JPH0512111B2 - - Google Patents

Info

Publication number
JPH0512111B2
JPH0512111B2 JP58053969A JP5396983A JPH0512111B2 JP H0512111 B2 JPH0512111 B2 JP H0512111B2 JP 58053969 A JP58053969 A JP 58053969A JP 5396983 A JP5396983 A JP 5396983A JP H0512111 B2 JPH0512111 B2 JP H0512111B2
Authority
JP
Japan
Prior art keywords
robot
workbench
coordinate system
distance
position data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58053969A
Other languages
Japanese (ja)
Other versions
JPS59182076A (en
Inventor
Takushi Okada
Shunji Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5396983A priority Critical patent/JPS59182076A/en
Priority to US06/595,363 priority patent/US4670849A/en
Publication of JPS59182076A publication Critical patent/JPS59182076A/en
Publication of JPH0512111B2 publication Critical patent/JPH0512111B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ロボツト固有の座標系とロボツトが
作業をするロボツト作業台(以下、単に作業台と
いう。)の座標系との間の据え付け誤差を測定す
るためのロボツト据え付け誤差測定装置に関する
ものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention solves the installation error between the coordinate system unique to a robot and the coordinate system of a robot workbench (hereinafter simply referred to as workbench) on which the robot works. This invention relates to a robot installation error measuring device for measurement.

〔従来技術〕[Prior art]

従来、ロボツトを用いた作業は、テイーチング
によつて教示データを作成し、それに基づいて制
御されていたので、作業台の座標系とロボツト固
有の座標系との間の誤差を考慮する必要はなかつ
た。
Conventionally, work using robots was controlled based on teaching data created through teaching, so there was no need to consider errors between the coordinate system of the workbench and the robot's own coordinate system. Ta.

しかし、最近、ロボツト言語の発達に伴ない、
オフラインで作成した数値データを用いてロボツ
トを制御するロボツトの数値制御化が実現化され
るようになつて来た。
However, with the recent development of robot language,
Numerical control of robots, which controls robots using numerical data created offline, has become a reality.

この場合、ロボツトが数値データの通りに動く
必要があるが、作業台の座標系とロボツト固有の
座標系の間に誤差があれば、ロボツトの動きは数
値データの通りではなくなる。
In this case, the robot needs to move according to the numerical data, but if there is an error between the coordinate system of the workbench and the robot's own coordinate system, the robot's movement will not follow the numerical data.

作業台の座標系とロボツト固有の座標系との間
の誤差を測る従来例としては、例えば、平面上を
動くロボツトと作業平面との間の相対位置を測定
する装置があるが、これは空間的(3次元的)な
相対位置を測定することはできないという欠点が
あつた。
A conventional example of measuring the error between the coordinate system of the workbench and the robot's own coordinate system is a device that measures the relative position between a robot moving on a plane and the work plane. The disadvantage was that it was not possible to measure the relative position of a target (three-dimensionally).

なお、空間位置を測定する方法としては3次元
測定機によるもがある。これは測定機の座標系で
の位置を求めうるが、一般的にはロボツト固有の
座標系での位置を求めることはできない。
Note that as a method of measuring the spatial position, there is also a method using a three-dimensional measuring machine. Although this can determine the position in the coordinate system of the measuring machine, it is generally not possible to determine the position in the robot's own coordinate system.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した従来技術の欠点をなくし、
ロボツト固有の座標系とロボツトの作業台の座標
系との間の空間的(3次元的)な据え付け誤差
(変位)を経済的、効率的に測定することができ
るロボツト据え付け誤差測定装置を提供すること
にある。
The present invention eliminates the above-mentioned drawbacks of the prior art,
To provide a robot installation error measuring device capable of economically and efficiently measuring a spatial (three-dimensional) installation error (displacement) between a coordinate system unique to a robot and a coordinate system of a robot workbench. There is a particular thing.

〔発明の概要〕[Summary of the invention]

本発明に係るロボツト据え付け誤差測定装置の
構成は、ロボツト据え付け誤差測定に係る、ロボ
ツト本体についての指令位置データおよび同じく
ロボツト作業台についての作業台上位置データを
記憶しておく測定位置記憶装置と、上記の指令位
置データ・作業台上位置データによる各位置間の
距離を測定する距離測定装置と、その測定データ
および上記の指令位置データ・作業台上位置デー
タに基づいてロボツト本体およびロボツト作業台
の両座標系について各原点間の変位および各座標
軸間の回転変位を計算する据え付け誤差計算装置
とからなるようにしたものである。
The configuration of the robot installation error measuring device according to the present invention includes a measurement position storage device that stores command position data for the robot body and workbench position data for the robot workbench, which are related to robot installation error measurement; A distance measuring device that measures the distance between each position based on the above command position data and workbench position data, and a distance measuring device that measures the distance between each position based on the above command position data and workbench position data, and The system includes an installation error calculation device that calculates the displacement between each origin and the rotational displacement between each coordinate axis for both coordinate systems.

なお、これを以下に補足・詳述する。 This will be supplemented and explained in detail below.

第1図は、ロボツト固有の座標系とロボツト作
業台の座標系の間の変位を表わす概念図、第2図
は、ロボツト本体の測定点とロボツト作業台上の
測定点を表わす概念図である。
Fig. 1 is a conceptual diagram showing the displacement between the robot's own coordinate system and the coordinate system of the robot workbench, and Fig. 2 is a conceptual diagram showing the measurement points on the robot body and the measurement points on the robot workbench. .

いま、第1図に示すように、ロボツト固有の座
標系の原点を表わす位置ベクトルをO→R、x,y,
z軸方向の単位ベクトルをx→R、y→R、z→Rとし、
作業台の座標系の原点を表わす位置ベクトルをO→
、x,y,z軸方向の単位ベクトルをx→W、y→
、z→Wとすると、座標原点間の変位は空間ベク
トルl→の3成分(lx、ly、lz、)を用いて表わすこ
とができる。また、座標軸間の回転変位θx、θy
θzはオイラー角等の3成分を用いて表わすことが
できる。したがつて、これら6個の量(lx、ly
lz、θx、θy、θz)を求めれば、ロボツト固有の座
標系とロボツト作業台の座標系との間の空間的な
相対誤差がわかることになる。
Now, as shown in Figure 1, the position vector representing the origin of the robot's unique coordinate system is O→ R , x, y,
Let the unit vectors in the z-axis direction be x→ R , y→ R , z→ R ,
The position vector representing the origin of the workbench coordinate system is O→
W , the unit vectors in the x, y, and z axes directions are x→ W , y→
When W , z→ W , the displacement between the coordinate origins can be expressed using three components (l x , ly , l z ,) of the space vector l→. Also, the rotational displacements between the coordinate axes θ x , θ y ,
θ z can be expressed using three components such as Euler angles. Therefore, these six quantities (l x , l y ,
l z , θ x , θ y , θ z ), the spatial relative error between the robot's own coordinate system and the robot workbench coordinate system can be found.

すなわち、作業台上の位置をロボツト固有の座
標系で示すとx,y,z軸に関し夫々θx、θy、θz
だけ回転し、lx、ly、lzだけ平行移動したものと
して表わされる。
In other words, if the position on the workbench is expressed in the robot's unique coordinate system, θ x , θ y , θ z with respect to the x , y , and z axes, respectively.
It is expressed as having been rotated by l x , l y , and l z in parallel.

そのために、第2図に示すように、ロボツト本
体1と作業台3との距離を測定する。この際、上
記6個の量を求めるためには6個以上の距離を測
定する必要があるので、ロボツト制御装置2の制
御でロボツト本体1を数箇所へ動かして作業台3
上の1点との距離を測定するか、ロボツト本体1
を動かさずに作業台上の数点(例えばA〜F)と
ロボツト本体1との距離を測定するか、または上
記2方法を併用して6個以上の距離を測定する。
測定した距離から上記6個の変位量を計算する。
For this purpose, as shown in FIG. 2, the distance between the robot body 1 and the workbench 3 is measured. At this time, in order to obtain the above six quantities, it is necessary to measure six or more distances, so the robot main body 1 is moved to several locations under the control of the robot control device 2, and
Measure the distance to one point on the robot body 1.
The distances between several points (for example, A to F) on the workbench and the robot body 1 are measured without moving the robot body 1, or the distances at six or more points are measured using the above two methods in combination.
The above six displacement amounts are calculated from the measured distances.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図に基づいて説明す
る。
Embodiments of the present invention will be described below based on the drawings.

第3図は、本発明に係るロボツト据え付け誤差
測定装置の一実施例の構成図、第4図は、その据
え付け誤差計算装置の内部で実行される計算の流
れ図である。
FIG. 3 is a block diagram of an embodiment of the robot installation error measuring device according to the present invention, and FIG. 4 is a flowchart of calculations executed within the installation error calculating device.

ここで、1はロボツト本体、2はロボツト制御
装置、3はロボツトの作業台、4は本装置に係る
距離測定装置、5は同測定位置記憶装置、6は同
据え付け誤差計算装置である。
Here, 1 is a robot body, 2 is a robot control device, 3 is a robot workbench, 4 is a distance measuring device related to this device, 5 is a measurement position storage device, and 6 is an installation error calculation device.

本実施例によると、以下の手順でロボツト据え
付け誤差を測定することができる。
According to this embodiment, the robot installation error can be measured using the following procedure.

(1) 測定位置記憶装置5に、ロボツト本体1に関
する測定用の指令位置を数点記憶させる。これ
はロボツト固有の座標系における位置である。
また、作業台3上の位置を数点記憶させる。こ
れは作業台の座標系における位置である。
(1) Several command positions for measurement regarding the robot body 1 are stored in the measurement position storage device 5. This is the position in the robot's own coordinate system.
Also, several positions on the workbench 3 are memorized. This is the position in the coordinate system of the workbench.

(2) 測定位置記憶装置5内のロボツト本体1への
指令位置の1つをロボツト制御装置2へ送り、
ロボツト本体1を当該指令位置まで動かす。
(2) Send one of the command positions to the robot body 1 in the measurement position storage device 5 to the robot control device 2,
Move the robot body 1 to the commanded position.

(3) ロボツト本体1が動いた後の位置と、測定位
置記憶装置5内の作業台3の位置に対応する実
際の位置との間の距離を距離測定器4を用いて
測定する。
(3) The distance between the position after the robot body 1 has moved and the actual position corresponding to the position of the workbench 3 in the measurement position storage device 5 is measured using the distance measuring device 4.

(4) 上記(2)、(3)の手順をくり返し、6個以上の距
離を測定する。この際、ロボツト本体1へ6点
以上の指令をして作業台3上の1点との距離を
測定するか、ロボツト本体1へ1点のみ指令し
作業台3上の6点以上の点との距離を測定する
か、または上記2方法を併用して6個以上の距
離を測定する。
(4) Repeat steps (2) and (3) above to measure six or more distances. At this time, either command the robot body 1 to six or more points and measure the distance to one point on the workbench 3, or command the robot body 1 only to one point and measure the distance from six or more points on the workbench 3. or measure six or more distances using the above two methods in combination.

(5) 測定した距離と、測定位置記憶装置5内にお
けるロボツト本体1への指令位置及び作業台3
上の位置データとに基づき、据え付け誤差計算
装置6でロボツト固有の座標系と作業台の座標
系間の原点変位3個及び座標軸の回転変位3個
が計算される。
(5) The measured distance, the command position to the robot body 1 in the measurement position storage device 5, and the workbench 3
Based on the above position data, the installation error calculation device 6 calculates three displacements of the origin between the coordinate system unique to the robot and the coordinate system of the workbench and three rotational displacements of the coordinate axes.

以上により、ロボツト据え付け誤差の測定は終
了する。
With the above steps, the measurement of the robot installation error is completed.

第4図に示すとおり、据え付け誤差計算装置6
内で実行される計算の流れは、まず、距離測定装
置4で測定した距離をエリア7に格納するととも
に、測定位置記憶装置5内のロボツト本体1への
指令位置をエリア8に、同じく作業台3上の位置
をエリア9に格納しておき、演算部10が、各エ
リア7,8,9の中のデータを読み出し、座標原
点間の変位及び座標軸間の回転変位を計算し、そ
れぞれをエリア11,12へ格納しておくという
ものである。それらの各計算データは必要に応じ
て外部へ送出することができる。
As shown in Fig. 4, the installation error calculation device 6
First, the distance measured by the distance measuring device 4 is stored in the area 7, and the command position to the robot body 1 in the measurement position storage device 5 is stored in the area 8. 3 is stored in area 9, the calculation unit 10 reads out the data in each area 7, 8, and 9, calculates the displacement between the coordinate origins and the rotational displacement between the coordinate axes, and assigns each area to the area 9. 11 and 12. Each of these calculation data can be sent to the outside as necessary.

上記実施例のほか、本発明の枠を越えることな
しに色々な改良や変形があり得ることは勿論であ
る。
It goes without saying that in addition to the above embodiments, various improvements and modifications may be made without going beyond the scope of the present invention.

例えば本発明では点間の距離を測定している
が、点間の「ずれ」を空間の成分(座標成分)ご
とに測定することも可能である。この際には距離
測定に比べて1回の測定で3倍の情報が得られる
ので、測定回数が3分の1で済むことになる。
For example, in the present invention, the distance between points is measured, but it is also possible to measure the "displacement" between points for each spatial component (coordinate component). In this case, since three times as much information can be obtained in one measurement compared to distance measurement, the number of measurements can be reduced to one-third.

更に方向変位、方向余弦等の「ずれ」も測定す
ることにすれば、距離測定に比べて1回の測定で
6倍の情報が得られ、測定回数は6分の1で済む
ことになる。
Furthermore, if we also measure "deviations" such as directional displacement and directional cosine, six times as much information can be obtained in one measurement compared to distance measurement, and the number of measurements can be reduced to one-sixth.

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したように、本発明によれ
ば、ロボツト固有の座標系とロボツトが作業をす
る作業台の座標系との間の据え付け誤差を効率的
に測定することができるので、以下のように顕著
な効果が得られる。
As described above in detail, according to the present invention, it is possible to efficiently measure the installation error between the coordinate system unique to the robot and the coordinate system of the workbench on which the robot works. A remarkable effect can be obtained.

(1) ロボツトとは別の座標系を持つ作業台上の点
での位置・姿勢とロボツト固有の座標系での位
置・姿勢とが容易に関係付けられる。
(1) The position and orientation of a point on the workbench that has a coordinate system different from that of the robot can be easily correlated with the position and orientation of the robot's own coordinate system.

(2) 距離の測定のみで据え付け誤差が求まるの
で、経済的である。
(2) It is economical because the installation error can be determined only by measuring distance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、ロボツト固有の座標系と作業台の座
標系との間の変位を表わす概念図、第2図は、ロ
ボツト上の測定点と作業台上の測定点を表わす概
念図、第3図は、本発明に係るロボツト据え付け
誤差測定装置の一実施例の構成図、第4図は、そ
の据え付け誤差計算装置の内部で実行される計算
の流れ図である。 1……ロボツト、2……ロボツト制御装置、3
……ロボツトの作業台、4……距離測定装置、5
……測定位置記憶装置、6……据え付け誤差計算
装置。
Figure 1 is a conceptual diagram showing the displacement between the robot's own coordinate system and the coordinate system of the workbench. Figure 2 is a conceptual diagram showing the measurement points on the robot and the measurement points on the workbench. FIG. 4 is a block diagram of an embodiment of the robot installation error measuring device according to the present invention, and FIG. 4 is a flowchart of calculations executed within the installation error calculating device. 1... Robot, 2... Robot control device, 3
...Robot workbench, 4...Distance measuring device, 5
... Measurement position storage device, 6... Installation error calculation device.

Claims (1)

【特許請求の範囲】[Claims] 1 ロボツト本体についての該ロボツト固有の座
標系に係る指令位置データおよび該ロボツト作業
台についての該作業台固有の座標系に係る位置デ
ータを記憶する手段と、上記の指令位置データに
基づくロボツトの移動後の位置と、該位置に対応
する上記作業台上の実際の位置データとの間の距
離を測定する距離測定手段と、該測定手段による
測定データ、上記指令位置データ及び上記作業台
に係る位置データに基づいて上記ロボツト固有の
3次元座標系と上記作業台固有の3次元座標系に
ついて基準となるいずれか一方の座標系と他の座
標系の原点間の3次元の変位および上記他の座標
系の上記基準となる座標系に対する各座標軸まわ
りの回転変位を計算する誤差計算手段とからなる
ことを特徴とするロボツト据え付け誤差測定装
置。
1 Means for storing commanded position data regarding the robot body in a coordinate system unique to the robot and position data regarding the robot workbench in a coordinate system unique to the workbench, and movement of the robot based on the commanded position data. distance measuring means for measuring the distance between a subsequent position and actual position data on the workbench corresponding to the position, measurement data by the measuring means, the commanded position data, and a position related to the workbench; Based on the data, the three-dimensional displacement between the origin of one of the three-dimensional coordinate systems unique to the robot and the three-dimensional coordinate systems unique to the workbench as a reference and the other coordinate system, and the other coordinates described above. A robot installation error measuring device comprising error calculation means for calculating rotational displacement around each coordinate axis with respect to the reference coordinate system of the system.
JP5396983A 1983-03-31 1983-03-31 Measuring device for error on installation of robot Granted JPS59182076A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5396983A JPS59182076A (en) 1983-03-31 1983-03-31 Measuring device for error on installation of robot
US06/595,363 US4670849A (en) 1983-03-31 1984-03-30 Position error correcting method and apparatus for industrial robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5396983A JPS59182076A (en) 1983-03-31 1983-03-31 Measuring device for error on installation of robot

Publications (2)

Publication Number Publication Date
JPS59182076A JPS59182076A (en) 1984-10-16
JPH0512111B2 true JPH0512111B2 (en) 1993-02-17

Family

ID=12957482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5396983A Granted JPS59182076A (en) 1983-03-31 1983-03-31 Measuring device for error on installation of robot

Country Status (1)

Country Link
JP (1) JPS59182076A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4920500A (en) * 1986-02-25 1990-04-24 Trallfa Robot A/S Method and robot installation for programmed control of a working tool
CA2082708C (en) * 1991-12-02 2004-01-13 James Edward Randolph Jr. Tool point compensation for hardware displacement and inclination
JP2011048467A (en) * 2009-08-25 2011-03-10 Fanuc Ltd Machining system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48100853A (en) * 1972-04-05 1973-12-19
JPS4918586A (en) * 1972-06-14 1974-02-19
JPS50112969A (en) * 1974-02-18 1975-09-04
JPS5715689A (en) * 1980-06-30 1982-01-27 Fujitsu Ltd Robot device
JPS5783390A (en) * 1980-11-07 1982-05-25 Hitachi Ltd Indirect instruction method for articulated type robot
JPS5877473A (en) * 1981-10-28 1983-05-10 富士通株式会社 Visual recognizing handling system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48100853A (en) * 1972-04-05 1973-12-19
JPS4918586A (en) * 1972-06-14 1974-02-19
JPS50112969A (en) * 1974-02-18 1975-09-04
JPS5715689A (en) * 1980-06-30 1982-01-27 Fujitsu Ltd Robot device
JPS5783390A (en) * 1980-11-07 1982-05-25 Hitachi Ltd Indirect instruction method for articulated type robot
JPS5877473A (en) * 1981-10-28 1983-05-10 富士通株式会社 Visual recognizing handling system

Also Published As

Publication number Publication date
JPS59182076A (en) 1984-10-16

Similar Documents

Publication Publication Date Title
JP5632036B2 (en) Device for correcting errors in CNC machine tools
CN108286949B (en) Movable three-dimensional detection robot system
EP0123214B1 (en) Operation teaching method and apparatus for industrial robot
Kiridena et al. Mapping the effects of positioning errors on the volumetric accuracy of five-axis CNC machine tools
US8452564B2 (en) Method of determining geometric errors in a machine tool or measuring machine
Zhuang et al. Kinematic calibration of a Stewart platform using pose measurements obtained by a single theodolite
US5907229A (en) Method and device for calibration of movement axes of an industrial robot
CN103759635A (en) Scanning measurement robot detection method allowing precision to be irrelevant to robot
CN110561420A (en) Arm profile constraint flexible robot track planning method and device
JPH0512111B2 (en)
TWI444798B (en) Multi - degree of freedom platform control device
CN114654466B (en) Automatic calibration method, device, system, electronic equipment and storage medium
JPH0570162B2 (en)
JPH04227506A (en) Method for controlling position determining apparatus
JP3151149B2 (en) Manipulator control method using image information
CN114800523A (en) Mechanical arm track correction method, system, computer and readable storage medium
JPH0639070B2 (en) Robot device force sensor calibration method
JPH012104A (en) Robot positioning error correction method
JP2923713B2 (en) Drive control method for cylindrical coordinate robot
JPH07210230A (en) Pipe surface copying control method using force control robot
JPH0561648B2 (en)
JP2021186929A (en) Control method for multi-axis robot
JP2019197333A (en) Path correction method and control device of multiple spindle processing machine
JP2000094370A (en) Inclination measuring method of work surface of robot and measuring device thereof
CN114174009B (en) Method, device, system, storage medium and terminal for controlling robot