JPH05121740A - Method of simulating semiconductor device - Google Patents

Method of simulating semiconductor device

Info

Publication number
JPH05121740A
JPH05121740A JP27998791A JP27998791A JPH05121740A JP H05121740 A JPH05121740 A JP H05121740A JP 27998791 A JP27998791 A JP 27998791A JP 27998791 A JP27998791 A JP 27998791A JP H05121740 A JPH05121740 A JP H05121740A
Authority
JP
Japan
Prior art keywords
interface
impurity
region
diffusion
mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27998791A
Other languages
Japanese (ja)
Inventor
Hirotaka Amakawa
博隆 天川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27998791A priority Critical patent/JPH05121740A/en
Publication of JPH05121740A publication Critical patent/JPH05121740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

PURPOSE:To calculate accurately the impurity distribution in a region, whose diffusion coefficient is small, in the vicinity of the interface of the region and another region whose diffusion coefficient is large and considerably different from the coefficient of the small diffusion coefficient region, even if the mesh of the small diffusion coefficient region is rough in the vicinity of the interface. CONSTITUTION:First and second regions having small and large diffusion coefficients respectively forms an interface. Digitizing meshes are used for one-dimensional simulation of the process of manufacturing a semiconductor device. If the mesh of the area of the first region is rough in the vicinity of the interface, the amount of transportation of an impurity at the interface between the regions is given using an analytical formula. In the case where after a diffusion process is performed, an ion-implantation is performed and a diffusion process is further performed, another value of the amount of the transportation of the impurity found applying the analytical formula to the increment of the impurity concentration at the interface due to the ion-implantation is added to the former amount of transportation of the impurity, and the sum is used as the simulated amount of transportation of the impurity. Accordingly, even in the case where the meshes in an oxide film is rough, the boron concentration in the surface of a substrate can be calculated accurately. The boron concentration in the surface of the substrate of (a) is calculated abnormally low by a conventional method.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体素子シミュレー
ションに関し、特に不純物拡散方程式の近似的解法を行
う半導体素子シミュレーションに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to semiconductor device simulation, and more particularly to semiconductor device simulation for performing an approximate solution of an impurity diffusion equation.

【0002】[0002]

【従来の技術】半導体素子プロセスシミュレーションに
おいて酸化膜界面近傍のシリコン基板中の不純物分布は
素子の電気的特性、例えばMOSFETのしきい値に大
きな影響を与えるため、この領域の不純物分布を精度良
く計算する必要がある。
2. Description of the Related Art In semiconductor device process simulation, the impurity distribution in the silicon substrate near the oxide film interface has a great influence on the electrical characteristics of the device, for example, the threshold value of the MOSFET. Therefore, the impurity distribution in this region can be accurately calculated. There is a need to.

【0003】ところがアクセプターあるいはドナーとな
る不純物、例えばホウ素の酸化膜中の拡散係数は基板中
の拡散係数の約1000分の1でしかなく、界面におけ
る輸送係数は非常に大きいため、不純物分布を精度良く
計算するためには拡散方程式を離散化するためのメッシ
ュを酸化膜中で十分細かくする必要がある。
However, the diffusion coefficient of impurities serving as acceptors or donors, such as boron, in the oxide film is only about 1/1000 of the diffusion coefficient in the substrate, and the transport coefficient at the interface is very large, so that the impurity distribution can be accurately measured. In order to calculate well, it is necessary to make the mesh for discretizing the diffusion equation fine enough in the oxide film.

【0004】しかしながら、通常の1次元シミュレータ
に用いられているメッシュは酸化に伴う体積膨脹のため
に基板中よりも酸化膜中のほうが粗くなっていることが
多い。このため界面における不純物の輸送量が異常に大
きくなり界面近傍の不純物分布に大きな数値誤差を伴う
ことがある。
However, the mesh used in the ordinary one-dimensional simulator is often rougher in the oxide film than in the substrate due to the volume expansion accompanying oxidation. For this reason, the amount of impurities transported at the interface becomes abnormally large, which may cause a large numerical error in the impurity distribution near the interface.

【0005】1次元シミュレーションの場合にはメッシ
ュの粗密の制御は比較的簡単であり、メッシュを細かく
すれば計算精度は良くなるが計算時間が増大するという
欠点がある。三角形メッシュを用いた2次元シミュレー
ションの場合にはメッシュの粗密の制御が非常に難し
く、しばしば所望の大きさの三角形が得られない。計算
精度を上げるために酸化膜中のみメッシュを細かくしよ
うとすると鈍角三角形が発生し、かえって精度が低下す
ることもある。酸化膜中と基板中のメッシュを両方細か
くすれば鈍角三角形の発生は防止でき計算精度は良くな
るが計算時間が長くなる。
In the case of one-dimensional simulation, control of mesh density is relatively easy, and if the mesh is made finer, the calculation accuracy improves but the calculation time increases. In the case of a two-dimensional simulation using a triangular mesh, it is very difficult to control the density of the mesh, and a triangle having a desired size cannot often be obtained. If an attempt is made to make the mesh fine only in the oxide film in order to improve the calculation accuracy, obtuse triangles may be generated, which may rather reduce the accuracy. If the mesh in the oxide film and the mesh in the substrate are both fine, the occurrence of obtuse triangles can be prevented and the calculation accuracy improves, but the calculation time increases.

【0006】このため例えば文献[1]の様に界面にお
ける輸送係数を時間とともに変調して数値精度を保持す
るという近似法がある。しかしながらこの方法は、拡散
工程の後にイオン注入工程を行いさらに拡散工程を行う
といった現実の素子製造プロセスに現れる複合工程に適
用することが出来ない。 [文献1]西謙二、上田潤、信学技報 CPM89−5
6,p.31.
For this reason, there is an approximation method, for example, as in document [1], in which the transport coefficient at the interface is modulated with time to maintain numerical accuracy. However, this method cannot be applied to a composite process that appears in an actual device manufacturing process, such as performing an ion implantation process and then performing a diffusion process after the diffusion process. [Reference 1] Kenji Nishi, Jun Ueda, IEICE Technical Report CPM89-5
6, p. 31.

【0007】[0007]

【発明が解決しようとする課題】このように従来の拡散
方程式の解法では酸化膜中のメッシュが粗い場合には酸
化膜界面近傍のシリコン基板中の不純物分布を精度良く
計算することが難しいという欠点があり、酸化膜中のメ
ッシュを細かくしようとすると計算時間が増大するとい
う問題があった。さらに、この問題を解決するための前
述の近似法[文献1]は現実の素子製造プロセスに現れ
る複合工程に適用することが出来ないという問題があっ
た。
As described above, in the conventional solution of the diffusion equation, when the mesh in the oxide film is rough, it is difficult to accurately calculate the impurity distribution in the silicon substrate near the oxide film interface. However, there is a problem that the calculation time increases if the mesh in the oxide film is made fine. Further, there is a problem that the above-mentioned approximation method [Reference 1] for solving this problem cannot be applied to a composite process that appears in an actual device manufacturing process.

【0008】本発明は拡散係数の大きく異なる領域の界
面近傍において、拡散係数の小さい領域の界面近傍のメ
ッシュが粗い場合にも拡散係数の大きい領域の界面近傍
の不純物分布の数値精度が低下することなく計算するこ
とが出来、拡散、イオン注入工程シミュレーションを繰
り返し行うことが出来る半導体素子シミュレーション方
法を提供することにある。
According to the present invention, in the vicinity of the interface of a region having a large diffusion coefficient, even if the mesh near the interface of a region having a small diffusion coefficient is coarse, the numerical accuracy of the impurity distribution near the interface of the region having a large diffusion coefficient is deteriorated. It is an object of the present invention to provide a semiconductor device simulation method that can perform calculations without any need and can repeatedly perform diffusion and ion implantation process simulations.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、不純物拡散方程式を離散化メッシュを用
いて数値的に解く際に、拡散係数の大きく異なる領域の
界面近傍において、拡散係数の小さい領域の界面近傍の
メッシュが粗い場合に界面における不純物輸送量を解析
式を用いて与え、拡散係数の大きい領域の界面近傍の不
純物分布を計算し、拡散、イオン注入工程シミュレーシ
ョンを繰り返し行うことを特徴としている。
In order to achieve the above object, the present invention provides a method of numerically solving an impurity diffusion equation by using a discretized mesh, in which the diffusion coefficient in the vicinity of an interface in a region where the diffusion coefficient greatly differs. When the mesh in the vicinity of the interface in a small area is rough, the amount of impurity transport at the interface is given using an analytical formula, the impurity distribution near the interface in the area with a large diffusion coefficient is calculated, and the diffusion and ion implantation process simulations are repeated. Is characterized by.

【0010】[0010]

【作用】本発明は拡散係数の大きく異なる領域の界面に
おいて、拡散係数の小さい領域の界面近傍のメッシュが
粗い場合には、界面における不純物輸送量を解析式を用
いて与える。拡散工程を行ったのちイオン注入を行い、
さらに拡散工程を行う場合には、前述の不純物輸送量に
イオン注入による界面濃度の増分に対して解析式を適用
して求めた輸送量をつけ加えたものを不純物輸送量とす
る。
According to the present invention, in the interface of the region where the diffusion coefficient is largely different, when the mesh in the vicinity of the interface of the region where the diffusion coefficient is small is rough, the impurity transport amount at the interface is given by using an analytical expression. After performing the diffusion process, ion implantation is performed,
When the diffusion process is further performed, the impurity transport amount is obtained by adding the transport amount obtained by applying the analytical formula to the interface concentration increment by ion implantation to the above-described impurity transport amount.

【0011】[0011]

【実施例】以下本発明の実施例を説明する。まず不純物
拡散係数の異なる二つの領域の界面の単位時間当たりの
不純物輸送量を例えば
EXAMPLES Examples of the present invention will be described below. First, for example, the amount of impurities transported per unit time at the interface between two regions with different impurity diffusion coefficients

【0012】[0012]

【数1】 [Equation 1]

【0013】で与える。ここにtは拡散時間、Cs (C
L )は不純物拡散係数の小さい(大きい)領域における
拡散開始時の界面濃度、mは偏析係数、Ds は不純物拡
散係数の小さい領域における不純物拡散係数である。
It is given by. Where t is the diffusion time, C s (C
L) is small impurity diffusion coefficient (greater) surface concentration at the start of the diffusion in the region, m is the segregation coefficient, D s is the diffusion coefficient in a small area of the impurity diffusion coefficient.

【0014】本発明の効果を確認するために以下の一次
元シミュレーションを行った。まず厚さ1ミクロンのシ
リコン基板上に厚さ200オングストロームの酸化膜を
形成し、50keVのホウ素を1・1013/cm2 イオン
注入する。次に900度にて30分間拡散工程を行う。
このとき酸化膜中のメッシュを幅1,10,20,5
0,100,200オングストロームと変化させ、本発
明と従来の方法を用いて拡散シミュレーションを行う。
The following one-dimensional simulation was performed to confirm the effect of the present invention. First, an oxide film having a thickness of 200 angstrom is formed on a silicon substrate having a thickness of 1 micron, and boron of 50 keV is ion-implanted at 1.10 13 / cm 2 . Next, a diffusion process is performed at 900 degrees for 30 minutes.
At this time, the mesh in the oxide film is set to a width of 1, 10, 20, 5
Diffusion simulation is performed using the present invention and the conventional method while changing the value to 0, 100, 200 angstroms.

【0015】一方、シリコン基板中のメッシュは幅20
オングストロームとする。このメッシュ幅はシリコン基
板中のホウ素の拡散係数を勘案すれば十分細かいといえ
る。このようにして得られたホウ素の基板表面濃度を酸
化膜のメッシュ幅のグラフとして表したものが図1であ
る。(a)が本発明によって得られた基板表面濃度、
(b)が従来の方法によって得られた基板表面濃度であ
る。
On the other hand, the mesh in the silicon substrate has a width of 20.
Angstrom. It can be said that this mesh width is sufficiently fine considering the diffusion coefficient of boron in the silicon substrate. FIG. 1 shows the substrate surface concentration of boron thus obtained as a graph of the mesh width of the oxide film. (A) is the substrate surface concentration obtained by the present invention,
(B) is the substrate surface concentration obtained by the conventional method.

【0016】この図から分かるように本発明の近似解法
を用いれば酸化膜中のメッシュが粗い場合にもホウ素の
基板表面濃度を精度良く計算することが出来るが、従来
の方法ではメッシュが粗い場合にはホウ素の基板表面濃
度が異常に低く算出される。なお、拡散工程とイオン注
入工程が繰り返し行われる場合には、イオン注入による
界面濃度の増分に対して前述の解析式を適用すればよ
い。
As can be seen from this figure, when the approximate solution method of the present invention is used, the substrate surface concentration of boron can be accurately calculated even when the mesh in the oxide film is rough, but when the mesh is rough by the conventional method. The substrate surface concentration of boron is calculated to be abnormally low. When the diffusion process and the ion implantation process are repeatedly performed, the above-mentioned analytical formula may be applied to the increment of the interface concentration due to the ion implantation.

【0017】[0017]

【発明の効果】以上述べてきたように本発明を用いれ
ば、不純物拡散係数の小さい領域のメッシュが粗い場合
にも計算時間を増大することなく不純物拡散係数の大き
い領域の界面近傍の不純物濃度分布を精度良く計算する
ことが出来る。
As described above, according to the present invention, even if the mesh of the region having a small impurity diffusion coefficient is coarse, the impurity concentration distribution in the vicinity of the interface of the region having a large impurity diffusion coefficient is increased without increasing the calculation time. Can be calculated accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明と従来のシミュレーション方法を用いて
得られた基板表面濃度を比較する図である。
FIG. 1 is a diagram comparing substrate surface concentrations obtained using the present invention and a conventional simulation method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 不純物拡散方程式を離散化メッシュを用
いて数値的に解く際に、拡散係数の大きく異なる領域の
界面近傍において、拡散係数の小さい領域の界面近傍の
メッシュが粗い場合に界面における不純物輸送量を解析
式を用いて与え、拡散係数の大きい領域の界面近傍の不
純物分布を計算し、拡散、イオン注入工程シミュレーシ
ョンを繰り返し行うことを特徴とする半導体素子シミュ
レーション方法。
1. When numerically solving an impurity diffusion equation using a discretized mesh, when the mesh near the interface of a region having a large diffusion coefficient is rough and the mesh near the interface of a region having a small diffusion coefficient is rough, impurities at the interface are A method for simulating a semiconductor device, characterized in that an amount of transport is given using an analytical expression, an impurity distribution near an interface in a region having a large diffusion coefficient is calculated, and a diffusion and ion implantation process simulation is repeated.
JP27998791A 1991-10-25 1991-10-25 Method of simulating semiconductor device Pending JPH05121740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27998791A JPH05121740A (en) 1991-10-25 1991-10-25 Method of simulating semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27998791A JPH05121740A (en) 1991-10-25 1991-10-25 Method of simulating semiconductor device

Publications (1)

Publication Number Publication Date
JPH05121740A true JPH05121740A (en) 1993-05-18

Family

ID=17618729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27998791A Pending JPH05121740A (en) 1991-10-25 1991-10-25 Method of simulating semiconductor device

Country Status (1)

Country Link
JP (1) JPH05121740A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192883A (en) * 2010-03-16 2011-09-29 Toshiba Corp Program making computer perform process simulation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011192883A (en) * 2010-03-16 2011-09-29 Toshiba Corp Program making computer perform process simulation
US8532972B2 (en) 2010-03-16 2013-09-10 Kabushiki Kaisha Toshiba Method and a non-transitory computer-readable recording medium for simulating a manufacturing process of a structure

Similar Documents

Publication Publication Date Title
Bonafos et al. Ostwald ripening of end-of-range defects in silicon
JP3102372B2 (en) Ion implantation process simulation method
Warner et al. Two‐Dimensional Concentration Dependent Diffusion
JPH05121740A (en) Method of simulating semiconductor device
Adesida et al. High resolution electron‐beam lithography on thin films
Ohta et al. An interatomic potential model for molecular dynamics simulation of silicon etching by Br+-containing plasmas
US6684181B1 (en) Ion implantation simulation method
Sugie et al. Luminescence from AlGaN/GaN HEMT structures by very-low-energy (100 eV) electron beams using beam deceleration technique
JPH10256172A (en) Method of determining amorphous region
Davis et al. The effects of short-range and long-range order on the energy gaps of (GaAs) 1− xGe2x and (GaSb) 1− xGe2x
Hobler et al. Random and channeling stopping power of H in Si below 100 keV
Shen et al. Electronic structure of ternary semiconductor alloys: CPA calculations using sp3s∗ bandstructures
JP3579332B2 (en) Method and apparatus for predicting damage to wiring structure having protective film on surface
Hofer et al. Tip effects in scanning tunneling microscopy of atomic-scale magnetic structures
Chen et al. Electron‐beam investigation and use of Ge–Se inorganic resist
Faye et al. Computer simulation of some aspects of ion implantation in ULSI devices
Glezos et al. LITHOS: A fast electron beam lithography simulator
Hane et al. Dopant diffusion model refinement and its impact on the calculation of reverse short channel effect
Morello et al. Evaluation of induced damage by CH4/H2 reactive ion etching on InP: n++
Olzierski et al. Electron beam lithography simulation for sub-quarter-micron patterns on superconducting substrates
Stiebel et al. Modeling the amorphization of Si due to the implantation of As, Ge, and Si
Glezos et al. LITHOS: A fast electron beam lithography simulator
Shi et al. Three-dimensional range distribution of 400 keV Nd ions implanted into Si
Golikov et al. Analysis of Nonlinear Distortions of DpHEMT Structures Based on a GaAs/In0. 53Ga0. 47As Compound with Double-Sided Delta-Doping
Ghong et al. Interface analysis of an AlGaAs multilayer system by using spectroscopic ellipsometry