JPH0512422B2 - - Google Patents

Info

Publication number
JPH0512422B2
JPH0512422B2 JP58174138A JP17413883A JPH0512422B2 JP H0512422 B2 JPH0512422 B2 JP H0512422B2 JP 58174138 A JP58174138 A JP 58174138A JP 17413883 A JP17413883 A JP 17413883A JP H0512422 B2 JPH0512422 B2 JP H0512422B2
Authority
JP
Japan
Prior art keywords
less
steel
age
welding
photo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58174138A
Other languages
Japanese (ja)
Other versions
JPS6067641A (en
Inventor
Toshuki Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP17413883A priority Critical patent/JPS6067641A/en
Publication of JPS6067641A publication Critical patent/JPS6067641A/en
Publication of JPH0512422B2 publication Critical patent/JPH0512422B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は肉盛溶接後、時効処理することにより
溶着鋼部、および熱影響部が母材部と同様に均一
なフオートエツチング加工が可能であり、しかも
鏡面性が良好であるという性質を有するMn−Ni
−Al−Cu−Mo系時効硬化性プラスチツク金型用
鋼、および該金型用鋼に被削性改善合金成分群、
強靱性焼入性改善合金成分群、細粒化促進合成分
群のうち、いずれかの合金成分群を単独または複
合含有せしめたプラスチツク金型用鋼に関するも
のである。 従来、プラスチツク金型用鋼として、炭素鋼や
低合金構造用鋼が多く使用されているが、プラス
チツク金型用鋼には被削性、被研削性、鏡面仕上
げ性、フオートエツチング性、溶接性、放電加工
性、圧縮強度、耐食性、耐摩耗性、寸法安定性な
どの各種の特性の良好なことが要求されるが、現
用金型鋼に対して、これらの特性を完備させるこ
とは至難であつた。 これらの諸性質の中には互に相反するものおよ
び本質的に回避できないものが含まれている。 一方、最近のプラスチツク金型のカタサは高く
なる趨勢にあるが、カタサを高くすると被削性が
低下し、マルテンサイト変態型の鋼では溶接後に
熱影響部のカタサの不連続部を解消すること、こ
の部分を均一にフオートエツチングすること、放
電加工面のカタサ上昇を抑制すること、熱処理時
の変形を阻止することなどは本質的に不可能であ
る。 熱処理時の変性は被削性をある程度犠牲にした
プレハーデン鋼を用いて回避しているものの、被
削性の低下により金型製作工数が増大し、生産性
が低下する。 とくに溶接後フオートエツチング加工をする場
合には、繰返し焼入れ焼戻しを行なつて溶接部と
その熱影響部の組織を母材部のそれと均質化する
も不充分となり均一なフオートエツチング加工が
困難である。 このほか均質化のための熱処理によるスケール
や歪の発生などにより良品金型の製造はかなり困
難である。よつて肉盛溶接後均一なフオートエツ
チングが可能な金型材料がプラスチツク金型の生
産性の向上の点から強く要望されている。 プラスチツク成形金型において金型内面に所望
の図柄をもつ耐食膜を写真的手法によつて形成す
るフオートエツチングまたはケミカルミリング法
が採用されているが、均一なフオートエツチング
面を確保するためには部分的に型面を肉盛溶接補
修することを回避しなければならないが、型面の
模様、図柄の複雑化とともに回避が至難となりつ
つある。この場合肉盛溶接の溶着鋼部と母材部と
に硬度差を生じ、その後のフオートエツチング面
の均一性確保が至難となる。このため各種金型材
料について調査した結果、金属組織が均等で、し
かもカタサのバラツキが少ない場合にフオートエ
ツチング性が優れていることがわかつた。 従来、マルテンサイト組織鋼の溶接後の金属組
織は、溶着鋼部、熱影響部、母材部にわたりマル
テンサイト→ベーナイト→トルースタイト→ソル
バイト→母材組織で構成されている。この金属組
織およびカタサをともに均等化するには再焼入
れ、再焼戻しを行なう以外に方法がない。しか
し、肉盛溶接を行なう時点ではキヤビテイがほゞ
完成しているので、キヤビテイの酸化、変形を生
じ再焼入れしても効果的ではない。 このようなことから、本発明者は先に溶接後時
効を行つた場合も溶着鋼および溶接熱影響部が母
材部と同様に均一なフオートエツチング加工が可
能である特徴を有するMn−Ni−Al−Cu−Mo系
時効硬化性プラスチツク金型用鋼を提案した(特
公昭53−23764号後方参照)。この金型用鋼は被削
性が優れ、HRC約40以上に時効硬化した状態で
金型加工し、または肉盛溶接後でも容易に金型加
工を行うことができるうえに約500℃附近の温度
で再時効硬化処理を行うことによつて酸化および
変化なしに均一なフオートエツチング加工を行う
ことができるものではあるが、鏡面仕上げ性に劣
り、良好なフオートエツチング表面を有するプラ
スチツク製品を得るための金型用鋼としては充分
満足し得るものではなかつた。 本発明者のその後の検討によれば、上記公報記
載の金型用鋼において鏡面性が劣るのは鋼成分中
に不純物として、通常0.05%程度含有されるS、
あるいが所望により被削性改善合金成分として積
極的に含有されるSが、主としてAlと反応し、
もしくはMnと反応して硫化物を生成し、この硫
化物は偏析し易く、これら硫化物が鏡面性に悪影
響を及ぼす原因であること、そしてこれら硫化物
の生成および偏析による鏡面性への影響はS含量
を0.008%程度に抑制することにより回避し得る
との知見を得た。本発明はこれら知見に基づくも
のである。 本発明鋼の構成成分およびその組成範囲は: (1) C:0.05〜0.18%、Si:0.15〜1.0%、Mn:
1.0〜2.0%、Ni:2.5〜3.5%、Al:0.5〜1.5%、
Cu:0.7〜1.7%、Mo:0.1〜0.4%、S:0.008
%未満、残余Feおよび不純物からなる鋼と、 上記(1)の基本成分組成の鋼に、 (2) Pb:0.01〜0.4%、Se:0.01〜0.5%、Te:
0.01〜0.3%、Bi:0.01〜0.3%、のうちから選
ばれた少なくとも1種または2種以上の被削性
改善合金成分。 (3) Cr:0.21〜2.50、W:0.5%以下、Co:0.5%
以下、Be:0.5%以下、B:0.01%以下、のう
ちから選ばれた少なくとも1種または2種以上
の強靱性焼入性改善合金成分。 (4) Ti:0.5%以下、V:0.5%以下、Nb+Ta:
0.3%以下、Zr:0.5%以下、のうちから選ばれ
た少なくとも1種または2種以上の細粒化促進
合金成分。 (5) Pb:0.01〜0.3%、Se:0.01〜0.4%、Te:
0.01〜0.3%、Bi:0.01〜0.3%、のうちから選
ばれた少なくとも1種または2種以上と、
Cr:0.21〜2.50、W:0.5%以下、Co:0.5%以
下、Be:0.5%以下、B:0.01%以下のうちか
ら選ばれた少なくとも1種または2種以上。 (6) Pb:0.01〜0.3%、Se:0.01〜0.4%、Te:
0.01〜0.3%、Bi:0.01〜0.3%、のうちから選
ばれた少なくとも1種または2種以上と、
Ti:0.5%以下、V:0.5%以下、Nb+Ta:0.3
%以下、Zr:0.5%以下のうちから選ばれた少
なくとも1種または2種以上。 (7) Cr:0.21〜2.50、W:0.5%以下、Co:0.5%
以下、Be:0.5%以下、B:0.01%以下のうち
から選ばれた少なくとも1種または2種以上
と、Ti:0.5%以下、V:0.5%以下、Nb+
Ta:0.3%以下、Zr:0.5%以下のうちから選ば
れた少なくとも1種または2種以上。 (8) Pb:0.01〜0.3%、Se:0.01〜0.4%、Te:
0.01〜0.3%、Bi:0.01〜0.3%、のうちから選
ばれた少なくとも1種または2種以上と、
Cr:0.21〜2.50、W:0.5%以下、Co:0.5%以
下、Be:0.5%以下、B:0.01%以下のうちか
ら選ばれた少なくとも1種または2種以上と、
Ti:0.5%以下、V:0.5%以下、Nb+Ta:0.3
%以下、Zr:0.5%以下のうちから選ばれた少
なくとも1種または2種以上。 を添加含有せしめた鋼である。 即ち本発明鋼は上記(1)の如き基本成分組成から
なり、溶接後再時効を行うことにより溶着鋼およ
び溶接熱影響部が母材部と同様に均一なフオート
エツチング加工が可能であり、かつ鏡面性が良好
であるという特徴を有するMn−Ni−Al−Cu−
Mo系時効硬化性プラスチツク金型用鋼、および
(2)基本成分組成の鋼に前記せる被削性改善合金成
分、(3)基本成分組成の鋼に基地鉄の強靱性、焼入
性改善合金成分、(4)基本成分組成の鋼に細粒化促
進合金成分、(5)基本成分組成の鋼に被削性改善合
金成分と強靱、焼入性改善合金成分の両者、(6)基
本成分組成の鋼に被削性改善合金成分と細粒化促
進合金成分の両者、(7)基本成分組成の鋼に強靱・
焼入性改善合金成分と細粒化促進合金成分の両
者、(8)基本成分組成の鋼にこれら合金成分の三者
を共に添加含有せしめ一層その性能を改善せる
Mn−Ni−Al−Cu−Mo系時効硬化性プラスチツ
ク金型用鋼である。 次に本発明鋼の構成成分およびその組成範囲の
限定理由に関し逐次説明する。 (1) 炭素 Cは本発明鋼を溶体化温度から比較的速かに冷
却した場合、マルテンサイトないしベーナイト組
織の生成を容易ならしめる効果がある。一方過度
添加は溶体化処理状態の熱間加工性、被削性を害
し、時効後の靱性を低下させる。このためCは
0.05〜0.18%に限定することが必要である。 (2) シリコン Siは本発明鋼の溶体化カタサ調整元素として添
加するが鋼材の質量が大きい場合、マンガンのみ
では溶体化カタサを調整できないため、時効処理
後の延靱性を害さない範囲で0.15〜1.0%含有せ
しめる。 (3) マンガン 本発明鋼にMnを含有させることにより溶体
化、時効の両状態のカラサに影響をおよぼす。
MnはCとともに溶体化温度から冷却の際に焼入
性を増大し、時効カタサを高められる。時効カタ
サを少なくともHRC約40またはそれ以上に調整
するためにはMn:1.0〜2.0%の範囲で含有せし
める必要がある。なおMnは1.0%以下ではその効
果が少なく、また2.0%以上添加含有させると被
削性、靱性を害するので好ましくない。 (4) ニツケル 本発明鋼に於てNiはその一部がCuと全率固溶
して熱間加工における赤熱脆性を防ぎ、溶体化状
態ではその後の時効処理でNiAl相析出の核とな
るs相をCuと共に構成する。また時効状態では
Alとともにa′相を形成する必須成分である。 また後述する如く、フオートエツチング性を確
保するためにも必要なため2.5〜3.5%の範囲に限
定する必要があり、この範囲外では効果が少な
い。 (5) アルミニウム AlはNiとともに時効状態でNiAl相を析出させ
るための必須成分であり、後述するごとくフオー
トエツチング性を確保する必要があるため少なく
とも0.5%以上添加含有せしめる必要がある。ま
た多量の添加は製造性、鏡面仕上げ性および延靱
性を害するため、上限を1.5%に限定する。 (6) 銅 Cuは本発明鋼の時効状態においてa′相を析出
させるための核として重要な役割をもち、とくに
Ni,Al含有量の低い場合に効果的である。また
本発明鋼の熱間加工によつて切欠靱性を改善する
にあたりCuは不可欠の合金成分である。 またCuは溶体化状態の被削性改善に有効であ
るから少なくとも0.7%以上含有させる必要があ
るが、1.7%以上の過剰添加は熱間脆性および経
済性の点で不利となる。従つてCu量は0.7〜1.7%
の範囲に限定する必要がある。 (7) モリブデン 本発明鋼に於てMoは強靱性改善および優れた
フオートエツチング性を確保するための必須合金
成分である。特に適当の少量のMoは均一なミク
ロ組織を呈せしめ優れたフオートエツチング性を
確保する特性を有する。そのためには少なくとも
0.1%以上を必要とし、また最高は0.4%以下であ
ることが不可欠の条件である。 而して若しMoを0.4%以上例えば0.5%以上の
ように多くすると、カタサが上昇し、被削性が劣
化しプラスチツク金型用鋼としては好ましくな
い。またフオートエツチング性の効果も減少し且
つ高価になる等の欠点を生ずる。それ故Moは0.1
〜0.4%を限定範囲とする。 (8) 硫黄 Sは通常、不純物として含有されるが、Alも
しくはMnと硫化物を生成し、この硫化物の偏析
により鏡面性を劣化させる。特に鏡面性に有害な
Al2S3の生成を抑制するためAl含量0.5〜1.5%の
範囲内においてSは0.008%未満とする。 (9) 鉛、セレン、テルル、ビスマス 本発明鋼に更にPb:0.01〜0.4%、Se:0.01〜
0.5%、Te:0.01〜0.3%、Bi:0.01〜0.3%、の適
量を少なくとも1種または2種以上を選択して積
極的に添加含有させると被削性を顕著に改善でき
る。しかし上記限定量以上に多量添加すると延靱
性を害するので好ましくない。また限定量以下で
は効果が少ない。 (10) クロム、タングステン、コバルト、ベリリウ
ム、ボロン 大型の金型に本発明鋼を使用する場合、その強
靱性、焼入性の改善にCr:0.21〜2.50、W:0.5%
以下、Co:0.5%以下、Be:0.5%以下、B:0.01
%以下、の適量を少なくとも1種または2種以上
選択して積極的に添加含有させることが効果的で
ある。Crの場合は、0.21%以上、2.50%以下の範
囲に限定することが必要である。 これらの成分の添加により溶体化カタサ、時効
カタサの調整にも役立つが、上記限定量以上の多
量添加は材料価格を高め効果が少ないので限定量
以下となすことが必要である。 (11) チタン、バナジウム、ニオブ+タンタル、ジ
ルコニウム これらの合金成分を本発明鋼に添加含有せしめ
ると結晶粒度を微細化して強靱化できるほか、切
欠靱性の改善に有効であるが、多量添加は時効カ
タサ、溶体化カタサを必要以上に高めるため
Ti:0.5%以下、V:0.5%以下、Nb+Ta:0.3%
以下、Zr:0.5%以下、の範囲で少なくとも1種
または2種以上を選択して積極的に添加含有せし
める。 本発明鋼は時効処理状態において金型削成加工
またはその場合必要に応じて肉盛溶接しとくに肉
盛溶接後には再時効処理しても、寸法変化(熱処
理歪)が小さく、且つHRC約40以上のカタサが
得られるうえに優れたフオートエツチング性確保
のために溶着鋼部、溶接熱影響部と母材間の硬度
差をHRC約2以下となるように上記各合金成分
を調整するとともに不純物として含有されるSを
所定量以下となるよう調整したもので、下記の如
くMn−Ni−Al−Cu−Mo系時効硬化性基本合金
成分鋼、および該鋼に被削性改善合金成分群、強
靱性焼入性改善合金成分群、細粒化促進合金成分
群のうち、いずれかの合金成分群を単独または複
合添加含有せしめた時効硬化性プラスチツク金型
用鋼である。
The present invention has the property that by aging treatment after overlay welding, the welded steel part and the heat-affected zone can be photo-etched uniformly in the same way as the base metal part, and have good specularity. Mn−Ni
- Al-Cu-Mo age hardenable plastic mold steel, and a machinability-improving alloy component group in the mold steel;
This invention relates to a steel for plastic molds containing either one of the toughness and hardenability-improving alloy component group and the grain refinement-promoting synthetic component group, either singly or in combination. Conventionally, carbon steel and low-alloy structural steel are often used as steel for plastic molds, but steel for plastic molds has many characteristics such as machinability, grindability, mirror finish, photoetchability, and weldability. It is required to have good properties such as hardness, electrical discharge machinability, compressive strength, corrosion resistance, wear resistance, and dimensional stability, but it is extremely difficult to fully satisfy these properties in current mold steels. It was hot. Some of these properties are mutually contradictory and some are essentially unavoidable. On the other hand, the roughness of recent plastic molds has tended to increase, but increasing the roughness reduces machinability, and with martensitic transformation steel, it is necessary to eliminate the discontinuous portion of the roughness in the heat affected zone after welding. It is essentially impossible to photo-etch this part uniformly, to suppress the rise in roughness of the electrical discharge machined surface, and to prevent deformation during heat treatment. Although denaturation during heat treatment is avoided by using pre-hardened steel that sacrifices machinability to some extent, the decrease in machinability increases the number of mold manufacturing steps and reduces productivity. In particular, when photo-etching is performed after welding, repeated quenching and tempering is performed to homogenize the structure of the weld and its heat-affected zone with that of the base metal, but this is insufficient and it is difficult to perform uniform photo-etching. It is. In addition, it is quite difficult to manufacture good quality molds due to scale and distortion caused by heat treatment for homogenization. Therefore, from the viewpoint of improving the productivity of plastic molds, there is a strong demand for mold materials that can be uniformly etched after overlay welding. For plastic molds, photo-etching or chemical milling methods are used to form a corrosion-resistant film with a desired pattern on the inner surface of the mold using a photographic method, but in order to ensure a uniform photo-etched surface, It is necessary to avoid partially repairing the mold surface by overlay welding, but this is becoming increasingly difficult as patterns and designs on the mold surface become more complex. In this case, a difference in hardness occurs between the welded steel part and the base metal part during overlay welding, and it becomes extremely difficult to ensure the uniformity of the subsequent photo-etched surface. For this reason, as a result of investigating various mold materials, it was found that photoetching properties are excellent when the metal structure is uniform and there is little variation in roughness. Conventionally, the metal structure of martensitic steel after welding is composed of martensite → bainite → troostite → sorbite → base metal structure in the welded steel part, heat affected zone, and base metal part. The only way to equalize both the metal structure and roughness is to requench and retemper. However, since the cavity is almost completed at the time of overlay welding, re-hardening is not effective as it may cause oxidation and deformation of the cavity. Based on this, the present inventor discovered that Mn-Ni has the characteristic that even if aging is performed after welding, the welded steel and weld heat-affected zone can be uniformly photo-etched in the same way as the base metal. -We proposed an Al-Cu-Mo age-hardening steel for plastic molds (see the back of Japanese Patent Publication No. 53-23764). This mold steel has excellent machinability, and can be easily processed into molds after age hardening to H R C of approximately 40 or higher, or even after overlay welding. Although uniform photo-etching can be performed without oxidation or change by re-aging and hardening at a similar temperature, plastics with a good photo-etching surface have poor mirror finish properties. It was not fully satisfactory as a mold steel for producing products. According to subsequent studies by the present inventor, the reason for the poor specularity in the steel for molds described in the above publication is S, which is usually contained as an impurity of about 0.05% in the steel components.
Alternatively, S, which is actively included as an alloy component for improving machinability if desired, mainly reacts with Al,
Or, it reacts with Mn to produce sulfides, and these sulfides tend to segregate, and these sulfides are the cause of adverse effects on specularity, and the effects of the formation and segregation of these sulfides on specularity are It has been found that this problem can be avoided by suppressing the S content to about 0.008%. The present invention is based on these findings. The constituent components of the steel of the present invention and their composition ranges are: (1) C: 0.05 to 0.18%, Si: 0.15 to 1.0%, Mn:
1.0~2.0%, Ni: 2.5~3.5%, Al: 0.5~1.5%,
Cu: 0.7~1.7%, Mo: 0.1~0.4%, S: 0.008
(2) Pb: 0.01-0.4%, Se: 0.01-0.5%, Te:
At least one or two or more machinability-improving alloy components selected from 0.01 to 0.3% and Bi: 0.01 to 0.3%. (3) Cr: 0.21-2.50, W: 0.5% or less, Co: 0.5%
At least one or more toughness and hardenability improving alloy components selected from the following: Be: 0.5% or less, B: 0.01% or less. (4) Ti: 0.5% or less, V: 0.5% or less, Nb+Ta:
At least one or two or more grain refinement promoting alloy components selected from 0.3% or less, Zr: 0.5% or less. (5) Pb: 0.01-0.3%, Se: 0.01-0.4%, Te:
At least one or two or more selected from 0.01 to 0.3%, Bi: 0.01 to 0.3%,
At least one or two or more selected from Cr: 0.21 to 2.50, W: 0.5% or less, Co: 0.5% or less, Be: 0.5% or less, and B: 0.01% or less. (6) Pb: 0.01-0.3%, Se: 0.01-0.4%, Te:
At least one or two or more selected from 0.01 to 0.3%, Bi: 0.01 to 0.3%,
Ti: 0.5% or less, V: 0.5% or less, Nb+Ta: 0.3
% or less, Zr: at least one or two or more selected from 0.5% or less. (7) Cr: 0.21-2.50, W: 0.5% or less, Co: 0.5%
Below, at least one or two or more selected from Be: 0.5% or less, B: 0.01% or less, Ti: 0.5% or less, V: 0.5% or less, Nb+
At least one or two or more selected from Ta: 0.3% or less and Zr: 0.5% or less. (8) Pb: 0.01-0.3%, Se: 0.01-0.4%, Te:
At least one or two or more selected from 0.01 to 0.3%, Bi: 0.01 to 0.3%,
At least one or two or more selected from Cr: 0.21 to 2.50, W: 0.5% or less, Co: 0.5% or less, Be: 0.5% or less, B: 0.01% or less,
Ti: 0.5% or less, V: 0.5% or less, Nb+Ta: 0.3
% or less, Zr: at least one or two or more selected from 0.5% or less. It is a steel that contains added. That is, the steel of the present invention has the basic composition as described in (1) above, and by performing re-aging after welding, the welded steel and the weld heat affected zone can be uniformly photo-etched in the same manner as the base metal, Mn−Ni−Al−Cu−, which has the characteristics of good specularity.
Mo-based age-hardening plastic mold steel, and
(2) Alloy components that improve the machinability of the steel with the basic composition; (3) Alloy components that improve the toughness and hardenability of the base iron in the steel with the basic composition; (5) Both machinability-improving alloy components and toughness/hardenability-improving alloy components in steel with basic component composition; (6) Machinability-improving alloy components and fineness in steel with basic component composition. (7) Both grain-promoting alloy components provide toughness and strength to steels with the basic composition.
Both the hardenability-improving alloy component and the grain refinement-promoting alloy component are added to the steel with the basic composition (8) to further improve its performance.
Mn-Ni-Al-Cu-Mo age-hardening steel for plastic molds. Next, the constituent components of the steel of the present invention and the reason for limiting the composition range thereof will be sequentially explained. (1) Carbon C has the effect of facilitating the formation of martensitic or bainitic structures when the steel of the present invention is cooled relatively quickly from the solution temperature. On the other hand, excessive addition impairs hot workability and machinability in the solution-treated state and reduces toughness after aging. For this reason, C is
It is necessary to limit it to 0.05-0.18%. (2) Silicon Si is added as an element to adjust the solution stiffness of the steel of the present invention, but if the mass of the steel material is large, the solution stiffness cannot be adjusted with manganese alone, so it should be added from 0.15 to 0.15 as long as it does not impair the ductility after aging treatment. Contains 1.0%. (3) Manganese Inclusion of Mn in the steel of the present invention affects the strength of both the solution treatment and aging states.
Together with C, Mn increases the hardenability during cooling from the solution temperature and can increase aging stiffness. In order to adjust the aging stiffness to at least H R C of about 40 or more, it is necessary to contain Mn in the range of 1.0 to 2.0%. Note that if Mn is less than 1.0%, the effect will be small, and if it is added in an amount of more than 2.0%, it will impair machinability and toughness, which is not preferable. (4) Nickel In the steel of the present invention, a part of Ni forms a complete solid solution with Cu to prevent red brittleness during hot working, and in the solution state becomes the nucleus of NiAl phase precipitation during subsequent aging treatment. It forms a phase together with Cu. Also, in the statute of limitations
It is an essential component that forms the a' phase together with Al. Further, as will be described later, since it is necessary to ensure photo-etching properties, it is necessary to limit the amount to a range of 2.5 to 3.5%, and outside this range, the effect is small. (5) Aluminum Al is an essential component for precipitating the NiAl phase in the aged state together with Ni, and as described below, it is necessary to ensure photoetching properties, so it is necessary to add at least 0.5% or more. Furthermore, since addition of a large amount impairs manufacturability, mirror finish properties, and ductility, the upper limit is limited to 1.5%. (6) Copper Cu plays an important role as a nucleus for precipitating the a′ phase in the aged state of the steel of the present invention.
Effective when Ni and Al contents are low. Further, Cu is an essential alloying component in improving the notch toughness of the steel of the present invention by hot working. Further, since Cu is effective in improving machinability in the solution state, it is necessary to contain it at least 0.7%, but excessive addition of 1.7% or more is disadvantageous in terms of hot embrittlement and economic efficiency. Therefore, the amount of Cu is 0.7 to 1.7%
It is necessary to limit the range of (7) Molybdenum In the steel of the present invention, Mo is an essential alloying component to improve toughness and ensure excellent photo-etching properties. In particular, a suitable small amount of Mo has the property of providing a uniform microstructure and ensuring excellent photoetchability. To that end, at least
It is essential that the content be 0.1% or more, and the maximum is 0.4% or less. However, if Mo is increased to 0.4% or more, for example 0.5% or more, the stiffness increases and machinability deteriorates, making it undesirable as a steel for plastic molds. Further, the photoetching effect is reduced and the cost becomes high. Therefore Mo is 0.1
The limited range is ~0.4%. (8) Sulfur S is normally contained as an impurity, but it forms sulfides with Al or Mn, and the segregation of these sulfides deteriorates specularity. Particularly harmful to specularity
In order to suppress the formation of Al 2 S 3 , S should be less than 0.008% within the Al content range of 0.5 to 1.5%. (9) Lead, selenium, tellurium, bismuth In addition to the steel of the present invention, Pb: 0.01~0.4%, Se: 0.01~
If appropriate amounts of at least one or more of Te: 0.01 to 0.3% and Bi: 0.01 to 0.3% are selected and actively added in appropriate amounts, machinability can be significantly improved. However, it is not preferable to add more than the above-mentioned limited amount because it impairs ductility and toughness. Further, if the amount is less than the limited amount, the effect will be small. (10) Chromium, tungsten, cobalt, beryllium, boron When using the steel of the present invention for large molds, Cr: 0.21 to 2.50, W: 0.5% to improve toughness and hardenability.
Below, Co: 0.5% or less, Be: 0.5% or less, B: 0.01
It is effective to select at least one or two or more kinds and actively add and contain them in an appropriate amount of % or less. In the case of Cr, it is necessary to limit the content to a range of 0.21% or more and 2.50% or less. Addition of these components is useful for adjusting solution cracking and aging crackling, but addition of more than the above-mentioned limited amount increases material cost and has little effect, so it is necessary to keep the amount below the limited amount. (11) Titanium, vanadium, niobium + tantalum, zirconium When these alloy components are added to the steel of the present invention, the grain size can be refined and toughened, and it is also effective in improving notch toughness. To increase Katasa and solution Katasa more than necessary
Ti: 0.5% or less, V: 0.5% or less, Nb+Ta: 0.3%
Hereinafter, at least one or two or more types of Zr are selected and actively added within the range of 0.5% or less. The steel of the present invention exhibits small dimensional changes (heat treatment distortion) even when subjected to mold cutting in an aging state or overlay welding as required in that case, and even when re-aging is performed after overlay welding, and H R C In order to obtain a flatness of approximately 40 or more and to ensure excellent photo-etching properties, the above alloy components are adjusted so that the difference in hardness between the welded steel part, weld heat affected zone, and base metal is approximately 2 H R C or less. and the S contained as an impurity is adjusted to be below a specified amount, and the machinability of the Mn-Ni-Al-Cu-Mo age hardenable basic alloy steel and the steel are as follows. This is an age-hardenable steel for plastic molds containing any one of the alloy component groups for improving toughness, toughness and hardenability, and grain refinement promoting alloy components, singly or in combination.

【表】【table】

【表】 而して被削性改善合金成分群、強靱性焼入性改
善合金成分群、細粒化促進合金成分群の各群に属
する種々の成分は各々の限定範囲内に於ては殆ん
ど類似効果を有する均等物と見做し得るものであ
る。 このような本発明鋼を溶製するに際して、Sを
低く、すなわち0.008%未満に抑えるためには、
電気炉で溶解した後、所謂LF法により還元精錬
する等の手段を採用することが好ましく、これら
手段によりSの低減が図られ、Al2S3等の硫化物
が低減され、偏析も防止されて鏡面性に優れた所
望の金型用鋼が得られる。今、ここで電気炉で溶
解した溶鋼をLF法によりS低減のために処理し
た一例を示すと次のようである。すなわち、10ト
ン電気炉で溶解したS含量0.16%の溶鋼を取鍋に
移し、電極加熱しつつ取鍋底からArガスを吹き
込み加熱精錬した。その後フラツクスを投入し、
更に30/minのArガスを吹き込んで加熱し、
必要な合金元素を添加し、続いてArガス流量を
45/minに増し、通電せずに攪拌し還元精錬を
終了した。その時の成分組成は下記に示すように
S含量が極めて低くなり、また介在物を構成する
O含量も少い溶鋼が得られた。 S:0.007% O:20ppm 第1表は上記のようにして溶製した本発明鋼お
よび比較材の化学成分を示すものである。
[Table] The various components belonging to the machinability-improving alloy component group, the toughness and hardenability-improving alloy component group, and the grain refinement-promoting alloy component group have almost no effect within their respective limited ranges. They can be regarded as equivalents with similar effects. In order to suppress the S content to a low level, that is, less than 0.008%, when producing the steel of the present invention,
After melting in an electric furnace, it is preferable to adopt a method such as reduction and refining by the so-called LF method, and these methods reduce S, reduce sulfides such as Al 2 S 3 , and prevent segregation. As a result, a desired mold steel with excellent specularity can be obtained. The following is an example of processing molten steel melted in an electric furnace to reduce S using the LF method. That is, molten steel with an S content of 0.16% melted in a 10-ton electric furnace was transferred to a ladle, and while heating with electrodes, Ar gas was blown from the bottom of the ladle to heat and refine. Then add flux,
Furthermore, heat by blowing Ar gas at 30/min.
Add the required alloying elements, then increase the Ar gas flow rate.
The rate was increased to 45/min, and the reduction refining was completed by stirring without applying electricity. At that time, as shown below, molten steel was obtained in which the S content was extremely low and the O content constituting inclusions was also low. S: 0.007% O: 20 ppm Table 1 shows the chemical composition of the steel of the present invention and comparative material produced as described above.

【表】 第1表に示す各鋼材を肉盛溶接後、500℃×4hr
時効処理を施し、さらに第1図に示す工程に従つ
てフオートエツチング加工を行い、各表面肌を観
察し、“エツチングむら”の存否をもつてフオー
トエツチング性の良否を判定した。第2図はフオ
ートエツチング性をAl含量とNi含量との関係で
表わした図であり、図中の斜線部分が“エツチン
グむら”が生じず、良好なフオートエツチング性
を示した範囲である。“エツチングむら”が表わ
れている部分と母材とはエツチング面の腐食度
(粗度)が異なり、プラスチツク製品成形時に、
これが表面肌に転写される結果、肌不良を生ずる
ものである。この“エツチングむら”の発生は母
材部と溶接熱影響部の硬度差に影響され、肉盛溶
接→時効処理によつて均一なフオートエツチング
性を得るためには熱影響部の硬度低下域の巾dを
1.0mm以下とし、前記両部の硬度差(△H)をHR
C2以下にすれば防止し得るものである。 次に、第1表に示す各鋼材の表面を鏡面仕上げ
処理を施し、その表面状態を観察した。鏡面性に
劣る鋼材面は表面に生成された主としてAl2S3
脱落に伴う抜け穴がくもり状態を示すのに対し、
鏡面性に優れる鋼材面は良好な鏡面を示すことに
より判定し得る。第3図はAl含量とS含量との
関係で鏡面性を表わしたものである。 これら第2図および第3図より、本発明材はフ
オートエツチング性および鏡面性ともに良好であ
るが、比較材はいずれかの特性を満足しないこと
がわかる。 次に被削性改善合金成分の一例としてPbを含
有しない銅No.1と第2表に示すPbを含有する鋼
材をスライス盤を使用してスリツテング下向き切
削による切削試験を行つたところ、Pbを含有さ
せた鋼材はPb無含有のものに比べてその工具寿
命は!?かに好成績を示し、被削性改善合金成分の
添加は極めて有効であることが実証された。ま
た、Pbの微量添加は時効硬化性、フオートエツ
チング性および鏡面性に何等悪影響をおよぼすも
のではない。なお、Pb以外のSe,Te,Biも限定
範囲内の微量添加によりPbと同様に被削性改善
に極めて有効であつた。
[Table] After overlay welding of each steel material shown in Table 1, 500℃×4 hours
Aging treatment was performed, and photo-etching was further performed according to the steps shown in FIG. 1, and the surface texture of each was observed, and the quality of the photo-etchability was determined based on the presence or absence of "etching unevenness." Figure 2 is a diagram showing the photo-etching properties in terms of the relationship between the Al content and the Ni content. The shaded area in the figure is the range where "uneven etching" does not occur and good photo-etching properties are exhibited. . The part where "uneven etching" appears and the base material have different degrees of corrosion (roughness) on the etched surface, and during molding of plastic products,
As a result of this being transferred to the surface skin, it causes skin defects. The occurrence of this "uneven etching" is affected by the hardness difference between the base metal and the weld heat affected zone, and in order to obtain uniform photo etching properties by overlay welding and then aging treatment, it is necessary to remove the hardness of the heat affected zone in the area where the hardness decreases. The width d of
H R
This can be prevented by setting it below C2. Next, the surface of each steel material shown in Table 1 was subjected to mirror finishing treatment, and the surface condition was observed. On the other hand, steel surfaces with poor specularity exhibit a cloudy state due to holes mainly caused by Al 2 S 3 falling out.
A steel surface with excellent specularity can be determined by showing a good specular surface. FIG. 3 shows the specularity in terms of the relationship between Al content and S content. From these FIGS. 2 and 3, it can be seen that the material of the present invention has good photo-etching properties and good specularity, but the comparative material does not satisfy either of the properties. Next, as an example of an alloy component that improves machinability, we conducted a cutting test using a slicing machine to perform downward slitting cutting on Copper No. 1, which does not contain Pb, and steel materials containing Pb shown in Table 2. The tool life of the steel containing Pb was significantly better than that of the steel containing no Pb, demonstrating that the addition of alloying components for improving machinability is extremely effective. Furthermore, the addition of a small amount of Pb does not have any adverse effect on age hardening properties, photoetching properties, and specularity. In addition to Pb, Se, Te, and Bi were also extremely effective in improving machinability in the same way as Pb when added in trace amounts within a limited range.

【表】 さらに本発明の基本成分鋼に前記せる限定範囲
内において、強靱性焼入性改善合金成分群あるい
は細粒化促進合金成分群に属する種々の合金成分
の添加は基地鉄の強靱性、細粒化等本発明基本成
分鋼の諸性能を一層改善するものであることは確
かである。 而してこれら被削性改善合金成分群、基地鉄の
強靱性焼入性改善合金成分群、細粒化促進合金成
分群は各々その限定範囲内に於て、各群内に於て
1種または2種以上を選択使用するほか、更に各
群各々単独にあるいは組合せ複合添加し一層その
性能を向上せしめ得るものである。 尚、本発明鋼はプラスチツク金型に使用する
外、これに類似の用途に広く活用し得るは勿論で
ある。 本発明は以上のごとく従来のものに比し極めて
高性能を有し新規にして工業的価値大なるもので
ある。
[Table] Furthermore, within the above-mentioned limited range of the basic component steel of the present invention, addition of various alloy components belonging to the toughness and hardenability improving alloy component group or the grain refinement promoting alloy component group can improve the toughness of the base steel, It is certain that various performances of the basic component steel of the present invention, such as grain refinement, are further improved. Therefore, each of these machinability improving alloy component group, base iron toughness and hardenability improving alloy component group, and grain refinement promoting alloy component group is one type within each group within its limited range. Alternatively, in addition to selectively using two or more types, each group can be added singly or in combination to further improve the performance. It goes without saying that the steel of the present invention can be used not only in plastic molds but also in a wide range of similar applications. As described above, the present invention has extremely high performance compared to conventional ones, and is novel and of great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフオートエツチング加工処理条件を各
工程別に示したフローシートである。第2図はフ
オートエツチング性の好ましい範囲をAlおよび
Ni含量との関係で示した曲線図である。第3図
は鏡面性の好ましい範囲をAlおよびS含量との
関係で示した曲線図である。
FIG. 1 is a flow sheet showing the photoetching processing conditions for each step. Figure 2 shows the preferred range of photoetchability for Al and
It is a curve diagram shown in relation to Ni content. FIG. 3 is a curve diagram showing the preferable range of specularity in relation to the Al and S contents.

Claims (1)

【特許請求の範囲】 1 C:0.05〜0.18%、Si:0.15〜1.0%、Mn:
1.0〜2.0%、Ni:2.5〜3.5%、Al:0.5〜1.5%、
Cu:0.7〜1.7%、Mo:0.1〜0.4%、S:0.008%
未満、残余Feおよび不純物からなり、溶接後時
効を行つた場合も溶着鋼および溶接熱影響部が母
材部と同様に均一なフオートエツチング加工が可
能であり、かつ鏡面性が良好であるという特徴を
もつMn−Ni−Al−Cu−Mo系時効硬化性プラス
チツク金型用鋼。 2 C:0.05〜0.18%、Si:0.15〜1.0%、Mn:
1.0〜2.0%、Ni:2.5〜3.5%、Al:0.5〜1.5%、
Cu:0.7〜1.7%、Mo:0.1〜0.4%、S:0.008%
未満よりなる基本合金成分に対し、さらにPb:
0.01〜0.3%、Se:0.01〜0.4%、Te:0.01〜0.3%、
Bi:0.01〜0.3%のうちから選ばれた少なくとも
1種または2種以上の被削性改善合金成分を含有
させ、残余Feおよび不純物からなり、溶接後時
効を行つた場合も溶着鋼および溶接熱影響部が母
材部と同様に均一なフオートエツチング加工が可
能であり、かつ鏡面性が良好であるという特徴を
もつMn−Ni−Al−Cu−Mo系時効硬化性プラス
チツク金型用鋼。 3 C:0.05〜0.18%、Si:0.15〜1.0%、Mn:
1.0〜2.0%、Ni:2.5〜3.5%、Al:0.5〜1.5%、
Cu:0.7〜1.7%、Mo:0.1〜0.4%、S:0.008%
未満よりなる基本合金成分に対し、さらにCr:
0.21〜2.5%、W:0.5%以下、Co:0.5%以下、
Be:0.5%以下、B:0.01%以下のうちから選ば
れた少なくとも1種または2種以上の強靱性、焼
入性改善合金成分を含有させ、残余Feおよび不
純物からなり、溶接後時効を行つた場合も溶着鋼
および溶接熱影響部が母材部と同様に均一なフオ
ートエツチング加工が可能であり、かつ鏡面性が
良好であるという特徴をもつMn−Ni−Al−Cu
−Mo系時効硬化性プラスチツク金型用鋼。 4 C:0.05〜0.18%、Si:0.15〜1.0%、Mn:
1.0〜2.0%、Ni:2.5〜3.5%、Al:0.5〜1.5%、
Cu:0.7〜1.7%、Mo:0.1〜0.4%、S:0.008%
未満よりなる基本合金成分に対し、さらにTi:
0.5%以下、V:0.5%以下、Nb+Ta:0.3%以
下、Zr:0.5%以下のうちから選ばれた少なくと
も1種または2種以上の細粒化促進合金成分とを
含有させ、残余Feおよび不純物からなり、溶接
後時効を行つた場合も溶着鋼および溶接熱影響部
が母材部と同様に均一なフオートエツチング加工
が可能であり、かつ鏡面性が良好であるという特
徴をもつMn−Ni−Al−Cu−Mo系時効硬化性プ
ラスチツク金型用鋼。 5 C:0.05〜0.18%、Si:0.15〜1.0%、Mn:
1.0〜2.0%、Ni:2.5〜3.5%、Al:0.5〜1.5%、
Cu:0.7〜1.7%、Mo:0.1〜0.4%、S:0.008%
未満よりなる基本合金成分に対し、さらにPb:
0.01〜0.3%、Se:0.01〜0.4%、Te:0.01〜0.3%、
Bi:0.01〜0.3%のうちから選ばれた少なくとも
1種または2種以上の被削性改善合金成分と、
Cr:0.21〜2.5%、W:0.5%以下、Co:0.5%以
下、Be:0.5%以下、B:0.01%以下のうちから
選ばれた少なくとも1種または2種以上の強靱
性、焼入性改善合金成分を含有させ、残余Feお
よび不純物からなり、溶接後時効を行つた場合も
溶着鋼および溶接熱影響部が母材部と同様に均一
なフオートエツチング加工が可能であり、かつ鏡
面性が良好であるという特徴をもつMn−Ni−Al
−Cu−Mo系時効硬化性プラスチツク金型用鋼。 6 C:0.05〜0.18%、Si:0.15〜1.0%、Mn:
1.0〜2.0%、Ni:2.5〜3.5%、Al:0.5〜1.5%、
Cu:0.7〜1.7%、Mo:0.1〜0.4%、S:0.008%
未満よりなる基本合金成分に対し、さらにPb:
0.01〜0.3%、Se:0.01〜0.4%、Te:0.01〜0.3%、
Bi:0.01〜0.3%のうちから選ばれた少なくとも
1種または2種以上の被削性改善合金成分と、
Ti:0.5%以下、V:0.5%以下、Nb+Ta:0.3%
以下、Zr:0.5%以下のうちから選ばれた少なく
とも1種または2種以上の細粒化促進合金成分と
を含有させ、残余Feおよび不純物からなり、溶
接後時効を行つた場合も溶着鋼および溶接熱影響
部が母材部と同様に均一なフオートエツチング加
工が可能であり、かつ鏡面性が良好であるという
特徴をもつMn−Ni−Al−Cu−Mo系時効硬化性
プラスチツク金型用鋼。 7 C:0.05〜0.18%、Si:0.15〜1.0%、Mn:
1.0〜2.0%、Ni:2.5〜3.5%、Al:0.5〜1.5%、
Cu:0.7〜1.7%、Mo:0.1〜0.4%、S:0.008%
未満よりなる基本合金成分に対し、さらにCr:
0.21〜2.5%、W:0.5%以下、Co:0.5%以下、
Be:0.5%以下、B:0.01%以下のうちから選ば
れた少なくとも1種または2種以上の強靱性、焼
入性改善合金成分と、Ti:0.5%以下、V:0.5%
以下、Nb+Ta:0.3%以下、Zr:0.5%以下のう
ちから選ばれた少なくとも1種または2種以上の
細粒化促進合金成分とを含有させ、残余Feおよ
び不純物からなり、溶接後時効を行つた場合も溶
着鋼および溶接熱影響部が母材部と同様に均一な
フオートエツチング加工が可能であり、かつ鏡面
性が良好であるという特徴をもつMn−Ni−Al−
Cu−Mo系時効硬化性プラスチツク金型用鋼。 8 C:0.05〜0.18%、Si:0.15〜1.0%、Mn:
1.0〜2.0%、Ni:2.5〜3.5%、Al:0.5〜1.5%、
Cu:0.7〜1.7%、Mo:0.1〜0.4%、S:0.008%
未満よりなる基本合金成分に対し、さらにPb:
0.01〜0.3%、Se:0.01〜0.4%、Te:0.01〜0.3%、
Bi:0.01〜0.3%のうちから選ばれた少なくとも
1種または2種以上のの被削性改善合金成分と、
Cr:0.21〜2.5%、W:0.5%以下、Co:0.5%以
下、Be:0.5%以下、B:0.01%以下のうちから
選ばれた少なくとも1種または2種以上の強靱
性、焼入性改善合金成分と、Ti:0.5%以下、
V:0.5%以下、Nb+Ta:0.3%以下、Zr:0.5%
以下のうちから選ばれた少なくとも1種または2
種以上の細粒化促進合金成分とを含有させ、残余
Feおよび不純物からなり、溶接後時効を行つた
場合も溶着鋼および溶接熱影響部が母材部と同様
に均一なフオートエツチング加工が可能であり、
かつ鏡面性が良好であるという特徴をもつMn−
Ni−Al−Cu−Mo系時効硬化性プラスチツク金
型用鋼。
[Claims] 1 C: 0.05-0.18%, Si: 0.15-1.0%, Mn:
1.0~2.0%, Ni: 2.5~3.5%, Al: 0.5~1.5%,
Cu: 0.7-1.7%, Mo: 0.1-0.4%, S: 0.008%
It is said that even when aged after welding, the welded steel and weld heat-affected zone can be photo-etched as uniformly as the base metal, and have good specularity. Mn-Ni-Al-Cu-Mo age-hardening steel for plastic molds. 2 C: 0.05-0.18%, Si: 0.15-1.0%, Mn:
1.0~2.0%, Ni: 2.5~3.5%, Al: 0.5~1.5%,
Cu: 0.7-1.7%, Mo: 0.1-0.4%, S: 0.008%
For the basic alloy composition consisting of less than Pb:
0.01~0.3%, Se: 0.01~0.4%, Te: 0.01~0.3%,
Bi: Contains at least one or more machinability-improving alloy components selected from 0.01 to 0.3%, and consists of residual Fe and impurities. A Mn-Ni-Al-Cu-Mo age hardenable plastic mold steel that allows for uniform photo-etching of the affected area in the same manner as the base material and has good specularity. 3 C: 0.05-0.18%, Si: 0.15-1.0%, Mn:
1.0~2.0%, Ni: 2.5~3.5%, Al: 0.5~1.5%,
Cu: 0.7-1.7%, Mo: 0.1-0.4%, S: 0.008%
For the basic alloy composition consisting of less than Cr:
0.21-2.5%, W: 0.5% or less, Co: 0.5% or less,
Contains at least one or two or more toughness and hardenability improving alloy components selected from Be: 0.5% or less, B: 0.01% or less, consists of residual Fe and impurities, and is aged after welding. Mn-Ni-Al-Cu has the characteristics that even when the welded steel and the weld heat affected zone are photoetched uniformly in the same way as the base metal, it also has good specularity.
-Mo-based age-hardening steel for plastic molds. 4 C: 0.05-0.18%, Si: 0.15-1.0%, Mn:
1.0~2.0%, Ni: 2.5~3.5%, Al: 0.5~1.5%,
Cu: 0.7-1.7%, Mo: 0.1-0.4%, S: 0.008%
For the basic alloy composition consisting of:
0.5% or less, V: 0.5% or less, Nb + Ta: 0.3% or less, and Zr: 0.5% or less. Mn-Ni is composed of -Al-Cu-Mo age-hardening steel for plastic molds. 5 C: 0.05-0.18%, Si: 0.15-1.0%, Mn:
1.0~2.0%, Ni: 2.5~3.5%, Al: 0.5~1.5%,
Cu: 0.7-1.7%, Mo: 0.1-0.4%, S: 0.008%
For the basic alloy composition consisting of less than Pb:
0.01~0.3%, Se: 0.01~0.4%, Te: 0.01~0.3%,
Bi: at least one or two or more machinability-improving alloy components selected from 0.01 to 0.3%;
Toughness and hardenability of at least one or more selected from Cr: 0.21 to 2.5%, W: 0.5% or less, Co: 0.5% or less, Be: 0.5% or less, B: 0.01% or less Contains improved alloy components, consisting of residual Fe and impurities, and even when aged after welding, the welded steel and weld heat-affected zone can be photo-etched uniformly in the same way as the base metal, and it has a mirror-like finish. Mn−Ni−Al is characterized by good
-Cu-Mo age-hardening steel for plastic molds. 6 C: 0.05-0.18%, Si: 0.15-1.0%, Mn:
1.0~2.0%, Ni: 2.5~3.5%, Al: 0.5~1.5%,
Cu: 0.7-1.7%, Mo: 0.1-0.4%, S: 0.008%
For the basic alloy composition consisting of less than Pb:
0.01~0.3%, Se: 0.01~0.4%, Te: 0.01~0.3%,
Bi: at least one or two or more machinability-improving alloy components selected from 0.01 to 0.3%;
Ti: 0.5% or less, V: 0.5% or less, Nb+Ta: 0.3%
Below, Zr contains at least one or two or more grain refinement promoting alloy components selected from 0.5% or less, and consists of residual Fe and impurities, and even when aged after welding, welded steel and For Mn-Ni-Al-Cu-Mo age-hardenable plastic molds, the welding heat affected zone can be photo-etched as uniformly as the base metal, and has good specularity. steel. 7 C: 0.05-0.18%, Si: 0.15-1.0%, Mn:
1.0~2.0%, Ni: 2.5~3.5%, Al: 0.5~1.5%,
Cu: 0.7-1.7%, Mo: 0.1-0.4%, S: 0.008%
For the basic alloy composition consisting of less than Cr:
0.21-2.5%, W: 0.5% or less, Co: 0.5% or less,
At least one or more toughness and hardenability improving alloy components selected from Be: 0.5% or less, B: 0.01% or less, Ti: 0.5% or less, V: 0.5%
Hereinafter, it contains at least one or two or more grain refinement promoting alloy components selected from Nb + Ta: 0.3% or less and Zr: 0.5% or less, and consists of residual Fe and impurities, and is aged after welding. Mn-Ni-Al-, which has the characteristics of uniform photoetching of the welded steel and weld heat-affected zone in the same way as the base metal, and has good specularity even when the welded steel and weld heat affected zone
Cu-Mo age-hardening steel for plastic molds. 8 C: 0.05-0.18%, Si: 0.15-1.0%, Mn:
1.0~2.0%, Ni: 2.5~3.5%, Al: 0.5~1.5%,
Cu: 0.7-1.7%, Mo: 0.1-0.4%, S: 0.008%
For the basic alloy composition consisting of less than Pb:
0.01~0.3%, Se: 0.01~0.4%, Te: 0.01~0.3%,
Bi: at least one or two or more machinability-improving alloy components selected from 0.01 to 0.3%;
Toughness and hardenability of at least one or more selected from Cr: 0.21 to 2.5%, W: 0.5% or less, Co: 0.5% or less, Be: 0.5% or less, B: 0.01% or less Improved alloy ingredients and Ti: 0.5% or less,
V: 0.5% or less, Nb+Ta: 0.3% or less, Zr: 0.5%
At least one or two selected from the following:
The remaining
It consists of Fe and impurities, and even when aging is performed after welding, the welded steel and weld heat affected zone can be photo-etched as uniformly as the base metal.
Mn− has the characteristics of good specularity and
Ni-Al-Cu-Mo age-hardening steel for plastic molds.
JP17413883A 1983-09-22 1983-09-22 Steel for aging hardened plastic mold Granted JPS6067641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17413883A JPS6067641A (en) 1983-09-22 1983-09-22 Steel for aging hardened plastic mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17413883A JPS6067641A (en) 1983-09-22 1983-09-22 Steel for aging hardened plastic mold

Publications (2)

Publication Number Publication Date
JPS6067641A JPS6067641A (en) 1985-04-18
JPH0512422B2 true JPH0512422B2 (en) 1993-02-18

Family

ID=15973324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17413883A Granted JPS6067641A (en) 1983-09-22 1983-09-22 Steel for aging hardened plastic mold

Country Status (1)

Country Link
JP (1) JPS6067641A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263041A (en) * 1991-02-15 1992-09-18 Nkk Corp Steel for forming die having high hardness and its manufacture
JPH04263043A (en) * 1991-02-15 1992-09-18 Nkk Corp Steel for molding die having high hardness and its manufacture
JPH04263042A (en) * 1991-02-15 1992-09-18 Nkk Corp Steel for molding die having high hardness and its manufacture
JPH04263040A (en) * 1991-02-15 1992-09-18 Nkk Corp Steel for molding die having high hardness and its manufacture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323764A (en) * 1976-05-05 1978-03-04 Meamber Jon F Rapid cookable meat baking equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5323764A (en) * 1976-05-05 1978-03-04 Meamber Jon F Rapid cookable meat baking equipment

Also Published As

Publication number Publication date
JPS6067641A (en) 1985-04-18

Similar Documents

Publication Publication Date Title
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
JP5335502B2 (en) Martensitic stainless steel with excellent corrosion resistance
WO2015022932A1 (en) Martensitic stainless steel having excellent wear resistance and corrosion resistance, and method for producing same
CA1336141C (en) Aluminum-manganese-iron stainless steel alloy
CN109804092B (en) Cold-rolled steel sheet for flux-cored wire and method for manufacturing same
JPH1096048A (en) Steel capable of welding repair used in production of die for plastic
CN102933732B (en) The excellent structure stainless steel plate of corrosion resistance at welded part and its manufacture method
JP3483493B2 (en) Cast steel for pressure vessel and method of manufacturing pressure vessel using the same
JPS5937738B2 (en) Age-hardening free-cutting steel for plastic molds
JPH0512422B2 (en)
CN110832102B (en) Cold-rolled steel sheet for flux-cored wire and method for manufacturing same
JP4830239B2 (en) Manufacturing method of low carbon martensitic stainless hot rolled steel sheet with excellent punchability
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JP2001294973A (en) Steel for plastic molding die excellent in powder electric discharge machinability
CN111448326A (en) General ferritic stainless steel having excellent hot workability and method for manufacturing same
JPH04143255A (en) Austenitic stainless steel wire rod excellent in mig welding workability
KR20230148843A (en) Martensitic stainless steel sheet with excellent corrosion resistance, manufacturing method thereof, and martensitic stainless steel blade products
JPS6122025B2 (en)
JPH0353384B2 (en)
KR102112172B1 (en) Cold-rolled steel sheet for flux cored wire and manufacturing the same
JPH11152549A (en) Hot-working tool steel and member for high temperature use, made of the hot-working tool steel
JP2001107194A (en) Precipitation hardening type stainless steel and method for producing product therefrom
JPS5937744B2 (en) Age hardenable plastic mold steel
JP3401915B2 (en) Steel for plastic molds with excellent machinability and weldability
JP2001152278A (en) Steel for plastic molding die excellent in mirror- finishing property, weldability and machinability