaki et al. Crystal growth and structure of fullerene thin films
JP2009035474A (en) Binary-alloy single crystal nanostructure and its production method
Saito et al. C 84 thin films grown epitaxially on mica
Müller et al. MBE growth of para-hexaphenyl on GaAs (001)-2× 4
Li et al. Direct growth of β-SiC nanowires from SiOx thin films deposited on Si (1 0 0) substrate
KR100872332B1 (en) Method for manufacturing nanowire by using tensile stress
JP4125638B2 (en) Nanofiber or nanotube comprising group V transition metal dichalcogenide crystal and method for producing the same
Chen et al. Catalyst-free and controllable growth of SiCxNy nanorods
US20180105426A1 (en) Graphene and hexagonal boron nitride planes and associated methods
JPH05124894A (en) Production of carbon crystal thin film
Fölsch et al. Epitaxial C60 films on CaF2 (111) grown by molecular beam deposition
Fedotov et al. Scanning tunneling microscopy of Bi2Te3 films prepared by pulsed laser deposition: from nanocrystalline structures to van der Waals epitaxy
Saito et al. Electron microscopy of fullerene thin films grown on solid surfaces
Byrappa et al. Growth, morphology, structure and properties of Na3BaCl5 2H2O crystals
Kaiser et al. Influence of the amorphous state on the structure of crystalline antimony films
Chu et al. Crystal Growth of Silicon Arsenide
Yoneda et al. Multilayer Deposition of Octakis (octyloxy) Phthalocyanine Observed by Scanning Tunneling Microscopy, Scanning Electron Microscopy, Transmission Electron Microscopy, and X-ray Diffraction
Yoneda et al. Phase transitions of thin films grown by molecular beam epitaxy
KR860000161B1 (en) In-sb compound crystal semiconductor and method of its manufacturing
JP3760175B2 (en) Diamond film formation method
Chiarella et al. Growth and characterization of hybrid (CnH2n+ 1NH3) 2CuCl4 self‐assembled films