JPH05124816A - Oxide superconductor, multi component oxide superconducting material and its production - Google Patents

Oxide superconductor, multi component oxide superconducting material and its production

Info

Publication number
JPH05124816A
JPH05124816A JP3287950A JP28795091A JPH05124816A JP H05124816 A JPH05124816 A JP H05124816A JP 3287950 A JP3287950 A JP 3287950A JP 28795091 A JP28795091 A JP 28795091A JP H05124816 A JPH05124816 A JP H05124816A
Authority
JP
Japan
Prior art keywords
oxide
partial pressure
oxygen partial
oxide superconductor
low oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3287950A
Other languages
Japanese (ja)
Other versions
JPH07121827B2 (en
Inventor
Takaaki Ikemachi
隆明 池町
Shinichi Koriyama
慎一 郡山
Hisao Yamauchi
尚雄 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKUSAI CHODENDO SANGYO GIJUTS
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Kyocera Corp
Sanyo Electric Co Ltd
Original Assignee
KOKUSAI CHODENDO SANGYO GIJUTS
KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER
Kyocera Corp
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKUSAI CHODENDO SANGYO GIJUTS, KOKUSAI CHODENDO SANGYO GIJUTSU KENKYU CENTER, Kyocera Corp, Sanyo Electric Co Ltd filed Critical KOKUSAI CHODENDO SANGYO GIJUTS
Priority to JP3287950A priority Critical patent/JPH07121827B2/en
Publication of JPH05124816A publication Critical patent/JPH05124816A/en
Publication of JPH07121827B2 publication Critical patent/JPH07121827B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To provide the novel oxide superconductor and multiple oxide superconducting material which can be synthesized under a low oxygen partial pressure and the process for production thereof. CONSTITUTION:This oxide superconductor is expressed by chemical formula Pb2Ba3-x-yCaxLnyCu3O8+ or -z. This Ln is at least one kind of lanthanoid and Y and the range of (x), (y), (z) is 0<x<=1.2, 0.3<=y<=1, 0<=z<=1. The process for production of the oxide superconductor consists in weighing Pb, Ba, Ca, Ln (one kind of lanthanoid and Y), oxide or carbonate of Cu at prescribed molar ratios and mixing and molding these materials, then calcining the mixture at 600 to 800 deg.C, pulverizing and molding the calcined mixture and subjecting the molding to normal calcination at 650 to 800 deg.C and under the low oxygen partial pressure (<=0.01atm.).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酸化物超電導体,複合
酸化物超電導材料及びその製造方法に関し、特に、超電
導現象を利用したエネルギー関連技術、エレクトロニク
ス技術などのすべての分野に適用可能な酸化物超電導
体,複合酸化物超電導材料及びその製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide superconductor, a composite oxide superconducting material and a method for producing the same, and particularly to an oxidation applicable to all fields such as energy-related technology and electronic technology utilizing the superconducting phenomenon. And a method for producing the same.

【0002】[0002]

【従来の技術】1986年に最初の高温酸化物超電導体
として(La,Sr)2CuO4が発見されて以来多くの
酸化物超電導体が発明されてきた。1987年には、冷
媒として比較的取り扱い易い液体窒素の蒸発温度77K
を越える超電導転移温度(Tc)を有するYBa2Cu3
7が発明され、実用の範囲が広がった。そして、現在
のところの最高のTcはTl2Ba2Ca2Cu310のT
c(zero)は127Kとされる。ところで、前記の
酸化物超電導体はいずれも酸化雰囲気中で合成(熱処
理)を行う必要があり、金属や半導体と複合して使うに
は、金属・半導体材料に制約がかかるとか、充分な熱処
理ができないために特性の不完全な酸化物超電導体とな
るなどの問題がある。したがって、低酸素分圧下で合成
可能な酸化物超電導体の発明が望まれる。現在までのと
ころ低酸素分圧下で合成可能な酸化物超電導体として最
高のTcを有するものはPb2Sr2Ln1-xCaxCu3
8±y(0≦x≦1、0≦y≦1)であり、そのTcは
多くの報告によると80K以下である。
Many oxide superconductors have been invented since (La, Sr) 2 CuO 4 was discovered as the first high temperature oxide superconductor in 1986. In 1987, the evaporation temperature of liquid nitrogen, which was relatively easy to handle as a refrigerant, was 77K.
Yba 2 Cu 3 with superconducting transition temperature (Tc) above
O 7 was invented and expanded the range of practical use. And the highest Tc at the moment is Tl 2 Ba 2 Ca 2 Cu 3 O 10 T
c (zero) is set to 127K. By the way, all of the above oxide superconductors need to be synthesized (heat treatment) in an oxidizing atmosphere, and to be used in combination with metals and semiconductors, there are restrictions on the metal / semiconductor material, and sufficient heat treatment is required. However, there is a problem that an oxide superconductor with incomplete characteristics will be formed. Therefore, the invention of an oxide superconductor that can be synthesized under low oxygen partial pressure is desired. To date, Pb 2 Sr 2 Ln 1-x Ca x Cu 3 has the highest Tc as an oxide superconductor that can be synthesized under low oxygen partial pressure.
O 8 ± y (0 ≦ x ≦ 1, 0 ≦ y ≦ 1), and the Tc thereof is 80K or less according to many reports.

【0003】[0003]

【発明が解決しようとする課題】前述したように、従来
の低酸素分圧下で合成可能な酸化物超電導体において最
高の特性(Tc)を有するものはPb2Sr2Ln1-x
xCu38±yであり、Tc(onset)は84Kと
いう報告(文献:J.S.Xue et al.: Phys
ica C 166(1990)29.)もあるが、多く
は80K以下である。一般に、Tcはより高い方が実用
上有利であり、さらに高いTcを有する超電導体の発明
が望まれている。また、合成温度が低い方が、生産エネ
ルギーコスト面で有利であり、また、Pbなどの比較的
低温で蒸発する元素(あるいは化合物)が含まれる物質
の場合には、組成コントロールのしやすさの点からも望
ましい。
As described above, Pb 2 Sr 2 Ln 1-x C has the highest characteristics (Tc) among conventional oxide superconductors that can be synthesized under low oxygen partial pressure.
a x Cu 3 O 8 ± y and Tc (onset) is 84K (reference: J.S. Xue et al .: Phys)
ica C 166 (1990) 29. ), But most are below 80K. Generally, higher Tc is more practically advantageous, and the invention of a superconductor having higher Tc is desired. In addition, a lower synthesis temperature is more advantageous in terms of production energy cost, and in the case of a substance containing an element (or compound) that evaporates at a relatively low temperature such as Pb, composition control is easy. Also desirable from the point.

【0004】本発明の目的は、低酸素分圧下で合成可能
な新しい酸化物超電導体,複合酸化物超電導材料及びそ
の製造方法を提供することにある。
An object of the present invention is to provide a new oxide superconductor, a composite oxide superconducting material which can be synthesized under a low oxygen partial pressure and a method for producing the same.

【0005】本発明の前記ならびにその目的と新規な特
徴は、本明細書の記述及び添付図面によって明らかにな
るであろう。
The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
に、請求項1の発明は、化学組成式Pb2Ba3-x-yCa
xLnyCu38±zで表わされる酸化物超電導体であっ
て、前記Lnはランタノイド及びYのうち少なくとも一
種であり、x,y,zの範囲が0<x≦1.2、0.3
≦y≦1、0≦z≦1であることを特徴とする。
In order to achieve the above object, the invention of claim 1 provides a chemical composition formula Pb 2 Ba 3-xy Ca.
an oxide superconductor represented by x Ln y Cu 3 O 8 ± z, wherein Ln is at least one of the lanthanides and Y, x, y, z range is 0 <x ≦ 1.2, 0 .3
It is characterized in that ≦ y ≦ 1 and 0 ≦ z ≦ 1.

【0007】請求項2の発明は、請求項1の酸化物超電
導体を主体とする複合酸化物超電導材料である。
A second aspect of the present invention is a composite oxide superconducting material mainly comprising the oxide superconductor according to the first aspect.

【0008】請求項3の発明は、請求項1の酸化物超電
導体の製造方法であって、Pb、Ba、Ca、Ln(ラ
ンタノイド及びYのうち一種)、Cuの酸化物もしくは
炭酸塩を所定モル比に秤量、混合、成形し、600〜8
00℃で仮焼成し、次いで、粉砕、成形した後、650
〜800℃、低酸素分圧下(0.01気圧以下)で本焼
成することを特徴とする。
The invention of claim 3 is the method for producing an oxide superconductor according to claim 1, wherein Pb, Ba, Ca, Ln (one of lanthanoid and Y), Cu oxide or carbonate is predetermined. 600-8 by weighing, mixing and molding to the molar ratio
650 after calcination at 00 ° C, then crushing and molding
It is characterized in that the main calcination is carried out at ˜800 ° C. and under a low oxygen partial pressure (0.01 atm or less).

【0009】請求項4の発明は、請求項1の酸化物超電
導体の製造方法であって、Pb、Ba、Ca、Ln(ラ
ンタノイド及びYのうち一種)、Cuの酸化物もしくは
炭酸塩を所定モル比に秤量、混合、成形し、600〜8
00℃で仮焼成し、次いで、粉砕、成形した後、650
〜800℃、低酸素分圧下(0.01気圧以下)で本焼
成し、再度、粉砕、成形し、650〜800℃、低酸素
分圧下(0.01気圧以下)で再度本焼成し、さらに、
300〜550℃、低酸素分圧下でアニール処理するこ
とを特徴とする。
A fourth aspect of the present invention is the method for producing an oxide superconductor according to the first aspect, wherein Pb, Ba, Ca, Ln (one of lanthanoid and Y), Cu oxide or carbonate is predetermined. 600-8 by weighing, mixing and molding to the molar ratio
650 after calcination at 00 ° C, then crushing and molding
〜800 ° C, main calcination under low oxygen partial pressure (0.01 atm or less), pulverization and molding again, and main calcination again at 650-800 ° C, low oxygen partial pressure (0.01 atm or less), ,
An annealing treatment is performed at 300 to 550 ° C. under a low oxygen partial pressure.

【0010】請求項5の発明は、請求項1の酸化物超電
導体を主体とする複合酸化物超電導材料の製造方法であ
って、Pb、Ba、Ca、Ln(ランタノイド及びYの
うち一種)、Cuの酸化物もしくは炭酸塩、複合物質を
所定モル比に秤量、混合、成形し、600〜800℃で
仮焼成し、次いで、粉砕、成形した後、650〜800
℃、低酸素分圧下で本焼成し、必要なら、当該本焼成の
後、再度、粉砕、成形し、650〜800℃、低酸素分
圧下で再度本焼成し、さらに、300〜550℃、低酸
素分圧下でアニール処理することを特徴とする。
A fifth aspect of the present invention is a method for producing a complex oxide superconducting material mainly comprising the oxide superconductor according to the first aspect, wherein Pb, Ba, Ca, Ln (one of lanthanoid and Y), Cu oxide or carbonate, a composite material are weighed, mixed and molded in a predetermined molar ratio, calcined at 600 to 800 ° C., then crushed and molded, and then 650 to 800.
C., main calcination under a low oxygen partial pressure, and if necessary, crush and mold again after the main calcination, 650-800.degree. C., main calcination again under a low oxygen partial pressure, and further 300-550.degree. C., low It is characterized in that the annealing treatment is performed under an oxygen partial pressure.

【0011】[0011]

【作用】前述の手段によれば、化学式Pb2Ba3-x-y
xLnyCu38±zで表わされる酸化物超電導体もし
くはそれを主成分とする複合酸化物超電導材料は、65
0〜800℃(低酸素分圧下=0.01気圧以下)とい
う低温での合成が可能であり、この温度域はPb2Sr2
Ln1-xCaxCu3yの場合の850〜950℃(0.
01気圧酸素雰囲気中)よりもかなり低くてよい。ま
た、Tc(onset)は86KとPb2Sr21-x
xCu3yの場合と同等以上である。
According to the above-mentioned means, the chemical formula Pb 2 Ba 3-xy C is used.
a x Ln y Cu 3 O 8 complex oxide superconducting material to the oxide superconductor or a main component thereof is expressed by ± z is 65
Synthesis is possible at a low temperature of 0 to 800 ° C. (under low oxygen partial pressure = 0.01 atm or less), and this temperature range is Pb 2 Sr 2
In the case of Ln 1-x Ca x Cu 3 O y , 850 to 950 ° C.
(In an oxygen atmosphere of 01 atm)). Also, Tc (onset) is 86K and Pb 2 Sr 2 Y 1-x C
It is equal to or higher than that of a x Cu 3 O y .

【0012】そして、xおよびyの範囲を0<x≦1.
2、0.3≦y≦1とする理由は、この範囲をはずれる
と、超電導特性が悪くなるか、あるいは超電導体ではな
くなることによる。特に、yが0.3より小さい(y<
0.3)場合、yが1より大きい(1<y)場合には、
ランタノイドイオンLn3+(又はイットリウムイオンY
3+)とバリウムイオンBa2+及びカルシウムイオンCa
2+との価数の総合的な関係においてバランスが悪くな
り、適性な超電導キャリアー濃度が得られないものと考
えられる。
Then, the range of x and y is set to 0 <x ≦ 1.
2. The reason for setting 0.3 ≦ y ≦ 1 is that if it deviates from this range, the superconducting property is deteriorated, or the superconducting property is lost. In particular, y is less than 0.3 (y <
0.3) and y is greater than 1 (1 <y),
Lanthanoid ion Ln 3+ (or yttrium ion Y
3+ ) and barium ion Ba 2+ and calcium ion Ca
It is considered that the overall balance of the valence with 2+ becomes unbalanced and an appropriate superconducting carrier concentration cannot be obtained.

【0013】仮焼成、本焼成及びアニール処理の温度を
それぞれ、600〜800℃、650〜800℃及び3
00〜550℃に限定する理由は、次に示すとおりであ
る。
The temperatures of the calcination, the main calcination and the annealing treatment are 600 to 800 ° C., 650 to 800 ° C. and 3 respectively.
The reason for limiting the temperature to 00 to 550 ° C. is as follows.

【0014】仮焼成の場合、焼成温度が600℃未満で
は反応が十分に進行しない。また、800℃を越えた温
度では、比較的高温で安定な相が生成して、本焼成を行
う際に、本発明組成の超電導体相の生成の妨げとなる。
本焼成の場合、650℃未満の温度では、本発明組成の
超電導体相の生成を十分行うことができない。また、8
00℃を越えた温度での焼成では一旦生成した本発明組
成の超電導体相が分解してしまう。アニール処理の場
合、300℃未満及び550℃を越えた温度領域では、
試料と焼成雰囲気の関係において適性な平衡酸素分圧が
得られず、試料の酸素含有量を適性な量にコントロール
することができない。
In the case of calcination, the reaction does not proceed sufficiently if the calcination temperature is lower than 600 ° C. Further, at a temperature exceeding 800 ° C., a stable phase is formed at a relatively high temperature, which hinders the formation of the superconductor phase of the composition of the present invention during the main firing.
In the case of the main firing, at a temperature lower than 650 ° C., the superconductor phase of the composition of the present invention cannot be sufficiently generated. Also, 8
By firing at a temperature above 00 ° C., the superconductor phase of the composition of the present invention once formed is decomposed. In the case of annealing treatment, in the temperature range below 300 ° C and above 550 ° C,
An appropriate equilibrium oxygen partial pressure cannot be obtained in the relationship between the sample and the firing atmosphere, and the oxygen content of the sample cannot be controlled to an appropriate amount.

【0015】このようにして、低酸素分圧下で新しい酸
化物超電導体及び複合酸化物超電導材料を合成すること
ができる。
In this way, new oxide superconductors and composite oxide superconducting materials can be synthesized under low oxygen partial pressure.

【0016】[0016]

【実施例】以下、本発明の実施例を説明する。 〔実施例1〕酸化鉛PbO(又はPbO2)、炭酸バリ
ウムBaCO3(又は酸化バリウムBaO)、炭酸カル
シウムCaCO3、酸化イットリウムY23(又はラン
タノイドの酸化物)、酸化銅CuO(又はCuO2)を
モル比でPb:Ba:Ca:Y:Cu=2.0:2.0:
0.5:0.5:3.0となるように秤量し、よく混合し
た。約1ton/cm2の圧力で成形した後、700℃、大気
中(又はアルゴンガスフロー中)、10時間の仮焼成を
行った。次に、粉砕し、約2ton/cm2の圧力で再度成形
した後、740℃、アルゴンガスフロー中、10時間の
本焼成を行った。次に、400℃、アルゴンガスフロー
中、20時間のアニール処理を行った。この焼結試料の
組成分析を行ったところ、試料全体の組成としてはP
b:Ba:Ca:Y:Cu=1.9:2.0:0.5:0.
5:3.0(モル比)であった。
EXAMPLES Examples of the present invention will be described below. Example 1 Lead oxide PbO (or PbO 2 ), barium carbonate BaCO 3 (or barium oxide BaO), calcium carbonate CaCO 3 , yttrium oxide Y 2 O 3 (or lanthanoid oxide), copper oxide CuO (or CuO). 2 ) in a molar ratio of Pb: Ba: Ca: Y: Cu = 2.0: 2.0:
Weighed to be 0.5: 0.5: 3.0 and mixed well. After molding at a pressure of about 1 ton / cm 2 , calcination was performed at 700 ° C. in the air (or in an argon gas flow) for 10 hours. Next, after crushing and molding again at a pressure of about 2 ton / cm 2 , main firing was performed at 740 ° C. in an argon gas flow for 10 hours. Next, annealing treatment was performed at 400 ° C. for 20 hours in an argon gas flow. When the composition analysis of this sintered sample was performed, it was found that the composition of the entire sample was P
b: Ba: Ca: Y: Cu = 1.9: 2.0: 0.5: 0.
It was 5: 3.0 (molar ratio).

【0017】本実施例1の試料の特性を図1、図2に示
す。図1は抵抗−温度特性図であり、これより求めた試
料のTc(onset)は82K、Tc(zero)は72
Kであった。また、図2は直流帯磁率測定の結果であ
り、これより求めたTcは81Kであった。
The characteristics of the sample of Example 1 are shown in FIGS. FIG. 1 is a resistance-temperature characteristic diagram. The Tc (onset) of the sample obtained from this is 82K and the Tc (zero) is 72K.
It was K. Further, FIG. 2 shows the result of the DC susceptibility measurement, and the Tc obtained from this was 81K.

【0018】前記実施例1の試料の組成Pb,Ba,C
a,Y,Cuのモル比を変えて実施した結果を表1A,
1B,1C,1Dに示し、それらを組成図で表わすと図
3のようになる。図3において、枠(イ)内は超電導領
域であり、●印は80K〜86Kで超電導性を示すこと
を表わし、△印は70K〜上79Kで超電導性を示すこ
とを表わし、□印は60K〜上69Kで超電導性を示す
ことを表わし、×印は超電導性を示さないことを表わ
す。
The composition of the sample of Example 1 Pb, Ba, C
The results obtained by changing the molar ratio of a, Y and Cu are shown in Table 1A,
1B, 1C, and 1D, which are shown in a composition diagram as shown in FIG. In FIG. 3, a frame (a) is a superconducting region, a ● symbol indicates superconductivity at 80K to 86K, a Δ symbol indicates superconductivity at 70K to 79K, and a □ symbol indicates 60K. ~ 69K indicates superconductivity, and x indicates no superconductivity.

【0019】[0019]

【表1A】 [Table 1A]

【0020】[0020]

【表1B】 [Table 1B]

【0021】[0021]

【表1C】 [Table 1C]

【0022】[0022]

【表1D】 [Table 1D]

【0023】表1A,1B,1C,1Dにおいて、Tc
(K)が80の場合は80K〜86Kで超電導性を示す
ことを表し、70の場合は70K〜上79Kで超電導性
を示すことを表し、60の場合は60K〜上69Kで超
電導性を示すことを表している。×印は超電導性を示さ
ないことを表している。
In Tables 1A, 1B, 1C and 1D, Tc
When (K) is 80, it means that it shows superconductivity at 80K to 86K, when it is 70, it means that it shows superconductivity at 70K to above 79K, and when it is 60, it shows superconductivity at 60K to above 69K. It means that. The cross mark indicates that superconductivity is not exhibited.

【0024】〔実施例2〕前記実施例1と同様の原料を
用い、Pbの焼成中の飛散を補償するため、Pbが所望
の組成よりも過剰(モル比でPb:Ba:Ca:Y:C
u=2.4:2.0:0.3:0.7:3.0)となるよう
に秤量し、よく混合した。約1ton/cm2の圧力で成形し
た後、700℃、大気中(又はアルゴンガスフロー
中)、10時間の仮焼成を行った。次に、粉砕し、約2
ton/cm2の圧力で再度成形した後、740℃、アルゴン
ガスフロー中、10時間の本焼成を行った。さらに、粉
砕、成形を行い、740℃、アルゴンガスフロー中、1
0時間の焼成を行った。次に、400℃、アルゴンガス
フロー中、20時間のアニール処理を行った。この焼結
試料の組成分析を行ったところ、試料全体の組成として
は、Pb:Ba:Ca:Y:Cu=2.0:2.0:0.
3:0.7:3.0(モル比)であった。また、X線回折
測定の結果、ほぼ単一相が得られていることがわかっ
た。
Example 2 The same raw material as in Example 1 was used, and in order to compensate for the scattering of Pb during firing, Pb was present in excess of the desired composition (Pb: Ba: Ca: Y: in molar ratio). C
u = 2.4: 2.0: 0.3: 0.7: 3.0) and mixed well. After molding at a pressure of about 1 ton / cm 2 , calcination was performed at 700 ° C. in the air (or in an argon gas flow) for 10 hours. Then crush it to about 2
After molding again at a pressure of ton / cm 2 , main firing was performed at 740 ° C. in an argon gas flow for 10 hours. Furthermore, crushing and molding are performed, and at 740 ° C. in an argon gas flow, 1
Firing was performed for 0 hours. Next, annealing treatment was performed at 400 ° C. for 20 hours in an argon gas flow. When the composition of this sintered sample was analyzed, it was found that the composition of the entire sample was Pb: Ba: Ca: Y: Cu = 2.0: 2.0: 0.
It was 3: 0.7: 3.0 (molar ratio). In addition, as a result of X-ray diffraction measurement, it was found that almost a single phase was obtained.

【0025】また、前記実施例1と同様に抵抗-温度特
性試験,直流帯磁率測定の結果、表1A,1B,1C,
1Dと同様の超電導特性が得られた。
As in the case of Example 1, the results of resistance-temperature characteristic test and DC susceptibility measurement are shown in Tables 1A, 1B, 1C,
Superconducting properties similar to 1D were obtained.

【0026】〔実施例3〕前記実施例1と同様の原料を
用い、モル比でPb:Ba:Ca:Y:Cu=2.0:
1.5:1.0:0.5:3.0となるように秤量し、よく
混合した。約1ton/cm2の圧力で成形した後、700
℃、大気中(又はアルゴンガスフロー中)、10時間の
仮焼成を行った。次に、粉砕し、約2ton/cm2の圧力で
再度成形した後、720℃、アルゴンガスフロー中、1
0時間の本焼成を行った。次に、400℃、アルゴンガ
スフロー中、20時間のアニール処理を行った。この焼
結試料の組成分析を行ったところ、試料全体の組成とし
てはPb:Ba:Ca:Y:Cu=1.9:1.5:1.
0:0.5:3.0(モル比)であった。
Example 3 Using the same raw material as in Example 1, the molar ratio of Pb: Ba: Ca: Y: Cu = 2.0:
Weighed to be 1.5: 1.0: 0.5: 3.0 and mixed well. After molding at a pressure of about 1 ton / cm 2 , 700
Calcination was carried out for 10 hours in the atmosphere (or in an argon gas flow) at 0 ° C. Next, after crushing and molding again at a pressure of about 2 ton / cm 2 , at 720 ° C. in an argon gas flow, 1
The main firing was performed for 0 hours. Next, annealing treatment was performed at 400 ° C. for 20 hours in an argon gas flow. When the composition of this sintered sample was analyzed, the composition of the entire sample was Pb: Ba: Ca: Y: Cu = 1.9: 1.5: 1.
It was 0: 0.5: 3.0 (molar ratio).

【0027】本実施例3の試料の抵抗−温度特性を図4
に示す。これより求めたTc(onset)は86Kで
あった。
FIG. 4 shows the resistance-temperature characteristic of the sample of the third embodiment.
Shown in. The Tc (onset) obtained from this was 86K.

【0028】〔実施例4〕酸化鉛PbO(又はPb
2)、炭酸バリウムBaCO3(又は酸化バリウムBa
O)、炭酸カルシウムCaCO3、酸化イットリウムY2
3(又はランタノイドの酸化物)、酸化銅CuO(又
はCuO2)及び、酸化銀AgO(又はAg2O、又は銀
Ag)をモル比でPb:Ba:Ca:Y:Cu:Ag=
2.0:2.0:0.5:0.5:3.0:0.5とな
るように秤量し、よく混合した。約1ton/cm2の圧力で
成形した後、700℃大気中(又はアルゴンガスフロー
中)10時間の仮焼成を行った。次に、粉砕し、約2to
n/cm2の圧力で再度成形した後、740℃アルゴンガス
フロー中10時間の焼成を行った。次に400℃アルゴ
ンガスフロー中20時間のアニール処理を行った。
Example 4 Lead oxide PbO (or Pb
O 2 ), barium carbonate BaCO 3 (or barium oxide Ba
O), calcium carbonate CaCO 3 , yttrium oxide Y 2
O 3 (or lanthanoid oxide), copper oxide CuO (or CuO 2 ) and silver oxide AgO (or Ag 2 O, or silver Ag) in a molar ratio of Pb: Ba: Ca: Y: Cu: Ag =
Weighed so as to be 2.0: 2.0: 0.5: 0.5: 3.0: 0.5 and mixed well. After molding at a pressure of about 1 ton / cm 2 , calcination was performed at 700 ° C. in the air (or in an argon gas flow) for 10 hours. Next, crush, about 2 to
After molding again at a pressure of n / cm 2 , firing was carried out at 740 ° C. in an argon gas flow for 10 hours. Next, an annealing treatment was performed for 20 hours in a 400 ° C. argon gas flow.

【0029】本実施例試料の抵抗−温度特性を図5に示
す。Agを添加しない場合(実施例1)に比べ抵抗率が
小さくなった。
The resistance-temperature characteristics of the sample of this example are shown in FIG. The resistivity was smaller than that when Ag was not added (Example 1).

【0030】なお、本発明の新しい酸化物超電導体及び
複合酸化物超電導材料は、特に、超電導現象を利用した
エネルギー関連技術、エレクトロニクス技術などに応用
することができる。
The novel oxide superconductor and composite oxide superconducting material of the present invention can be applied to energy-related technology and electronic technology utilizing the superconducting phenomenon.

【0031】以上、本発明を実施例に基づき具体的に説
明したが、本発明は、前記実施例に限定されるものでは
なく、その主要を逸脱しない範囲において種々変更し得
ることはいうまでもない。
Although the present invention has been specifically described based on the embodiments, it is needless to say that the present invention is not limited to the above embodiments and various modifications can be made without departing from the scope of the invention. Absent.

【0032】[0032]

【発明の効果】以上、説明したように、本発明によれ
ば、低酸素分圧下で新しい酸化物超電導体及び複合酸化
物超電導材料を合成することができる。
As described above, according to the present invention, new oxide superconductors and composite oxide superconducting materials can be synthesized under a low oxygen partial pressure.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の試料の抵抗-温度特性を
示す図、
FIG. 1 is a diagram showing resistance-temperature characteristics of a sample of Example 1 of the present invention,

【図2】 本発明の実施例1の試料の直流帯磁率測定の
結果を示す図、
FIG. 2 is a diagram showing the results of DC susceptibility measurement of the sample of Example 1 of the present invention,

【図3】 本発明の実施例1の表1A,1B,1C,1
Dに示す試料を組成図で表わした図、
FIG. 3 is a table 1A, 1B, 1C, 1 of the first embodiment of the present invention.
A diagram showing the composition of the sample shown in D,

【図4】 本発明の実施例3の試料の抵抗-温度特性を
示す図、
FIG. 4 is a graph showing resistance-temperature characteristics of a sample of Example 3 of the present invention,

【図5】 本発明の実施例4の試料の抵抗-温度特性を
示す図。
FIG. 5 is a diagram showing resistance-temperature characteristics of a sample of Example 4 of the present invention.

【符号の説明】[Explanation of symbols]

●…80K〜86Kで超電導性を示す、△…70K〜上
79Kで超電導性を示す、□…60K〜上69Kで超電
導性を示す、×…超電導性を示さない。
●: Superconductivity is shown at 80K to 86K, Δ: Superconductivity is shown at 70K to upper 79K, □: Superconductivity is shown at 60K to upper 69K, × ... Superconductivity is not shown.

フロントページの続き (72)発明者 池町 隆明 東京都江東区東雲1丁目14番3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 郡山 慎一 東京都江東区東雲1丁目14番3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内 (72)発明者 山内 尚雄 東京都江東区東雲1丁目14番3 財団法人 国際超電導産業技術研究センター 超電 導工学研究所内Front page continuation (72) Inventor Takaaki Ikemachi 1-14-3 Shinonome, Koto-ku, Tokyo Inside the Superconducting Engineering Research Center, International Superconductivity Technology Center (72) Inventor Shinichi Koriyama 1-14, Shinonome, Koto-ku, Tokyo No. 3 International Superconducting Industrial Technology Research Center, Superconducting Engineering Laboratory (72) Inventor Nao Yamauchi 1-14-3 Shinonome, Koto-ku, Tokyo Inside Superconducting Engineering Research Institute, International Superconducting Industrial Technology Center

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 化学式Pb2Ba3-x-yCaxLnyCu3
8±zで表わされる酸化物超電導体であって、前記Ln
はランタノイド及びYのうち少なくとも一種であり、
x,y,zの範囲が0<x≦1.2、0.3≦y≦1、
0≦z≦1であることを特徴とする酸化物超電導体。
1. The chemical formula Pb 2 Ba 3-xy Ca x Ln y Cu 3
An oxide superconductor represented by O 8 ± z , wherein Ln
Is at least one of lanthanoid and Y,
The range of x, y, z is 0 <x ≦ 1.2, 0.3 ≦ y ≦ 1,
An oxide superconductor characterized in that 0 ≦ z ≦ 1.
【請求項2】 請求項1に記載の酸化物超電導体を主体
とする複合酸化物超電導材料。
2. A composite oxide superconducting material mainly comprising the oxide superconductor according to claim 1.
【請求項3】 化学式Pb2Ba3-x-yCaxLnyCu3
8±zで表わされ、前記Lnはランタノイド及びYのう
ち少なくとも一種であり、x,y,zの範囲が0<x≦
1.2、0.3≦y≦1、0≦z≦1である酸化物超電
導体の製造方法であって、Pb、Ba、Ca、Ln(ラ
ンタノイド及びYのうち一種)、Cuの酸化物もしくは
炭酸塩を所定モル比に秤量、混合、成形し、600〜8
00℃で仮焼成し、次いで、粉砕、成形した後、650
〜800℃低酸素分圧下(0.01気圧以下)で本焼成
し、必要なら再度、粉砕、成形し、650〜800℃低
酸素分圧下(0.01気圧以下)で再度本焼成すること
を特徴とする酸化物超電導体の製造方法。
3. The chemical formula Pb 2 Ba 3-xy Ca x Ln y Cu 3
Is represented by O 8 ± z , and Ln is at least one of lanthanoid and Y, and the range of x, y, z is 0 <x ≦
1.2, 0.3 ≦ y ≦ 1, 0 ≦ z ≦ 1, a method for manufacturing an oxide superconductor, comprising Pb, Ba, Ca, Ln (one of lanthanoid and Y), and Cu oxide Alternatively, a carbonate is weighed, mixed and molded in a predetermined molar ratio to obtain 600 to 8
650 after calcination at 00 ° C, then crushing and molding
~ 800 ° C under low oxygen partial pressure (0.01 atm or less), main calcination, if necessary, crushing and molding again, and 650 ~ 800 ° C under low oxygen partial pressure (0.01 atm or less) again main baking. A method for producing a featured oxide superconductor.
【請求項4】 化学式Pb2Ba3-x-yCaxLnyCu3
8±zで表わされ、前記Lnはランタノイド及びYのう
ち少なくとも一種であり、x,y,zの範囲が0<x≦
1.2、0.3≦y≦1、0≦z≦1である酸化物超電
導体の製造方法であって、Pb、Ba、Ca、Ln(ラ
ンタノイド及びYのうち一種)、Cuの酸化物もしくは
炭酸塩を所定モル比に秤量、混合、成形し、600〜8
00℃で仮焼成し、次いで、粉砕、成形した後、650
〜800℃低酸素分圧下(0.01気圧以下)で本焼成
し、必要なら再度、粉砕、成形し、650〜800℃低
酸素分圧下(0.01気圧以下)で再度本焼成し、さら
に300〜550℃低酸素分圧下でアニール処理するこ
とを特徴とする酸化物超電導体の製造方法。
4. The chemical formula Pb 2 Ba 3-xy Ca x Ln y Cu 3
Is represented by O 8 ± z , and Ln is at least one of lanthanoid and Y, and the range of x, y, z is 0 <x ≦
1.2, 0.3 ≦ y ≦ 1, 0 ≦ z ≦ 1, a method for manufacturing an oxide superconductor, comprising Pb, Ba, Ca, Ln (one of lanthanoid and Y), and Cu oxide Alternatively, a carbonate is weighed, mixed and molded in a predetermined molar ratio to obtain 600 to 8
650 after calcination at 00 ° C, then crushing and molding
~ 800 ℃ under low oxygen partial pressure (0.01 atm or less) main firing, if necessary, crush and shape again, 650 ~ 800 ℃ under low oxygen partial pressure (0.01 atm or less) again main firing, A method for producing an oxide superconductor, which comprises performing an annealing treatment at 300 to 550 ° C. under a low oxygen partial pressure.
【請求項5】 化学式Pb2Ba3-x-yCaxLnyCu3
8±zで表わされ、前記Lnはランタノイド及びYのう
ち少なくとも一種であり、x,y,zの範囲が0<x≦
1.2、0.3≦y≦1、0≦z≦1である酸化物超電
導体の製造方法であって、Pb、Ba、Ca、Ln(ラ
ンタノイド及びYのうち一種)、Cuの酸化物もしくは
炭酸塩、複合物質を所定モル比に秤量、混合、成形し、
600〜800℃で仮焼成し、次いで、粉砕、成形した
後、650〜800℃、低酸素分圧下で本焼成し、必要
なら、当該本焼成の後、再度、粉砕、成形し、650〜
800℃、低酸素分圧下で再度本焼成し、さらに、30
0〜550℃、低酸素分圧下でアニール処理することを
特徴とする酸化物超電導体の製造方法。
5. The chemical formula Pb 2 Ba 3-xy Ca x Ln y Cu 3
Is represented by O 8 ± z , and Ln is at least one of lanthanoid and Y, and the range of x, y, z is 0 <x ≦
1.2, 0.3 ≦ y ≦ 1, 0 ≦ z ≦ 1, a method for manufacturing an oxide superconductor, comprising Pb, Ba, Ca, Ln (one of lanthanoid and Y), and Cu oxide Alternatively, carbonates and complex substances are weighed, mixed and molded in a predetermined molar ratio,
Preliminarily calcined at 600 to 800 ° C., then crushed and molded, then calcinated at 650 to 800 ° C. under low oxygen partial pressure, and if necessary, crushed and molded again at 650 to 850
Main firing again at 800 ° C under low oxygen partial pressure, and further 30
A method for producing an oxide superconductor, which comprises performing an annealing treatment at 0 to 550 ° C. under a low oxygen partial pressure.
JP3287950A 1991-11-01 1991-11-01 Oxide superconductor, composite oxide superconducting material and method for producing the same Expired - Fee Related JPH07121827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3287950A JPH07121827B2 (en) 1991-11-01 1991-11-01 Oxide superconductor, composite oxide superconducting material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3287950A JPH07121827B2 (en) 1991-11-01 1991-11-01 Oxide superconductor, composite oxide superconducting material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05124816A true JPH05124816A (en) 1993-05-21
JPH07121827B2 JPH07121827B2 (en) 1995-12-25

Family

ID=17723838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3287950A Expired - Fee Related JPH07121827B2 (en) 1991-11-01 1991-11-01 Oxide superconductor, composite oxide superconducting material and method for producing the same

Country Status (1)

Country Link
JP (1) JPH07121827B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296760A (en) * 1989-05-12 1990-12-07 Nec Corp Porcelain composition of oxide superconductor and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296760A (en) * 1989-05-12 1990-12-07 Nec Corp Porcelain composition of oxide superconductor and its production

Also Published As

Publication number Publication date
JPH07121827B2 (en) 1995-12-25

Similar Documents

Publication Publication Date Title
EP0330305B1 (en) High-temperature oxide superconductor
JP3332334B2 (en) Superconductor and method of manufacturing the same
JP2804039B2 (en) Compound superconductor and method for producing the same
Khasanova et al. Superconductivity at 10.2 K in the K–Bi–O system
US5468566A (en) Synthesis of highly phase pure BSCCO superconductors
EP0321184B1 (en) Metal oxide material
JPH05124816A (en) Oxide superconductor, multi component oxide superconducting material and its production
JPH0764560B2 (en) Layered copper oxide
JPH02503789A (en) Improved manufacturing method for 90K superconductor
JP3165770B2 (en) Manufacturing method of oxide superconductor
Shrivastava Synthesis of high-TC superconducting cuprate materials through solid state reaction route
Gilbert et al. Bulk crystalline BaPb34Bi14O3: A ceramic superconductor
JP2656531B2 (en) Oxide superconductor
JP2593480B2 (en) Manufacturing method of oxide superconductor
US5229035A (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
EP0286372A2 (en) Oxide superconductor and manufacturing method thereof
JPH01290530A (en) Multiple oxides superconducting material and production thereof
EP0400666A2 (en) Bi-Pb-Sr-Ca-Cu-O system superconductors
Geny et al. Phase Equilibria of the La2O3‐SrO‐CuO System at 950° C and 10 kbar
JP2831755B2 (en) Oxide superconductor
JP2748943B2 (en) Oxide superconductor
JP2748942B2 (en) Oxide superconductor
JP2632543B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconductor
JP2778100B2 (en) Oxide superconducting material and method for producing the same
JP2698689B2 (en) Oxide superconducting material and manufacturing method thereof

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees