JPH05119220A - Optical coupler - Google Patents

Optical coupler

Info

Publication number
JPH05119220A
JPH05119220A JP28026191A JP28026191A JPH05119220A JP H05119220 A JPH05119220 A JP H05119220A JP 28026191 A JP28026191 A JP 28026191A JP 28026191 A JP28026191 A JP 28026191A JP H05119220 A JPH05119220 A JP H05119220A
Authority
JP
Japan
Prior art keywords
optical
light
coupler
optical waveguide
waveguides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28026191A
Other languages
Japanese (ja)
Inventor
Shigeru Oshima
茂 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP28026191A priority Critical patent/JPH05119220A/en
Priority to GB9125110A priority patent/GB2251957B/en
Priority to US07/798,818 priority patent/US5170451A/en
Publication of JPH05119220A publication Critical patent/JPH05119220A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12069Organic material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/1215Splitter

Abstract

PURPOSE:To constitute the this optical coupler in such a manner that the function to multiplex and demultiplex lights of two different wavelengths and the function to output the inputted light from a prescribed output end by each wavelength can be attained with one coupler and that the need for an optical multiplexer/demultiplexer and directional coupler is eliminated and the connection losses by the connection of optical parts are decreased and the coupler is miniaturized when the coupler is applied to an optical transmission system of large capacity one-way and small capacity bidirection. CONSTITUTION:A 2nd optical waveguide 24 and a 3rd optical waveguide 25 are formed on a substrate 30 so as to be line symmetrical with a 1st optical waveguide 23 as a symmetrical axis. The length of the optical coupling region where three pieces of such optical waveguides distribute and couple is so set that the light of lambda1 is outputted to the 1st optical waveguide 23 and the light of lambda2 is distributed from the 2nd and 3rd optical waveguides 24, 25 when the two light rays of the wavelengths lambda1, lambda2 are made incident on the 1st optical waveguide 23.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば一方向大容量
で,なおかつ時間軸圧縮による双方向小容量の光伝送を
行なう加入者系の光通信システムに用いることができる
光カプラに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical coupler which can be used, for example, in an optical communication system of a subscriber system for performing one-way large capacity and bidirectional small capacity optical transmission by time axis compression.

【0002】[0002]

【従来の技術】近年、従来の交換局間を結ぶ基幹網だけ
でなく、交換局と一般ビル間の加入者網にまで光ファイ
バを敷設し、高速で音声やコンピュータのデータ,映像
などを同時に通信できる加入者系光通信システムの開発
が盛んに行われている。その一つの形態として、図5に
示すような光伝送システムが提案されている。
2. Description of the Related Art In recent years, optical fibers have been installed not only in the conventional backbone network connecting exchanges but also in subscriber networks between exchanges and general buildings to simultaneously transmit voice, computer data, and video at high speed. A subscriber optical communication system capable of communication has been actively developed. As one form thereof, an optical transmission system as shown in FIG. 5 has been proposed.

【0003】図5において、Aは交換局,Bは加入者局
を示している。まず、交換局Aにおいて、1aは大容量
(例えば数百メガビット/秒)の光送信器で、ここから
波長λ1 の光が出力され、光合分波器5を通してA,B
間の伝送路となる伝送路光ファイバ6へ送られる。2a
は小容量(例えば数十メガビット/秒)の光送信器で、
波長λ2 の光を送信する。3aは、小容量の光受信器で
あり、波長λ2 の光を受信する。この光受信器3aと光
送信器2aは、方向性結合器4及び光合分波器5を介し
て上記伝送路光ファイバ6と接続されている。これと対
向する局(加入者側)Bには、大容量の光受信器1b,
小容量の光受信器2b及び小容量の光送信器3bが設け
られている。
In FIG. 5, A is an exchange station and B is a subscriber station. First, in the exchange A, 1a is a large-capacity (for example, several hundred megabits / second) optical transmitter, from which light of wavelength λ 1 is output, and A and B are transmitted through the optical multiplexer / demultiplexer 5.
It is sent to the transmission line optical fiber 6 which is a transmission line between them. 2a
Is an optical transmitter with a small capacity (for example, tens of megabits / second),
Transmit light of wavelength λ 2 . Reference numeral 3a is a small-capacity optical receiver that receives light of wavelength .lambda.2. The optical receiver 3a and the optical transmitter 2a are connected to the transmission line optical fiber 6 via a directional coupler 4 and an optical multiplexer / demultiplexer 5. In the opposite station (subscriber side) B, a large capacity optical receiver 1b,
A small capacity optical receiver 2b and a small capacity optical transmitter 3b are provided.

【0004】伝送路光ファイバ6を通ってきた波長
λ1 ,λ2 の光は、光合分波器7で分波される。波長λ
1 の光は、光受信器1bで受信される。波長λ2 の光
は、方向性結合器8を介して光受信器2bで受信され
る。波長λ2 の小容量伝送は、時分割で双方向に送信・
受信を行ういわゆるピンポン伝送である。そのため、こ
のシステムでは、方向性結合器4,8が用いられてい
る。
The lights of wavelengths λ 1 and λ 2 that have passed through the transmission path optical fiber 6 are demultiplexed by the optical multiplexer / demultiplexer 7. Wavelength λ
The light of 1 is received by the optical receiver 1b. The light of wavelength λ 2 is received by the optical receiver 2b via the directional coupler 8. Small-capacity transmission of wavelength λ 2 is bidirectional in time division.
This is so-called ping-pong transmission for receiving. Therefore, in this system, the directional couplers 4 and 8 are used.

【0005】上記した光伝送システムでは、例えば、映
像分配サービスのような大容量の情報伝送には波長λ1
を、電話サービスのような小容量の情報伝送には波長λ
2 をそれぞれ割り当てる。これにより、1本の伝送路光
ファイバを用いて2種類のサービスを独立に伝送するこ
とができる。ところが、上記した光伝送システムにあっ
ては、各局で光合分波器及び方向性結合器を用いている
ことから、次のような欠点があった。 (1)光合分波器と方向性結合器とを接続しなければな
らず、その接続に多大な時間と手間を要する。 (2)各光部品と光ファイバとの接続部分で接続損失が
生じる。 (3)光部品点数が多いので、装置が大型化する。特に
一般ビルや各家庭に設置されることを想定すると、設置
場所に大きな制約を受ける。
In the above-described optical transmission system, for example, for transmitting a large amount of information such as a video distribution service, the wavelength λ 1
The wavelength λ is used for small capacity information transmission such as telephone service.
Assign 2 each. As a result, two types of services can be independently transmitted using one transmission path optical fiber. However, the above optical transmission system has the following drawbacks because each station uses the optical multiplexer / demultiplexer and the directional coupler. (1) The optical multiplexer / demultiplexer and the directional coupler must be connected, which requires a lot of time and effort. (2) Connection loss occurs at the connection between each optical component and the optical fiber. (3) Since the number of optical components is large, the device becomes large. In particular, assuming that it will be installed in a general building or home, the installation location will be greatly restricted.

【0006】[0006]

【発明が解決しようとする課題】以上述べたように、一
つの光で一方向大容量の光伝送を行い、他の光でいわゆ
るピンポン伝送である時間軸圧縮による双方向小容量の
光伝送を行なう場合は、光合分波器および方向性結合器
が用いられる。
As described above, one light is used for one-direction large-capacity optical transmission, and the other light is used for so-called ping-pong transmission, which is bidirectional small-capacity optical transmission by time axis compression. When performing, an optical multiplexer / demultiplexer and a directional coupler are used.

【0007】そのため、両光部品の接続に多大な時間と
手間を要するほか、接続損失・装置の大型化という問題
点があった。これらは加入者形式の光通信システムの開
発において解決しなければならない課題であった。
Therefore, it takes a lot of time and labor to connect both optical components, and there are problems of connection loss and enlargement of the device. These have been problems to be solved in the development of the subscriber type optical communication system.

【0008】この発明は、上記の課題を解決するために
なされたもので、光合分波器としての機能と方向性結合
器としての機能を合せ持つ光カプラを提供することを目
的とする。
The present invention has been made to solve the above problems, and an object thereof is to provide an optical coupler having both a function as an optical multiplexer / demultiplexer and a function as a directional coupler.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に本発明は、基板上に形成され、一方端が第1の波長帯
の第1の光及び前記第1の波長帯と異なる第2の波長帯
の第2の光が入力する入力端である第1の光導波路と、
この第1の光導波路を挟んで並列に前記基板上に形成さ
れる第2,第3の光導波路と、前記第1の光導波路を中
心として第2,第3の光導波路が互いに線対称に配置さ
れた領域であり、前記第2,第3の光導波路のそれぞれ
の端が前記第2,第3の光の出力端となるように前記領
域の長さが設定される光結合部を具備することを特徴と
する。
In order to solve the above-mentioned problems, the present invention provides a second light which is formed on a substrate and whose one end is different from the first light of the first wavelength band and the first wavelength band. A first optical waveguide which is an input end for inputting second light in the wavelength band of
The second and third optical waveguides formed in parallel on the substrate with the first optical waveguide interposed therebetween and the second and third optical waveguides centering on the first optical waveguide are line-symmetrical to each other. And an optical coupling section in which the lengths of the regions are set so that the ends of the second and third optical waveguides are the output ends of the second and third lights. It is characterized by doing.

【0010】[0010]

【作用】本発明の光カプラは、第1乃至第3の光導波路
が互いに近接している部分で分布結合が生じ、3本の光
導波路のうち第2,第3の光導波路は、第1の光導波路
について対称に形成されていることから、この部分の光
導波路長を、前記第1の光導波路の入力端より互いに波
長の異なる第1,第2の光が入力したとき、前記第1の
光導波路の出力端より前記第1の光が出力され、前記第
2,第3の光導波路より前記第2の波長の光が出力され
るように設定すれば、入力する2つの光を合分波する機
能と各波長の光を所定の出力端より出力させる機能で合
せ持つ。
In the optical coupler of the present invention, distributed coupling occurs in the portion where the first to third optical waveguides are close to each other, and the second and third optical waveguides among the three optical waveguides are the first optical waveguide. Are formed symmetrically with respect to the first optical waveguide, the optical waveguide length of this portion is set to the first optical waveguide length when the first and second lights having different wavelengths are input from the input end of the first optical waveguide. If the setting is made such that the first light is output from the output end of the optical waveguide and the light of the second wavelength is output from the second and third optical waveguides, the two input lights are combined. It has both a demultiplexing function and a function to output the light of each wavelength from a predetermined output end.

【0011】[0011]

【実施例】以下、本発明の実施例を図面を参照して説明
する。図1は本発明の光カプラの構成を示す図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the configuration of the optical coupler of the present invention.

【0012】図1において、22,23,24は、基板
30上に形成された光導波路を示す。基板30は例え
ば、ガラス製で、光導波路22,23,24はこの基板
30上にいわゆるイオン交換により形成される。
In FIG. 1, reference numerals 22, 23 and 24 denote optical waveguides formed on the substrate 30. The substrate 30 is made of glass, for example, and the optical waveguides 22, 23, 24 are formed on the substrate 30 by so-called ion exchange.

【0013】図示するように、光導波路23は、入力端
を21,出力端を26として直線状に形成される。光導
波路22,24は、光導波路23の長手方向を対称軸と
して線対称になるように形成されている。また、光導波
路22,24は、前記出力端26から入力端21方向に
見た場合、光導波路21に徐々に近接するように形成さ
れている。そして、最も接近している領域では、光導波
路22と光導波路23との間隔は、前記一端27と前記
出力端26との間隔と比較して非常に短くなっている。
As shown in the figure, the optical waveguide 23 is linearly formed with an input end 21 and an output end 26. The optical waveguides 22 and 24 are formed in line symmetry with the longitudinal direction of the optical waveguide 23 as the axis of symmetry. The optical waveguides 22 and 24 are formed so as to gradually approach the optical waveguide 21 when viewed from the output end 26 toward the input end 21. Then, in the region closest to each other, the distance between the optical waveguide 22 and the optical waveguide 23 is much shorter than the distance between the one end 27 and the output end 26.

【0014】上記間隔が狭くなった図中点線AA´−B
B´で囲まれる領域31は、光結合領域で、近接した光
導波路21と22及び光導波路22と23との間で分布
結合が生じる領域である。
The dotted line AA'-B in the figure in which the interval is narrowed
A region 31 surrounded by B ′ is an optical coupling region, and is a region where distributed coupling occurs between the optical waveguides 21 and 22 and the optical waveguides 22 and 23 which are adjacent to each other.

【0015】この光カプラの入力端21に前記波長λ1
の光と波長λ2 の光が入射すると、λ1 とλ2 とでは完
全結合長が異なることから、光結合領域31で2つの光
は分波する。
At the input end 21 of this optical coupler, the wavelength λ 1
When the light having the wavelength λ 2 and the light having the wavelength λ 2 are incident, the two lights are demultiplexed in the optical coupling region 31 because the perfect coupling lengths are different between λ 1 and λ 2 .

【0016】図1の光カプラで、入力端21より振幅A
2(0)の光が入射したとすると、出力端25,26,
27より出力する光の光強度は、前記した光導波路の配
置を考慮し、結合モード理論を適用すれば、次の
(1),(2),(3)式のようになる。
In the optical coupler shown in FIG.
If 2 (0) light is incident, the output ends 25, 26,
The light intensity of the light output from 27 is expressed by the following equations (1), (2), and (3) by applying the coupling mode theory in consideration of the arrangement of the optical waveguides.

【0017】[0017]

【数1】 [Equation 1]

【0018】ここで、A1(z),A2(z),A3
(z)は、それぞれ出力端25,26,27における出
力光の振幅、zは光結合領域31の結合長を示す。ま
た、kは結合係数で、波長λに比例する。上の式を見て
わかるように、式(1),(3)は同形であり、出力端
25,27から出力する光は同じ強さである。
Here, A1 (z), A2 (z), A3
(Z) indicates the amplitude of the output light at the output ends 25, 26, and 27, and z indicates the coupling length of the optical coupling region 31. Further, k is a coupling coefficient, which is proportional to the wavelength λ. As can be seen from the above equation, the equations (1) and (3) have the same shape, and the light output from the output ends 25 and 27 have the same intensity.

【0019】そこで、入力端21にλ1 =1.5 μm,λ
2 =1.3 μmの光を入射させたとき、出力端26(光導
波路27)の出力と、出力端25,27(光導波路2
2,24)の出力は図2のようになる。
Therefore, at the input end 21, λ 1 = 1.5 μm, λ
When 2 = 1.3 μm light is incident, the output of the output end 26 (optical waveguide 27) and the output ends 25 and 27 (optical waveguide 2
2, 24) output is as shown in FIG.

【0020】図2に示すように、λ1 ,λ2 の各光の光
強度は、結合長zを横軸として、周期的に変化する。そ
こで、結合長zをλ1,λ2 の各光の光強度が共にピー
クに達するzpに設定する。こうすることにより、この
光カプラで、入力する2つの光を合分波し、各波長の光
を所定の出力端より出力させるという機能が実現でき、
前記した光加入者システムに適用できる。
As shown in FIG. 2, the light intensity of each light of λ 1 and λ 2 periodically changes with the coupling length z as the horizontal axis. Therefore, the coupling length z is set to z p at which both the light intensities of λ 1 and λ 2 reach their peaks. By doing so, this optical coupler can realize a function of multiplexing and demultiplexing two input lights and outputting light of each wavelength from a predetermined output end,
It can be applied to the optical subscriber system described above.

【0021】この光カプラは、光の相反定理が成り立つ
ので、光導波路22,24の一端25,28からλ2
光を入射した場合は、この光は前記光導波路23の入力
端21より出射する。同様に、光導波路23の出力端2
6よりλ1 の光を入射した場合、このλ1 の光は入力端
21より出射する。上記光カプラを前記した光伝送シス
テムに適用する場合は以下のようにして行う。図3にそ
の概略構成図を示す。
In this optical coupler, the reciprocity theorem of light is established. Therefore, when light of λ 2 enters from one end 25, 28 of the optical waveguides 22, 24, this light is emitted from the input end 21 of the optical waveguide 23. To do. Similarly, the output end 2 of the optical waveguide 23
If incident lambda 1 light than 6, the light of the lambda 1 is emitted from the input end 21. When the above optical coupler is applied to the above-mentioned optical transmission system, it is performed as follows. FIG. 3 shows a schematic configuration diagram thereof.

【0022】図3に示すように、交換局A側で、図1と
同型の光カプラ50の入力端21を図5の伝送路光ファ
イバ6に接続し、出力端26を大容量光送信器1aに、
光導波路22の一端25を小容量光送信器2aに、光導
波路24の一端27を小容量光受信器3aにそれぞれ接
続する。
As shown in FIG. 3, on the side of the switching center A, the input end 21 of the optical coupler 50 of the same type as in FIG. 1 is connected to the transmission line optical fiber 6 of FIG. 5, and the output end 26 is connected to the large capacity optical transmitter. 1a,
One end 25 of the optical waveguide 22 is connected to the small capacity optical transmitter 2a, and one end 27 of the optical waveguide 24 is connected to the small capacity optical receiver 3a.

【0023】同様に、加入局B側で、もう一つの光カプ
ラ51の入力端21を伝送路光ファイバ6に接続し、出
力端26を加入局B側の大容量光受信器1bに、25を
小容量用光受信器2bに、27を小容量光送信器3bに
それぞれ接続する。
Similarly, at the subscriber station B side, the input end 21 of the other optical coupler 51 is connected to the transmission line optical fiber 6, and the output end 26 is connected to the large capacity optical receiver 1b at the subscriber station B side by 25. Is connected to the small capacity optical receiver 2b, and 27 is connected to the small capacity optical transmitter 3b.

【0024】交換局A側の光送信器1a,2aよりそれ
ぞれ出射する波長λ1 ,λ2 の光は光カプラ50を通る
ことによって合波されて、伝送路ファイバ6へ送られ
る。この波長λ1 ,λ2 の光は、光カプラ51内で分波
する。波長λ1 の波は出力端26より出力して光受信器
1bで受光される。また、波長λ2 の光は出力端25よ
り出力され、光受信器2bで受光される。
The lights of wavelengths λ 1 and λ 2 emitted from the optical transmitters 1a and 2a on the side of the switching center A are combined by passing through the optical coupler 50 and sent to the transmission line fiber 6. The lights having the wavelengths λ 1 and λ 2 are demultiplexed in the optical coupler 51. The wave of wavelength λ 1 is output from the output end 26 and received by the optical receiver 1b. The light of wavelength λ 2 is output from the output end 25 and received by the optical receiver 2b.

【0025】一方、加入局B側の光受信器3bより出力
されたλ2 の光は、光導波路24の入力ポートである一
端27より入力され、伝送路光ファイバ6を通じて光カ
プラ50に至る。この波長λ2 の光は、光導波路24の
出力ポートである一端27より出力され、光受信器3a
で受光される。
On the other hand, the light of λ 2 output from the optical receiver 3b on the subscriber station B side is input from one end 27 which is an input port of the optical waveguide 24 and reaches the optical coupler 50 through the transmission line optical fiber 6. The light of the wavelength λ 2 is output from the one end 27 which is the output port of the optical waveguide 24, and the optical receiver 3a
Is received by.

【0026】なお、交換局A側より送られるλ2 の光は
光カプラ51の光導波路23の一端27からも出力され
るが、これはノイズとはならない。同様に加入局B側の
光カプラ51より送られるλ2 の光は光カプラ50の光
導波路24の一端27からも出力されるが、これもノイ
ズにはならない。
The light of λ 2 sent from the exchange A side is also output from the one end 27 of the optical waveguide 23 of the optical coupler 51, but this does not cause noise. Similarly, the light of λ 2 sent from the optical coupler 51 on the subscriber station B side is also output from the one end 27 of the optical waveguide 24 of the optical coupler 50, but this also does not become noise.

【0027】このように、光カプラを各光送信器,光受
信器に接続すれば、従来使用していた光合分波器及び方
向性結合器が不要となる。これにより、光合分波器と方
向性結合器とを接続する手間が省け、接続部分での損失
はなくなり、良好な特性を得ることができる。
By connecting the optical coupler to each of the optical transmitter and the optical receiver in this manner, the optical multiplexer / demultiplexer and the directional coupler which have been used conventionally are not required. As a result, it is possible to save the trouble of connecting the optical multiplexer / demultiplexer and the directional coupler, eliminate the loss at the connection portion, and obtain good characteristics.

【0028】さらに、部品点数が低減されると共に、光
合分波器と方向性結合器とを結ぶ光ファイバは不要とな
るので、装置が小型化し、設置場所の制約が大幅に緩和
される。
Furthermore, since the number of parts is reduced and the optical fiber connecting the optical multiplexer / demultiplexer and the directional coupler is not necessary, the device is downsized and the restrictions on the installation place are greatly eased.

【0029】なお、λ1 ,λ2 の波長としては、光源と
してよく用いられる1.5μm帯、1.3μm帯を用い
れば容易に製作ができ、両波長帯は適当に間隔があいて
いるため良好な特性を得ることができる。
The wavelengths of λ 1 and λ 2 can be easily manufactured by using 1.5 μm band and 1.3 μm band which are often used as a light source, and both wavelength bands are appropriately spaced. Good characteristics can be obtained.

【0030】図4は、図1の光カプラに半導体素子や光
素子を集積化した実施例を示す図である。図4の実施例
は、図5の光伝送システムにおける加入局B側に適用さ
れることを想定している。
FIG. 4 is a diagram showing an embodiment in which a semiconductor element or an optical element is integrated in the optical coupler of FIG. The embodiment of FIG. 4 is assumed to be applied to the subscriber station B side in the optical transmission system of FIG.

【0031】図4において、40はフォトダイオードの
ような受光素子であり、光導波路23上に設置される。
41も同様に受光素子であり、光導波路24上に設置さ
れる。この光導波路22の先端部分には発光素子42の
パワーモニター用受光素子43が設置される。
In FIG. 4, reference numeral 40 denotes a light receiving element such as a photodiode, which is installed on the optical waveguide 23.
Reference numeral 41 is also a light receiving element and is installed on the optical waveguide 24. The power monitor light receiving element 43 of the light emitting element 42 is installed at the tip of the optical waveguide 22.

【0032】これらの光素子は、図5の加入者側の光受
信器、光送信器に対応している。すなわち、受光素子4
0は光受信器1bに、受光素子41は光受信器2bに、
発光素子42は光送信機3bにそれぞれ対応する。
These optical elements correspond to the optical receiver and optical transmitter on the subscriber side in FIG. That is, the light receiving element 4
0 is the optical receiver 1b, the light receiving element 41 is the optical receiver 2b,
The light emitting elements 42 correspond to the optical transmitters 3b, respectively.

【0033】図4のように光カプラを構成することによ
り、高精度が要求される軸合せは光導波路21と伝送路
光ファイバ6との接続のみとなる。したがって、アセン
ブリが大幅に簡略化され、部品点数も少なくなり、加入
局側における装置の小型化が可能となる。もちろん交換
局側でも同様のことが言える。
By configuring the optical coupler as shown in FIG. 4, only the connection between the optical waveguide 21 and the transmission line optical fiber 6 is required for the axis alignment which requires high accuracy. Therefore, the assembly is greatly simplified, the number of parts is reduced, and the device on the subscriber station side can be downsized. Of course, the same can be said on the exchange side.

【0034】また、3本の光導波路の分布結合によって
光合分波器と光方向性結合器を1か所で形成する為、基
板寸法を大幅に縮小でき、1つのウエハから取れる数が
著しく増大し、量産性が向上する。
Further, since the optical multiplexer / demultiplexer and the optical directional coupler are formed in one place by the distributed coupling of the three optical waveguides, the substrate size can be greatly reduced, and the number of wafers that can be obtained from one wafer is significantly increased. However, mass productivity is improved.

【0035】図4の44は光フィルタを示す。光フィル
タ44は波長λ1 の光のみ透過できるように格子のピッ
チを定めた回折格子である。この光フィルタ44を受光
素子40の前に設置することにより、波長λ2 の光が受
光素子40に入射するのを阻止することができる。同様
に、受光素子41の前にフィルタを設けることももちろ
ん可能である。
Reference numeral 44 in FIG. 4 denotes an optical filter. The optical filter 44 is a diffraction grating in which the pitch of the grating is determined so that only light of wavelength λ 1 can be transmitted. By installing this optical filter 44 in front of the light receiving element 40, it is possible to prevent light of the wavelength λ 2 from entering the light receiving element 40. Similarly, it is of course possible to provide a filter in front of the light receiving element 41.

【0036】[0036]

【発明の効果】以上、詳述したように本発明によれば第
1の光導波路と、この第1の光導波路を対称軸として線
対称になるように基板上に形成される第2,第3の光導
波路が基板上に形成され、この3本の光導波路の一部を
近接させてこれらの光導波路が分布結合する領域を設
け、この領域の光導波路長を所定の長さに設定すること
により、異なる2つの波長を合分波する機能と、入力し
た光を波長ごとに所定の出力端より出力させる方向性結
合器の機能が一つのカプラで実現できる。
As described above in detail, according to the present invention, the first optical waveguide and the second and second optical waveguides formed on the substrate in line symmetry with the first optical waveguide as the axis of symmetry. An optical waveguide No. 3 is formed on a substrate, a region where these optical waveguides are distributed and coupled is provided by making a part of these three optical waveguides close to each other, and the optical waveguide length of this region is set to a predetermined length. As a result, a single coupler can realize the function of multiplexing / demultiplexing two different wavelengths and the function of a directional coupler that outputs the input light from a predetermined output terminal for each wavelength.

【0037】よって、第1の光で一方向大容量の光伝送
を行ない、かつ第2の光で時間軸圧縮による双方向小容
量の光伝送を行なう光伝送システムに本発明を適用した
場合は、従来使用していた光合分波器・方向性結合は不
要となるので、光部品の接続による接続損失が減少し、
システムを小型化することができる。
Therefore, when the present invention is applied to an optical transmission system that performs unidirectional large-capacity optical transmission with the first light and bidirectional small-capacity optical transmission with the second light by time axis compression, Since the optical multiplexer / demultiplexer and directional coupling used in the past are not required, the connection loss due to the connection of optical components is reduced,
The system can be downsized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光カプラの構成を示す斜視図である。FIG. 1 is a perspective view showing a configuration of an optical coupler of the present invention.

【図2】本発明の光カプラの合分波特性を説明するため
の図。
FIG. 2 is a diagram for explaining a multiplexing / demultiplexing characteristic of the optical coupler of the present invention.

【図3】図1の光カプラを加入者形式の光伝送システム
に適用した場合の概略構成を示す図である。
3 is a diagram showing a schematic configuration when the optical coupler of FIG. 1 is applied to a subscriber type optical transmission system.

【図4】本発明の光カプラの他の実施例の構成を示す斜
視図である。
FIG. 4 is a perspective view showing the configuration of another embodiment of the optical coupler of the present invention.

【図5】加入者形式の光伝送システムの概略構成図を示
す。
FIG. 5 shows a schematic configuration diagram of a subscriber type optical transmission system.

【符号の説明】[Explanation of symbols]

1a…大容量光送信器、2a…小容量光送信器、3a…
小容量光受信器、1b…大容量光受信器、2b…小容量
光受信器、3b…小容量光受信器、22,23,24…
光導波路、30…基板、31…光結合領域 40,41…受光素子、42…発光素子、パワーモニタ
用受光素子、44…光フィルタ
1a ... Large-capacity optical transmitter, 2a ... Small-capacity optical transmitter, 3a ...
Small capacity optical receiver, 1b ... Large capacity optical receiver, 2b ... Small capacity optical receiver, 3b ... Small capacity optical receiver, 22, 23, 24 ...
Optical waveguide, 30 ... Substrate, 31 ... Optical coupling region 40, 41 ... Light receiving element, 42 ... Light emitting element, power monitor light receiving element, 44 ... Optical filter

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】基板上に形成され、一方端が第1の波長帯
の第1の光及び前記第1の波長帯と異なる第2の波長帯
の第2の光が入力する入力端である第1の光導波路と、 この第1の光導波路を挟んで並列に前記基板上に形成さ
れる第2,第3の光導波路と、 前記第1の光導波路を中心として第2,第3の光導波路
が互いに線対称に配置された領域であり、前記第1の光
導波路の前記一方端と異なる他方端が前記第1の光の出
力端となり、前記第2,第3の光導波路のそれぞれの端
が前記第2,第3の光の出力端となるように前記領域の
長さが設定される光結合部を具備することを特徴とする
光カプラ。
1. An input end formed on a substrate, one end of which receives first light of a first wavelength band and second light of a second wavelength band different from the first wavelength band. A first optical waveguide, second and third optical waveguides formed in parallel on the substrate with the first optical waveguide interposed therebetween, and second and third optical waveguides centering around the first optical waveguide The optical waveguides are regions arranged in line symmetry with each other, and the other end different from the one end of the first optical waveguide serves as an output end of the first light, and each of the second and third optical waveguides. An optical coupler comprising: an optical coupling part in which the length of the region is set so that the end of the region becomes the output end of the second and third lights.
【請求項2】前記第1,第2,第3の光導波路のうち、
少なくとも1本の光導波路上には発光素子を具備したこ
とを特徴とする請求項1記載の光カプラ。
2. Of the first, second, and third optical waveguides,
The optical coupler according to claim 1, further comprising a light emitting element on at least one optical waveguide.
【請求項3】前記第1,第2,第3の光導波路のうち、
少なくとも1本の光導波路上には受光素子を具備したこ
とを特徴とする請求項1記載の光カプラ。
3. Among the first, second and third optical waveguides,
The optical coupler according to claim 1, further comprising a light receiving element on at least one optical waveguide.
【請求項4】前記第1,第2,第3の光導波路のうち、
少なくとも1本の光導波路上には光フィルタを具備した
ことを特徴とする請求項1記載の光カプラ。
4. Of the first, second and third optical waveguides,
The optical coupler according to claim 1, wherein an optical filter is provided on at least one optical waveguide.
JP28026191A 1990-11-29 1991-10-28 Optical coupler Pending JPH05119220A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP28026191A JPH05119220A (en) 1991-10-28 1991-10-28 Optical coupler
GB9125110A GB2251957B (en) 1990-11-29 1991-11-26 Optical coupler
US07/798,818 US5170451A (en) 1990-11-29 1991-11-27 Optical wdm (wavelength division multiplex) coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28026191A JPH05119220A (en) 1991-10-28 1991-10-28 Optical coupler

Publications (1)

Publication Number Publication Date
JPH05119220A true JPH05119220A (en) 1993-05-18

Family

ID=17622532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28026191A Pending JPH05119220A (en) 1990-11-29 1991-10-28 Optical coupler

Country Status (1)

Country Link
JP (1) JPH05119220A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757995A (en) * 1995-12-27 1998-05-26 Nhk Spring Co., Ltd. Optical coupler
US6553164B1 (en) 1999-10-28 2003-04-22 Oki Electric Industry, Co., Ltd. Y-branch waveguide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757995A (en) * 1995-12-27 1998-05-26 Nhk Spring Co., Ltd. Optical coupler
US6553164B1 (en) 1999-10-28 2003-04-22 Oki Electric Industry, Co., Ltd. Y-branch waveguide

Similar Documents

Publication Publication Date Title
US5170451A (en) Optical wdm (wavelength division multiplex) coupler
US6366378B1 (en) Optical multiplexing and demultiplexing
JPH1073730A (en) Optical device
WO2013046696A1 (en) Light merging/branching device, bidirectional light propagation device, and light transmission/reception system
US8023822B2 (en) Optical band splitter/combiner device comprising a three-arms interferometer
EP1225461B1 (en) Bidirectional multiplexer and demultiplexer based on a single echelle waveguide grating
US20120315042A1 (en) Optical ring network architecture
JPH05313029A (en) Light wave combining/splitting instrument
EP1243952B1 (en) Optical multiplexing circuit with monitoring function
JPH05119220A (en) Optical coupler
JPH03136006A (en) Intergrated optical guide coupler
KR101032453B1 (en) triplexer
CN109644064B (en) Wavelength division multiplexing apparatus and method
WO2003005086A1 (en) Asymmetric arrayed waveguide grating device
JP2005509917A (en) Optical multiplexer / demultiplexer device, optical wavelength selectable filter, and filter manufacturing method
JPH08288911A (en) Optical communication equipment and its method
JP2005509917A5 (en)
JP2004361660A (en) Array waveguide type wavelength demultiplexer
CN114002772B (en) Light receiving integrated chip
CN115657202B (en) Silicon-based wavelength demultiplexing device based on grating auxiliary reverse coupling
CN113985523B (en) Wide-bandwidth array waveguide grating
JP3868429B2 (en) Optical transceiver
JP2003283463A (en) Wavelength multiplex communication system
KR100393609B1 (en) Apparatus of reducing loss variation in a multi-channel optical module by means of positional offset
JPH0336508A (en) Transmission and reception module for wavelength multiplex light