JPH05122948A - Electrostatic motor - Google Patents

Electrostatic motor

Info

Publication number
JPH05122948A
JPH05122948A JP30665891A JP30665891A JPH05122948A JP H05122948 A JPH05122948 A JP H05122948A JP 30665891 A JP30665891 A JP 30665891A JP 30665891 A JP30665891 A JP 30665891A JP H05122948 A JPH05122948 A JP H05122948A
Authority
JP
Japan
Prior art keywords
electrode
electrodes
thrust
phase
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30665891A
Other languages
Japanese (ja)
Inventor
Masanori Suematsu
正典 末松
Kazunari Matsuzaki
一成 松崎
Yoshikazu Mikuriya
美和 御厨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP30665891A priority Critical patent/JPH05122948A/en
Publication of JPH05122948A publication Critical patent/JPH05122948A/en
Pending legal-status Critical Current

Links

Landscapes

  • Linear Motors (AREA)

Abstract

PURPOSE:To select appropriate electrode pitch, electrode width and gap between stator and movable element to obtain a thrust near to the maximum thrust by setting the ratio of the electrode width to electrode pitch to 0.05-0.5 and that of the gap between stator and movable element to electrode pitch to 0.01-0.4 in an electrostatic motor of multipolar structure. CONSTITUTION:In the drive of an electrostatic motor of multipolar three-phase structure, when voltage is first applied to e.g. S-phase, a force acts on the electrodes M5-M7 of a movable element facing S-phase electrodes S1-S3 and on other electrodes M1-M4 and M8-M11 and the movable element moves until the S-phase electrodes and the electrodes of the movable element are arranged almost completely. Then, when voltage is applied successively to T-phase and R-phase, the movable element moves consecutively. In this case, when the ratio of an electrode width to electrode pitch is set between 0.05-0.5 and a gap between stator and movable element to electrode pitch, between 0.01-0.4; a large thrust can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】微細なアクチュエータに適用され
る静電モータに関する。
TECHNICAL FIELD The present invention relates to an electrostatic motor applied to a fine actuator.

【0002】[0002]

【従来の技術】静電モータの原理は固定子と可動子の電
極が1対の場合、両電極間に印加電圧Vが与えられる
と、可動子には水平方向の推力F0 が生じて駆動するも
のである。この推力F0 は、たとえば、数式(1)で与
えられる(W.S.N.Trimmer,K.J.Gabriel;"DESIGN CONSID
ERATION FOR A PRACTICAL ELECTRO STATIC MICRO MOTO
R",Sensors and Actuators,11(1987)189-206 )。 F0 = εLV2 /2G (1) ここで、εは誘電率、Lは電極長さ、Gは固定子と可動
子間のギャップである。電界による推力Fは小さいの
で、大きな推力を得るには、電極を図1のように、電極
の幅がWでピッチPの電極を多極にした構造が取られ
る。1は固定子、2は可動子、31・32・・・、41
・42・・・は電極、5は絶縁部を示す。Gは固定子と
可動子間ギャップ、Pは電極間ピッチ、Wは電極幅であ
る。静電モータとしての駆動は図2に示すように、図1
のような多極構造の固定子を、電気角で120°位相を
ずらせた3相の構成にすることによって行われる(特開
平3−27783)。この多極3相構造の駆動はつぎの
ようになる。S相に電圧を印加すると、S相の電極S1
〜S3と対面する可動子の電極M5〜M7、およびそれ
以外の電極M1〜M4、M8〜M11にも力が働き、総
合的に可動子が左側に移動する力が作用する。この力に
よって、可動子はS相の電極と可動子の電極がほぼ揃う
状態になるまで左に移動する。次に、T相からR相と印
加電圧を切り替えることにより、可動子を次々に左へ移
動させることができる。
2. Description of the Related Art The principle of an electrostatic motor is that when a stator and a mover have a pair of electrodes, when an applied voltage V is applied between the two electrodes, a horizontal thrust F 0 is generated in the mover to drive the mover. To do. This thrust F 0 is given by, for example, the mathematical expression (1) (WSNTrimmer, KJGabriel; "DESIGN CONSID
ERATION FOR A PRACTICAL ELECTRO STATIC MICRO MOTO
R ", Sensors and Actuators, 11 (1987) 189-206). F 0 = εLV 2 / 2G (1) where ε is the dielectric constant, L is the electrode length, and G is the gap between the stator and the mover. Since the thrust F due to the electric field is small, in order to obtain a large thrust, the electrode has a structure in which the electrodes have a width W and a pitch P as shown in FIG. 2 is a mover, 31, 32, ..., 41
42 indicates an electrode, and 5 indicates an insulating portion. G is the gap between the stator and the mover, P is the electrode pitch, and W is the electrode width. As shown in FIG. 2, the drive as the electrostatic motor is as shown in FIG.
Such a multi-pole structure has a three-phase structure in which the electrical angle is shifted by 120 ° (Japanese Patent Laid-Open No. 3-27783). The driving of this multi-pole three-phase structure is as follows. When a voltage is applied to the S phase, the S phase electrode S1
The force also acts on the electrodes M5 to M7 of the mover facing to S3 to S3, and the electrodes M1 to M4 and M8 to M11 other than the mover, so that the force of moving the mover to the left acts comprehensively. This force causes the mover to move to the left until the S-phase electrode and the mover electrode are substantially aligned. Next, by switching the applied voltage from the T phase to the R phase, the mover can be moved to the left one after another.

【0003】[0003]

【発明が解決しようとする課題】ところが、このよう
に、多極構造になると対面する電極のみでなく、両側の
多数の電極による影響を受け、推力は単純に数式1では
算出できなくなる。たとえば、可動子電極43に着目す
ると、この電極部に作用する推力は、対面する固定子電
極33のみでなく、左側電極31、32右側電極34、
35の影響を受ける。また、その影響度合いも電極幅W
や、ギャップGによって微妙に変わると予測される。そ
こで、本発明は電極間ピッチ、電極幅、固定子と可動子
間のギャップ等の最適条件をもとめ、推力が最大となる
多極構造の静電モータを提供することを目的とする。
However, in such a multi-pole structure, not only the facing electrodes but also a large number of electrodes on both sides influence the thrust, and the thrust cannot be simply calculated by the mathematical formula 1. For example, paying attention to the mover electrode 43, the thrust acting on this electrode portion is not limited to the facing stator electrode 33, but the left electrode 31, 32 right electrode 34,
Affected by 35. In addition, the degree of influence also depends on the electrode width W.
It is predicted that the gap G will change subtly. Therefore, an object of the present invention is to provide an electrostatic motor having a multi-pole structure in which the thrust is maximized by obtaining optimum conditions such as an electrode pitch, an electrode width, and a gap between a stator and a mover.

【0004】[0004]

【課題を解決するための手段】このため、多極構造の静
電モータにおいて、電極幅Wと電極ピッチPとの比(W
/ P)を0.05〜0.5となるように構成し、また、
固定子と可動子とのギャップGと、前記電極ピッチPと
の比(G/P)を0.01〜0.4となるようにしてい
る。
Therefore, in an electrostatic motor having a multi-pole structure, therefore, the ratio of the electrode width W and the electrode pitch P (W
/ P) to be 0.05 to 0.5, and
The ratio (G / P) of the gap G between the stator and the mover and the electrode pitch P is set to 0.01 to 0.4.

【0005】[0005]

【作用】ピッチに対して適切な電極幅およびギャップを
選定することによって、固定子の両側の電極または対向
面の電極の影響が最小になり、最大推力に近い推力を得
ることができる。
By selecting an appropriate electrode width and gap for the pitch, the influence of the electrodes on both sides of the stator or the electrodes on the facing surface is minimized, and a thrust close to the maximum thrust can be obtained.

【0006】[0006]

【実施例】本発明を図に基づいて詳述する。図2は本発
明に用いた静電モータの構成図であり、固定子と可動子
に多極の電極をもつ構造の一部を示したものである。高
い推力が得られる条件を、数値解析シミュレーションに
よって算定し、この数値に基づいて実測し、推力の確認
を行った。推力Fは1対の電極の場合の推力F0 との比
を数式(2)のR1 で表す。 R1 =F/F0 =F/( εLV2 /2G) (2) この推力比R1 を電極幅WおよびギャップGをそれぞれ
電極間ピッチPにより、数式(3)および(4)のよう
に、無次元化した値R2、R3 を用いてその関係を調べ
た。 R2 =W/P (3) R3 =G/P (4) 図3はピッチPを20μm とした場合の、R2 (W/P)
に対するR1 の関係を調べた結果である。R1 は上述の
ように、推力の最大値Fを電極が1対の場合の推力F0
で除した値であり、パラメータとしてR3 (G/P)を
とっている。推力の最大値とは、可動子が1ピッチ分移
動する際、その移動量によって、推力が図4のように変
化する場合の最大値のことである。図3から推力比R1
はR2(W/P)が0.2〜0.3のところでが最も大
きな値を示すので、設計においては、R2 (W/P)を
0.05から0.5の間にとればよいことがわかる。ま
た、図5は、R2 (W/P)が0.1、0.3、0.5
における、R3 (G/P)の影響を調べたものである。
推力比R1 はR3 が小さくなる程、大きくなることがわ
かる。ある寸法内における推力を比較するには、その寸
法内に何本の電極が設けられるかによる。これは推力F
をピッチPで割った値、数式(5)で評価できる。 R4 =F/P (5) 数式(2)のR1 と数式(4)のR3 を数式(5)のR
4 に代入すると、R4 は数式(6)となる。 R4 =εLV2 /2G2 ・(R1 3 ) (6) ここで図5より、推力比R1 は数式(7)で表わすと、 R1 =a0 ・R3 a +b (7) のようになる。ここで、a0 、a、bは定数である。こ
れを数式(6)に代入すると、R4 は数式(8)で与え
られる。 R4 = εLV2 /2G2 ・{a0 ・ R3 (a+1) +b・R3 } (8) ここに、ギャップGを一定とした際のR4 の値は、R4
をεLV2 /2G2 で割った値R5 で評価できる。 R5 =R4 /(εLV2 /2G2 ) (9) このR5 は数式(10)で示すR3 (G/P)の値であ
り、上に凸のカーブをもつ極大値をとる。 R3 =[−b/a0 ・(a+1)]1/a (10) その結果を図6に示す。ここで、a0 、a、bは図5か
ら求めた表1に示す値を用いた。
The present invention will be described in detail with reference to the drawings. FIG. 2 is a configuration diagram of an electrostatic motor used in the present invention, and shows a part of a structure having multipole electrodes on a stator and a mover. The conditions under which high thrust was obtained were calculated by numerical analysis simulation, and the actual thrust was confirmed based on this numerical value. The thrust F is represented by R 1 in the mathematical expression (2) as a ratio with the thrust F 0 in the case of a pair of electrodes. R 1 = F / F 0 = F / (εLV 2 / 2G) (2) The thrust ratio R 1 is calculated by the electrode width W and the gap G by the interelectrode pitch P, as shown in equations (3) and (4). The relationship was investigated using the dimensionless values R 2 and R 3 . R 2 = W / P (3) R 3 = G / P (4) FIG. 3 shows R 2 (W / P) when the pitch P is 20 μm.
It is the result of examining the relationship of R 1 with respect to. As described above, R 1 is the maximum value F of the thrust, and the thrust F 0 when the pair of electrodes is F 0.
It is a value divided by, and takes R 3 (G / P) as a parameter. The maximum thrust value is the maximum value when the mover moves by one pitch and the thrust changes as shown in FIG. 4 depending on the amount of movement. From Fig. 3, thrust ratio R 1
Shows the largest value when R 2 (W / P) is 0.2 to 0.3. Therefore, in designing, if R 2 (W / P) is set between 0.05 and 0.5, I know it's good. Further, in FIG. 5, R 2 (W / P) is 0.1, 0.3, 0.5.
In Fig. 5, the effect of R 3 (G / P) was investigated.
It can be seen that the thrust ratio R 1 increases as R 3 decreases. Comparing thrust within a given dimension depends on how many electrodes are provided within that dimension. This is thrust F
Is divided by the pitch P, which can be evaluated by the mathematical expression (5). R 4 = F / P (5) R 1 of the formula (2) and R 3 of the formula (4) are replaced with R of the formula (5).
Substituting into 4, R 4 is the formula (6). R 4 = εLV 2 / 2G 2 · (R 1 R 3 ) (6) From FIG. 5, the thrust ratio R 1 can be expressed by the following equation (7): R 1 = a 0 · R 3 a + b (7) become that way. Here, a 0 , a, and b are constants. Substituting this into equation (6), R 4 is given by equation (8). R 4 = εLV 2 / 2G 2 · {a 0 · R 3 (a + 1) + b · R 3} (8) where the values of R 4 when used as a constant gap G, R 4
Can be evaluated by the value R 5 obtained by dividing by εLV 2 / 2G 2 . R 5 = R 4 / (εLV 2 / 2G 2) (9) This R 5 is the value of R 3 (G / P) indicated by Equation (10), takes a maximum value with a curve convex upward. R 3 = [− b / a 0 · (a + 1)] 1 / a (10) The results are shown in FIG. 6. Here, the values shown in Table 1 obtained from FIG. 5 were used for a 0 , a, and b.

【0007】[0007]

【表1】[Table 1]

【0008】この図より、R3 (G/P)は0.1 付
近に極大値があり、設計の目安として、R3 (G/P)
の値を0.01から0.4の間に採れば、比較的大きな
推力が得られることがわかる。また、設計した固定子、
可動子の電極まわりの諸元が最適に近い値か否かをチェ
ックする効果もある。
From this figure, R 3 (G / P) has a maximum value near 0.1, and as a design guideline, R 3 (G / P)
It can be seen that a relatively large thrust can be obtained by setting the value of between 0.01 and 0.4. Also, the designed stator,
There is also an effect of checking whether the specifications around the electrodes of the mover are close to optimal values.

【0009】[0009]

【発明の効果】以上述べたように本発明によれば、適切
なピッチ、電極幅、ギャップを自由に選定することがで
きるので、最大推力のアクチュエータを容易に製作でき
る効果がある。
As described above, according to the present invention, an appropriate pitch, electrode width, and gap can be freely selected, so that an actuator with maximum thrust can be easily manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】多極電極をもつ静電モータのモデル図1 is a model diagram of an electrostatic motor having multi-pole electrodes.

【図2】多極電極をもつ3相駆動静電モータのモデル図FIG. 2 is a model diagram of a three-phase drive electrostatic motor having multi-pole electrodes.

【図3】本発明のR2 (W/P)に対する推力比R1
関係図
FIG. 3 is a relationship diagram of a thrust ratio R 1 with respect to R 2 (W / P) of the present invention.

【図4】本発明の可動子の移動量に対する推力比R1
変化を示す図
FIG. 4 is a diagram showing changes in thrust ratio R 1 with respect to the moving amount of a mover of the present invention.

【図5】本発明のR3 (G/P)に対する推力比R1
関係図
FIG. 5 is a relational diagram of thrust ratio R 1 with respect to R 3 (G / P) of the present invention.

【図6】本発明のR3 (G/P)に対するR5 の関係図FIG. 6 is a relationship diagram of R 5 with respect to R 3 (G / P) of the present invention.

【符号の説明】[Explanation of symbols]

1 固定子 5 絶縁部 2 可動子 G 固定子と可動子のギ
ャップ 3 固定子電極 P 電極間ピッチ 4 可動子電極 W 電極幅
1 Stator 5 Insulator 2 Mover G Gap between stator and mover 3 Stator electrode P Pitch between electrodes 4 Mover electrode W Electrode width

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電極幅をW、電極ピッチをPとした複数
の電極がそれぞれに備えられた固定子と可動子とを一定
のギャップGで保持し、前記固定子と可動子との間に、
電圧Vを印加して駆動する静電モータにおいて、前記電
極幅Wと前記電極ピッチPとの比(W/ P)を0.05
〜0.5で構成したことを特徴とする静電モータ。
1. A stator and a mover, each of which is provided with a plurality of electrodes each having an electrode width W and an electrode pitch P, are held at a constant gap G, and between the stator and the mover. ,
In an electrostatic motor driven by applying a voltage V, the ratio (W / P) of the electrode width W and the electrode pitch P is set to 0.05.
An electrostatic motor characterized in that the electrostatic motor is composed of 0.5 to 0.5.
【請求項2】 前記固定子と可動子とのギャップGと、
前記電極ピッチPとの比(G/P)を0.01〜0.4
としたことを特徴とする請求項1記載の静電モータ。
2. A gap G between the stator and the mover,
The ratio (G / P) to the electrode pitch P is 0.01 to 0.4.
The electrostatic motor according to claim 1, wherein
JP30665891A 1991-10-25 1991-10-25 Electrostatic motor Pending JPH05122948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30665891A JPH05122948A (en) 1991-10-25 1991-10-25 Electrostatic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30665891A JPH05122948A (en) 1991-10-25 1991-10-25 Electrostatic motor

Publications (1)

Publication Number Publication Date
JPH05122948A true JPH05122948A (en) 1993-05-18

Family

ID=17959767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30665891A Pending JPH05122948A (en) 1991-10-25 1991-10-25 Electrostatic motor

Country Status (1)

Country Link
JP (1) JPH05122948A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0744821A2 (en) * 1995-05-26 1996-11-27 Asmo Co., Ltd. Electrostatic actuator with different electrode spacing
EP0865151A2 (en) * 1997-03-14 1998-09-16 Hewlett-Packard Company Electrostatic actuator
KR100512823B1 (en) * 2001-11-20 2005-09-07 가부시끼가이샤 도시바 Electrostatic actuator and driving method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0744821A2 (en) * 1995-05-26 1996-11-27 Asmo Co., Ltd. Electrostatic actuator with different electrode spacing
EP0744821A3 (en) * 1995-05-26 1996-12-04 Asmo Co., Ltd. Electrostatic actuator with different electrode spacing
US5869916A (en) * 1995-05-26 1999-02-09 Asmo Co., Ltd. Electrostatic actuator with different electrode spacing
EP0865151A2 (en) * 1997-03-14 1998-09-16 Hewlett-Packard Company Electrostatic actuator
EP0865151A3 (en) * 1997-03-14 1999-07-14 Hewlett-Packard Company Electrostatic actuator
US5986381A (en) * 1997-03-14 1999-11-16 Hewlett-Packard Company Electrostatic actuator with spatially alternating voltage patterns
KR100512823B1 (en) * 2001-11-20 2005-09-07 가부시끼가이샤 도시바 Electrostatic actuator and driving method thereof

Similar Documents

Publication Publication Date Title
Spee et al. Performance simulation of brushless doubly-fed adjustable speed drives
JP2012022942A (en) Disconnector having grounding switch
JPH0576186A (en) Electrostatic actuator
EP0125553B1 (en) Circuit breaker of spiral arc type
US10269512B2 (en) Method and device for cutting off an electric current with dynamic magnetic blow-out
Schellekens 50 years of TMF contacts design considerations
JPH05122948A (en) Electrostatic motor
DE3544656A1 (en) SYNCHRONOUS ELECTRICAL POWER SWITCHING DEVICE
Di Barba et al. 2-D numerical simulation of electrostatic micrometer torque
JP2923974B2 (en) Electrostatic actuator
Kühn et al. Breaking operations of a vacuum test interrupter setup using a common servo drive with belt transmission
Yao et al. Development of a 126kV single-break vacuum circuit breaker and type test
JPH03159584A (en) Power generator making use of electrostatic force
Erlicki et al. Switching drive of induction motors
Kojima et al. Electric field optimization of floating electrode configuration in vacuum interrupter
JPS6395858A (en) Electrostatic actuator
RU2035826C1 (en) Asynchronous motor with open magnetic circuit
JP2979569B2 (en) Electrostatic actuator
Viet et al. Finite State Predictive Torque Control with Switching Table for Induction Motors Fed by 3L-NPC Inverter
JPH05224751A (en) Electrostatic actuator
Bernard et al. Study of the influence of leakage fields on the inchworm actuator
Novák et al. Investigation of arc splitters in an SF 6 insulated medium voltage switchgear
KR100353451B1 (en) Piezoelectric Step Motor
US4656445A (en) High speed contact driver
JP2004031877A (en) Liquid resistor