JPH0511878B2 - - Google Patents

Info

Publication number
JPH0511878B2
JPH0511878B2 JP61103932A JP10393286A JPH0511878B2 JP H0511878 B2 JPH0511878 B2 JP H0511878B2 JP 61103932 A JP61103932 A JP 61103932A JP 10393286 A JP10393286 A JP 10393286A JP H0511878 B2 JPH0511878 B2 JP H0511878B2
Authority
JP
Japan
Prior art keywords
duct
reactor
reactor building
exhaust
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61103932A
Other languages
Japanese (ja)
Other versions
JPS62261995A (en
Inventor
Susumu Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Engineering Corp
Toshiba Corp
Original Assignee
Toshiba Engineering Corp
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Engineering Corp, Toshiba Corp filed Critical Toshiba Engineering Corp
Priority to JP61103932A priority Critical patent/JPS62261995A/en
Publication of JPS62261995A publication Critical patent/JPS62261995A/en
Publication of JPH0511878B2 publication Critical patent/JPH0511878B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Ventilation (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は可搬式の可燃性ガス濃度制御装置を収
容する収容部を原子炉建屋と共に換気する原子力
プラントの換気設備に係り、特に、換気設備の運
転停止時に収容部と原子炉建屋とを隔離するよう
にした原子力プラントの換気設備に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to ventilation equipment for a nuclear power plant that ventilates a housing section for accommodating a portable combustible gas concentration control device together with a nuclear reactor building. In particular, the present invention relates to ventilation equipment for a nuclear power plant that isolates a containment area from a reactor building when the ventilation equipment is shut down.

(従来の技術) 一般に、沸騰水型原子炉等の軽水炉を有する原
子力プラントでは、万一、冷却材喪失事故が発生
すると、原子炉格納容器内において、水−金属
(ジルコニウム)反応および水の放射線分解によ
つて水素および酸素の可燃性ガスが発生する恐れ
がある。
(Prior art) In general, in a nuclear power plant with a light water reactor such as a boiling water reactor, if a loss of coolant accident occurs, water-metal (zirconium) reactions and water radiation occur in the reactor containment vessel. Decomposition may generate flammable gases of hydrogen and oxygen.

これらの可燃性ガス(水素)の濃度が可燃限界
を越えて、何らかの原因によつて燃焼すると、そ
の燃焼が急激に進行して、原子炉格納容器に支障
を起こす恐れがある。
If the concentration of these combustible gases (hydrogen) exceeds the flammability limit and combusts for some reason, the combustion will progress rapidly and there is a risk that the reactor containment vessel will be affected.

このために、冷却材喪失事故時には原子炉格納
容器内の雰囲気を、水素・酸素を反応させる再結
合器へ導き再結合後、再び原子炉格納容器へ環流
する可燃性ガス濃度制御装置を、例えばA系、B
系の2系統の冗長系で設置している。
For this purpose, in the event of a loss of coolant accident, a combustible gas concentration control device is installed that guides the atmosphere inside the reactor containment vessel to a recombiner where hydrogen and oxygen react, and after recombination, flows back into the reactor containment vessel. A series, B
The system is installed with two redundant systems.

また、冷却材喪失事故時に原子炉格納容器内に
放出された放射性物質は原子炉格納容器より漏洩
し、例えば沸騰水型原子力発電所の場合はさらに
原子炉二次格納施設の原子炉建屋内に蓄えられ
る。この原子炉建屋内の放射性物質が環境中に漏
洩することを防止する目的で非常用ガス処理装置
が設置されている。非常用ガス処理装置について
も動的機器である排気フアンおよび弁は冗長性を
持たせて、例えば2系統設置している。
In addition, radioactive materials released into the reactor containment vessel during a loss of coolant accident leak from the reactor containment vessel, and for example, in the case of a boiling water nuclear power plant, they are further leaked into the reactor building of the secondary reactor containment facility. It can be stored. Emergency gas processing equipment is installed to prevent radioactive materials inside the reactor building from leaking into the environment. Regarding the emergency gas processing equipment, exhaust fans and valves, which are dynamic equipment, are provided with redundancy, for example, two systems are installed.

この非常用ガス処理装置は原子炉建屋内の雰囲
気を排気フアンにより高性能粒子用フイルタおよ
びよう素除去フイルタをそれぞれ通し、スタツク
から外気へ高所放出する。これにより、原子炉建
屋内の圧力は外気よりも負圧に維持されるから、
原子炉建屋内の放射性物質が直接環境へ漏洩する
のを防止することができる。
This emergency gas treatment system uses an exhaust fan to pass the atmosphere inside the reactor building through a high-performance particle filter and an iodine removal filter, and then discharges the atmosphere from the stack to the outside air. As a result, the pressure inside the reactor building is maintained at a lower pressure than the outside air.
It is possible to prevent radioactive materials inside the reactor building from directly leaking into the environment.

可燃性ガス濃度制御装置は従来では各原子力プ
ラント毎に原子炉建屋内に固定して設置してい
た。
Conventionally, combustible gas concentration control devices have been fixedly installed within the reactor building of each nuclear power plant.

しかしながら、冷却材喪失事故後の水の放射線
分解による水素・酸素の可燃性ガスの発生量は従
来考えられていた値よりもかなり小さい値である
という新しい知見が得られたことにより、再結合
器を起動させるまでにかなりの時間的余裕がある
ことが明らかになつた。
However, new knowledge has been obtained that the amount of combustible gases such as hydrogen and oxygen generated by radiolysis of water after a loss of coolant accident is much smaller than previously thought, and the recombiner It became clear that there was a considerable amount of time left before the system could be activated.

そこで、従来原子力プラント毎に設置された可
燃性ガス濃度制御装置を複数のプラント間で共用
し、可搬式とすることが考えられる。
Therefore, it is conceivable that the combustible gas concentration control device, which has conventionally been installed in each nuclear power plant, be shared among a plurality of plants and made portable.

この場合、前述のように冷却材喪失事故が発生
すると、原子炉建屋内には原子炉格納容器から漏
洩してきた放射性物質が充満しているため、仮に
作業員が可搬式の可燃性ガス濃度制御装置を設置
しようとして原子炉建屋内へ立ち入ろうとする
と、この作業員は大量の放射線被曝を受ける恐れ
がある。
In this case, if a loss of coolant accident occurs as described above, the reactor building is full of radioactive materials that have leaked from the reactor containment vessel, so workers temporarily use a portable combustible gas concentration control system. If the worker attempts to enter the reactor building to install equipment, he or she may be exposed to large amounts of radiation.

また事故後、原子炉建屋内は前述のように非常
用ガス処理装置によつて負圧に維持されている
が、作業員が原子炉建屋内に可搬式の可燃性ガス
濃度制御装置を搬入するために、原子炉建屋の機
器搬入口を開けると、原子炉建屋内の負圧が維持
できなくなる恐れがある。
Furthermore, after the accident, the inside of the reactor building was maintained at negative pressure by the emergency gas treatment equipment as mentioned above, but workers brought a portable combustible gas concentration control equipment into the reactor building. Therefore, if the equipment entrance of the reactor building is opened, the negative pressure inside the reactor building may not be maintained.

したがつて、可搬式の可燃性ガス濃度制御装置
の設置場所は従来と異なり、原子炉建屋から隔離
された場所に設定している。しかし一旦、可燃性
ガス濃度制御装置で原子炉格納容器内のガスの再
結合処理を開始した後は同制御装置内を放射能汚
染したガスが通ることから、同制御装置の収容部
内も非常用ガス処理装置もしくは同等のもので吸
気可能とする必要がある。また、原子炉通常運転
中は可燃性ガス濃度制御装置を収納する隔離壁に
囲まれた収容部も何らかの換気設備により適量の
換気を行い、雰囲気の清浄を図る必要がある。
Therefore, the installation location of the portable combustible gas concentration control device is different from the conventional one, and is set in a location isolated from the reactor building. However, once the combustible gas concentration control device starts recombining the gas in the reactor containment vessel, radioactively contaminated gas will pass through the control device, so the inside of the control device storage area will also be put into emergency use. It is necessary to be able to draw air with a gas treatment device or equivalent. Furthermore, during normal operation of the nuclear reactor, it is necessary to clean the atmosphere by providing an appropriate amount of ventilation to the storage area surrounded by the isolation wall that houses the combustible gas concentration control device using some type of ventilation equipment.

以上のことから、従来の原子力プラントでは可
燃性ガス濃度制御装置を収容する収容部を原子炉
建屋から隔離して設置し、通常時は原子炉建屋の
換気設備により収容部の換気を行い、可燃性ガス
濃度制御装置の作動後はこの収容部内を原子炉建
屋とみなして、非常用ガス処理装置にて処理する
ようにしている。
Based on the above, in conventional nuclear power plants, the storage area that houses the combustible gas concentration control device is installed isolated from the reactor building, and under normal conditions, the storage area is ventilated using the ventilation equipment in the reactor building. After the toxic gas concentration control device is activated, the inside of this storage space is treated as a reactor building and treated with an emergency gas treatment device.

このために、通常時の換気用として原子炉建屋
の換気設備から収容部に開放される給気ダクトお
よび排気ダクトを設けている。
For this purpose, an air supply duct and an exhaust duct are provided for normal ventilation, which are opened from the ventilation equipment of the reactor building to the housing section.

(発明が解決しようとする問題点) しかしながら、このような従来の原子力プラン
トでは、冷却材喪失事故時には原子炉建屋の換気
設備の運転が停止し、原子炉建屋内には原子炉格
納容器から漏洩してきた放射性物質が充満してお
り、給気ダクトおよび排気ダクトを通じて収容部
へさらに、放射性物質が漏洩してくる恐れがあ
る。これにより作業員が可燃性ガス濃度制御装置
を搬入する際に、大量の放射線被曝を受ける恐れ
がある。
(Problem to be solved by the invention) However, in such conventional nuclear power plants, in the event of a loss of coolant accident, the operation of the ventilation equipment in the reactor building is stopped, and leakage from the reactor containment vessel occurs in the reactor building. It is full of radioactive materials, and there is a risk that radioactive materials will further leak into the storage area through the air supply duct and exhaust duct. As a result, there is a risk that workers will be exposed to a large amount of radiation when transporting the combustible gas concentration control device.

そこで、本発明の目的は、冷却材喪失事故時の
事故発生時には原子炉建屋を収容部より隔離する
ことができる原子力プラントの換気設備を提供す
ることにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide ventilation equipment for a nuclear power plant that can isolate a reactor building from a containment area in the event of a loss of coolant accident.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、原子炉圧力容器を格納する原子炉格
納容器をさらに収容する原子炉建屋内に空気を供
給する給気ダクトと、前記原子炉建屋内の空気を
外部に排気する排気ダクトと、前記原子炉建屋と
隔離して設置されて可燃性ガスの濃度を低減させ
搬出入が可能な可搬式可燃性ガス濃度制御装置を
収容しかつこの可搬式可燃性ガス濃度制御装置を
搬出入する機器搬出入扉を前記原子炉建屋から隔
離して配設した収容部の内部を、前記給気ダクト
および前記排気ダクトの途中にそれぞれ連通させ
る給気分岐ダクトおよび排気分岐ダクトとを有す
る原子力プラントの換気設備であり、かつ前記給
気ダクト、前記排気ダクト、前記給気分岐ダクト
および前記排気分岐ダクトに、前記原子炉格納容
器から前記原子炉建屋内へ放射性物質が漏洩する
可能性のある事故が発生したときに出力される事
故信号を受けたときに閉じ前記収容部を前記原子
炉建屋より隔離する隔離ダンパをそれぞれ設けた
ことを特徴とする。
(Means for Solving the Problems) The present invention provides an air supply duct that supplies air into a reactor building that further accommodates a reactor containment vessel that stores a reactor pressure vessel, and This portable flammable gas concentration control device is installed separately from the reactor building to reduce the concentration of flammable gas and can be carried in and out. An air supply branch duct and an exhaust air outlet that connect the inside of a housing section in which an equipment loading/unloading door for carrying in and out of a gas concentration control device is arranged isolated from the reactor building to the middle of the air supply duct and the exhaust duct, respectively. The ventilation equipment for a nuclear power plant has a branch duct, and the supply air duct, the exhaust duct, the supply air branch duct, and the exhaust branch duct are provided with radioactive materials from the reactor containment vessel to the reactor building. The reactor is characterized in that an isolation damper is provided, which closes when receiving an accident signal that is output when an accident that may cause leakage occurs, and isolates the accommodation section from the reactor building.

(作用) 通常時、原子炉建屋は給気分岐ダクトと排気分
岐ダクトを介して収容部に連通している。
(Function) Under normal conditions, the reactor building communicates with the housing section via an air supply branch duct and an exhaust branch duct.

したがつて、万一、原子炉圧力容器に冷却材喪
失事故等が発生すると、放射性物質が原子炉圧力
容器から原子炉格納容器を経て、万一、原子炉建
屋内へ漏洩する可能性が生ずる。この場合はかか
る放射性物質が給、排気分岐ダクトを介して収容
部内に漏洩しようとするが、これら給、排気分岐
ダクトは、原子炉格納容器から原子炉建屋内へ放
射性物質が漏洩する可能性のある事故時に発生す
る事故信号により既に自動的に閉じている隔離ダ
ンパにより閉じられているので、放射性物質が
給、排気分岐ダクトを通して収容部内に漏洩する
のを防止することができる。
Therefore, in the unlikely event that a loss of coolant accident occurs in the reactor pressure vessel, radioactive materials may leak from the reactor pressure vessel through the reactor containment vessel and into the reactor building. . In this case, the radioactive materials are likely to leak into the containment area through the supply and exhaust branch ducts, but these supply and exhaust branch ducts are designed to prevent radioactive materials from leaking from the reactor containment vessel into the reactor building. Since the isolation damper is closed automatically by an accident signal generated in the event of an accident, it is possible to prevent radioactive materials from leaking into the storage space through the supply and exhaust branch ducts.

また、原子炉建屋は隔離ダンパにより収容部か
ら隔離されているので、可搬式可燃性ガス濃度制
御装置を収容部内へ搬入する際に、その運転員等
が大量の放射線を被曝するのを防止することがで
きる。
In addition, since the reactor building is isolated from the containment area by an isolation damper, it is possible to prevent operators and others from being exposed to large amounts of radiation when transporting the portable combustible gas concentration control device into the containment area. be able to.

また、可燃性ガス濃度制御装置を収容部へ搬入
するために、その機器搬出入扉を開けても、既に
原子炉建屋は収容部より隔離されていて、連通し
ていないので、気密性が維持され、非常用ガス処
理装置の作動により原子炉建屋内を負圧に維持す
ることができる。
In addition, even if the equipment loading/unloading door is opened to transport the combustible gas concentration control device into the storage area, the reactor building is already isolated from the storage area and there is no communication, so airtightness is maintained. It is possible to maintain negative pressure inside the reactor building by operating the emergency gas treatment equipment.

(実施例) 以下、本発明の実施例について第1図〜第3図
を参照して説明する。なお、図中、共通部分には
同一符号を付している。
(Example) Examples of the present invention will be described below with reference to FIGS. 1 to 3. Note that in the drawings, common parts are denoted by the same reference numerals.

第1図は本発明の一実施例の全体構成を示して
おり、原子炉建屋1内には図示しない原子炉圧力
容器を格納する原子炉格納容器2が収容されてい
る。
FIG. 1 shows the overall configuration of an embodiment of the present invention, in which a reactor building 1 houses a reactor containment vessel 2 that houses a reactor pressure vessel (not shown).

原子炉建屋1はその内部に外気を給気する給気
ダクト3Aと、その内部の空気をスタツク3Cよ
り外気に排気する排気ダクト3Bとを有する換気
設備3を備えており、給気ダクト3Aに給気フイ
ルタ4および給気フアン5を、排気ダクト3Bに
排気フイルタ6および排気フアン7をそれぞれ設
けている。
The reactor building 1 is equipped with a ventilation equipment 3 having an air supply duct 3A for supplying outside air into the interior thereof, and an exhaust duct 3B for exhausting the air inside from the stack 3C to the outside air. An air supply filter 4 and an air intake fan 5 are provided in the exhaust duct 3B, and an exhaust filter 6 and an exhaust fan 7 are provided in the exhaust duct 3B, respectively.

また、原子炉建屋1には非常用ガス処理装置8
が設けられており、これは原子炉建屋1内を負圧
に保持して、冷却材喪失事故等の事故時に原子炉
格納容器2より漏洩した核分裂生成物が外気へ拡
散するのを防止し、同時に原子炉建屋1内の空気
をフアン8Aにより処理フイルタ装置8Bを通し
て放射性物質を除去してから、スタツク3Cより
外気へ高所放出する構成になつている。
In addition, the reactor building 1 includes an emergency gas treatment device 8.
is provided, which maintains negative pressure inside the reactor building 1 to prevent fission products leaking from the reactor containment vessel 2 from diffusing into the outside air in the event of an accident such as a loss of coolant accident. At the same time, the air inside the reactor building 1 is configured to remove radioactive substances from the air through a processing filter device 8B using a fan 8A, and then to be discharged from a stack 3C to a high place into the outside air.

原子炉建屋1に隣接して立設された収容部10
は可燃性ガス濃度制御装置11を収容する気密構
造に形成され、かつ可燃性ガス濃度制御装置11
を搬出入する機器搬出入扉(図示せず)を原子炉
建屋から隔離して有し、給気分岐ダクト12、排
気分岐ダクト13および複数本の連絡ダクト1
4,15を介して、原子炉建屋1と連通してい
る。
Accommodation section 10 erected adjacent to reactor building 1
is formed into an airtight structure housing the combustible gas concentration control device 11, and the combustible gas concentration control device 11
It has an equipment loading/unloading door (not shown) separated from the reactor building for loading and unloading, and includes an air supply branch duct 12, an exhaust branch duct 13, and a plurality of communication ducts 1.
4 and 15, it communicates with the reactor building 1.

可燃性ガス濃度制御装置11は、水−金属反応
や放射線分解により水素の発生があつた場合に、
原子炉格納容器2内のガスを吸気し、再結合器で
ガス中の水素と酸素とを結合させ、水素の急激な
燃焼を未然に防止するものであり、例えば2台1
1A,11Bを一組として1つの収容部10内に
収容されている。
The combustible gas concentration control device 11 controls when hydrogen is generated due to water-metal reaction or radiolysis.
This device sucks gas in the reactor containment vessel 2, combines hydrogen and oxygen in the gas with a recombiner, and prevents rapid combustion of hydrogen.
1A and 11B are housed in one housing section 10 as a set.

上記給気分岐ダクト12は原子炉建屋1内に伸
びる給気ダクト3Aの内端部より分岐して収容部
10内にて開口し、排気分岐ダクト13は原子炉
建屋1内に伸びる排気ダクト3Bの内端部より分
岐して収容部10内にて開口している。
The supply air branch duct 12 branches from the inner end of the supply air duct 3A extending into the reactor building 1 and opens in the housing part 10, and the exhaust branch duct 13 is an exhaust duct 3B extending into the reactor building 1. It branches from the inner end and opens in the housing part 10.

したがつて、冷却材喪失事故等で換気設備3の
運転が停止されると、原子炉建屋1の収容部10
とは、給気分岐ダクト12および排気分岐ダクト
13を通して連通される。
Therefore, if the operation of the ventilation equipment 3 is stopped due to a loss of coolant accident, etc., the housing section 10 of the reactor building 1
are communicated with through an air supply branch duct 12 and an exhaust branch duct 13.

また、原子炉建屋1と収容部10とは複数本の
連絡ダクト14,15を通して連通している。
Further, the reactor building 1 and the housing section 10 communicate with each other through a plurality of communication ducts 14 and 15.

そこで、原子炉建屋1と収容部10とを連通さ
せる給気分岐ダクト12、排気分岐ダクト13お
よび各連絡ダクト14,15の途中には、原子炉
格納容器2から原子炉建屋1内へ放射性物質が漏
洩する可能性のある事故が発生したときに出力さ
れる事故信号(以下単に事故信号と略す。)、例え
ば、冷却材喪失事故信号を受けてダクトを閉鎖す
る隔離ダンパ16を複数台、例えば2台直列状に
それぞれ介装し、これら全隔離ダンパ16の閉鎖
により、原子炉建屋1を収容部10より隔離する
ことができる。
Therefore, in the middle of the supply air branch duct 12, the exhaust branch duct 13, and each communication duct 14, 15, which communicate the reactor building 1 and the housing section 10, radioactive materials are transported from the reactor containment vessel 2 into the reactor building 1. A plurality of isolation dampers 16 are installed to close the duct in response to an accident signal (hereinafter simply referred to as an accident signal), for example, a loss of coolant accident signal, which is output when an accident that may cause a leakage of coolant occurs. Two dampers are installed in series, and by closing all isolation dampers 16, the reactor building 1 can be isolated from the accommodation section 10.

また、隔離ダンパ16は、給気ダクト3Aおよ
び排気ダクト3Bの途中にも、例えば2台を直列
状に介装し、これら隔離ダンパ16の全台閉鎖時
に原子炉建屋1を外気より隔離するようになつて
いる。
In addition, two isolation dampers 16, for example, are installed in series in the middle of the air supply duct 3A and the exhaust duct 3B, so that the reactor building 1 is isolated from the outside air when all of these isolation dampers 16 are closed. It's getting old.

これら連絡ダクト14,15の両隔離ダンパ1
6はそれぞれ独立した電源より給電され、図示し
ない各駆動装置により自動操作される。
Both isolation dampers 1 of these communication ducts 14 and 15
6 are each supplied with power from an independent power source and are automatically operated by each drive device (not shown).

次に本実施例の作用を述べる。 Next, the operation of this embodiment will be described.

原子炉通常運転中は隔離ダンパ16が全台開放
されており、原子炉建屋1内各区域および収容部
10内は換気設備3により換気され、給気ダクト
3Aおよび給気分岐ダクト12より新鮮な外気を
取入れる一方、排気ダクト3Bおよび排気分岐ダ
クト13を通じてスタツク3Cより外気へ放出さ
れる。
During normal reactor operation, all the isolation dampers 16 are opened, and each area in the reactor building 1 and the inside of the housing section 10 are ventilated by the ventilation equipment 3, and fresh air is removed from the supply air duct 3A and the supply air branch duct 12. While outside air is taken in, it is discharged from the stack 3C to the outside air through the exhaust duct 3B and the exhaust branch duct 13.

ここで、万一原子炉格納容器2から原子炉建屋
1内へ放射性物質が漏洩する可能性のある事故、
例えば冷却材喪失事故が発生すると、直ちに非常
用ガス処理装置8が自動起動し、原子炉格納容器
2より漏洩する放射性物質で充満する原子炉建屋
1内のガスを処理フイルタ装置8Bに導いて、放
射能を減衰させ、フアン8Aによりスタツク3C
から外気へ高所放出する。同時に、原子炉建屋1
内の圧力を大気よりも負圧に維持し、原子炉建屋
1内のガスが直接環境へ漏洩するのを未然に防止
している。
Here, in the unlikely event that radioactive materials leak from the reactor containment vessel 2 into the reactor building 1,
For example, when a loss of coolant accident occurs, the emergency gas treatment device 8 automatically starts up immediately and guides the gas inside the reactor building 1, which is filled with radioactive materials leaking from the reactor containment vessel 2, to the treatment filter device 8B. Attenuate radioactivity and stack 3C with fan 8A
It is released into the outside air at a high place. At the same time, reactor building 1
The pressure inside the reactor building 1 is maintained at a lower pressure than the atmosphere, thereby preventing the gas inside the reactor building 1 from directly leaking into the environment.

一方、冷却材喪失事故信号により換気設備3の
運転を直ちに自動停止し、全隔離ダンパ16を直
ちに閉鎖して、給排気ダクト3A,3B、給排気
分岐ダクト12,13および各連絡ダクト14,
15を直ちに閉じ、原子炉建屋1を外気と収容部
10とから隔離する。
On the other hand, in response to the coolant loss accident signal, the operation of the ventilation equipment 3 is immediately automatically stopped, all isolation dampers 16 are immediately closed, and the supply and exhaust ducts 3A and 3B, the supply and exhaust branch ducts 12 and 13, and each communication duct 14,
15 is immediately closed, and the reactor building 1 is isolated from the outside air and the housing section 10.

これにより、収容部10内には原子炉建屋1か
らの放射性ガスの侵入が防止されるので、この収
容部10内へ可燃性ガス濃度制御装置11を搬入
する際に被曝する作業員の放射線被曝量を非常に
低減することができる。そして、可燃性ガス濃度
制御装置11の収容部10への搬入および据付が
完了して、作業員が収容部10から退出し、可燃
性ガス濃度制御装置11が運転された後には、こ
の可燃性ガス濃度制御装置11内を原子炉格納容
器1内の放射能汚染したガスが通るから、収容部
10内のガスを非常用ガス処理装置8で外気へ排
気する必要がある。
This prevents radioactive gas from entering the reactor building 1 into the housing section 10, so workers who are exposed to radiation when transporting the combustible gas concentration control device 11 into the housing section 10 are exposed to radiation. The amount can be greatly reduced. After the combustible gas concentration control device 11 has been carried into the storage section 10 and installed, the worker leaves the storage section 10, and the combustible gas concentration control device 11 is operated, the combustible gas concentration control device 11 is Since the radioactively contaminated gas in the reactor containment vessel 1 passes through the gas concentration control device 11, it is necessary to exhaust the gas in the storage section 10 to the outside air by the emergency gas treatment device 8.

そこで、各種連絡ダクト14,15の各隔離ダ
ンパ16を遠隔手動操作によつて開けて、原子炉
建屋1と収容部10とを空間的に連通させ、収容
部10を負圧に維持し、放射性ガスが外気へ漏洩
するのを防止している。
Therefore, the isolation dampers 16 of the various communication ducts 14 and 15 are opened by remote manual operation to spatially communicate the reactor building 1 and the accommodation section 10, and the accommodation section 10 is maintained at a negative pressure and radioactive materials are released. Prevents gas from leaking into the outside air.

なお、上述した本発明の実施例において原子炉
建屋1と収容部10を分けて説明したが、原子炉
建屋1と収容部10は隔離して構成されていれば
よく、一つの建屋として一体的に構成されていて
もよい。
In addition, in the embodiment of the present invention described above, the reactor building 1 and the accommodation section 10 were explained separately, but the reactor building 1 and the accommodation section 10 only need to be configured separately, and can be integrated as one building. It may be configured as follows.

第2図は本発明の他の実施例の全体構成を示
し、本実施例は第1図の実施例の各連絡ダクト1
4,15を省略する一方、排気分岐ダクト13の
収容部10内に伸びる箇所に各隔離ダンパ16を
手動操作自在に設けたものである。そして、冷却
材喪失事故発生時にはその事故信号により全隔離
ダンパ16を閉じて原子炉建屋1を収容部10よ
り隔離する。
FIG. 2 shows the overall configuration of another embodiment of the present invention, and this embodiment includes each communication duct 1 of the embodiment of FIG.
4 and 15 are omitted, and each isolation damper 16 is provided at a portion of the exhaust branch duct 13 extending into the accommodation portion 10 so as to be manually operable. When a loss of coolant accident occurs, all isolation dampers 16 are closed in response to the accident signal to isolate the reactor building 1 from the accommodation section 10.

しかる後に可燃性ガス濃度制御装置11を収容
部10内に搬入し、据付を完了して作業員が収容
部10より退出した後、排気分岐ダクト13の各
隔離ダンパ16を遠隔手動操作によつて事故信号
を解除して開放することにより原子炉建屋1と収
容部10とを空間的に連通する。したがつて、非
常用ガス処理装置8の運転により、収容部10内
のガスは排気分岐ダクト13および排気ダクト3
Bを通してスタツク3Cより外気へ放出され、収
納部10内が負圧に保持され、放射性ガスが外部
を漏洩するのを防止することができる。排気分岐
ダクト13の各隔離ダンパ16は相互に独立した
図示しない各電源より給電される駆動装置によ
り、それぞれ自動操作されるが、いずれか一方の
隔離ダンパ16の電源の喪失等により開放しない
場合には、その隔離ダンパ16を手動操作により
開放する。したがつて、排気分岐ダクト13の各
隔離ダンパ16は収容部10内に設置される。
Thereafter, the combustible gas concentration control device 11 is carried into the housing section 10, and after the installation is completed and the worker leaves the housing section 10, each isolation damper 16 of the exhaust branch duct 13 is operated by remote manual operation. By canceling the accident signal and opening the reactor building 1, the reactor building 1 and the housing section 10 are spatially communicated with each other. Therefore, due to the operation of the emergency gas treatment device 8, the gas in the storage section 10 is transferred to the exhaust branch duct 13 and the exhaust duct 3.
The radioactive gas is discharged from the stack 3C to the outside air through the gas B, and the inside of the storage section 10 is maintained at a negative pressure, thereby preventing the radioactive gas from leaking to the outside. Each isolation damper 16 of the exhaust branch duct 13 is automatically operated by a drive device supplied with power from each independent power source (not shown), but if one of the isolation dampers 16 does not open due to loss of power, etc. The isolation damper 16 is opened by manual operation. Therefore, each isolation damper 16 of the exhaust branch duct 13 is installed within the housing part 10.

第3図は本発明のさらに他の実施例を示し、本
実施例は例えば2台の可燃性ガス濃度制御装置1
1A,11Bをそれぞれ1台ずつ収容する収容部
10をそれぞれ個別10A,10Bに設けた場合
の実施例である。
FIG. 3 shows still another embodiment of the present invention, in which, for example, two combustible gas concentration control devices 1
This is an embodiment in which accommodating portions 10 each accommodating one unit 1A and 11B are provided in individual units 10A and 10B, respectively.

第3図に示すように本実施例では給気分岐ダク
ト12の先端部は2股12A,12Bに分岐し
て、各収容部10A,10B内に伸び、同様に排
気分岐ダクト13の先端部も2股13A,13B
に分岐して、各収容部10A,10B内に伸び、
各収容部10A,10Bを給排気する。
As shown in FIG. 3, in this embodiment, the tip of the air supply branch duct 12 branches into two forks 12A, 12B and extends into the respective accommodating parts 10A, 10B, and similarly, the tip of the exhaust branch duct 13 also branches. 2 prongs 13A, 13B
It branches into each housing part 10A, 10B,
Each housing section 10A, 10B is supplied and exhausted.

また、これらの給気分岐ダクト12A,12B
および排気分岐ダクト13A,13Bの途中に
は、例えば冷却材喪失事故時その事故信号により
閉鎖する隔離ダンパ16を設けている。
In addition, these air supply branch ducts 12A, 12B
An isolation damper 16 is provided in the middle of the exhaust branch ducts 13A and 13B, which closes in response to an accident signal in the event of a loss of coolant accident, for example.

したがつて、冷却材喪失事故時には全隔離ダン
パ16が自動閉鎖され、各収容部10A,10B
が原子炉建屋1より隔離され、放射性物質が原子
炉建屋1から各収容部10A,10Bへ漏洩する
のを防止することができる。
Therefore, in the event of a loss of coolant accident, all isolation dampers 16 are automatically closed, and each housing section 10A, 10B
is isolated from the reactor building 1, and it is possible to prevent radioactive substances from leaking from the reactor building 1 to the respective housing sections 10A and 10B.

また、事故後、各収容部10A,10Bが一旦
隔離されてから、ここに搬入された可燃性ガス濃
度制御装置3A,3Bを作動させた場合は各収容
部10A,10B内ガスを非常用ガス処理装置8
で吸気し、各収容部10A,10B内の圧力を大
気より負圧に維持する必要がある。
In addition, if the combustible gas concentration control devices 3A, 3B that were brought in after the accident have been isolated, the gas in each accommodation section 10A, 10B will be converted into emergency gas. Processing device 8
It is necessary to maintain the pressure inside each housing part 10A, 10B at a pressure lower than that of the atmosphere.

このために、各可燃性ガス濃度制御装置11
A,11Bを各収容部10A,10B内へ搬入
し、据付を完了して、作業員が各収納部10A,
10Bから退出した後、各排気分岐ダクト13
A,13Bの各隔離ダンパ16を遠隔手動操作に
よつて事故信号を解除して開放することにより、
原子炉建屋1に各収納部10A,10Bを空間的
に連通させる。
For this purpose, each combustible gas concentration control device 11
A, 11B are carried into each storage section 10A, 10B, installation is completed, and the worker installs each storage section 10A, 11B.
After exiting from 10B, each exhaust branch duct 13
By releasing the accident signal and opening each isolation damper 16 of A and 13B by remote manual operation,
Each storage section 10A, 10B is spatially communicated with the reactor building 1.

このように構成された本実施例によれば、2台
の可燃性ガス濃度制御装置11A,11Bのいず
れか一方が故障した場合であつても、他の一方に
より、原子炉格納容器2内の可燃性ガスの濃度を
低減することができる。
According to this embodiment configured in this manner, even if either one of the two combustible gas concentration control devices 11A, 11B fails, the other one can control the temperature inside the reactor containment vessel 2. The concentration of flammable gas can be reduced.

なお、本実施例では給排気ダクト12,13の
各隔離ダンパ16は上記各実施例と相違して1台
ずつ装着されているが、両収容部10A,10B
のいずれか一方を原子炉建屋1より隔離でき、か
つ連通できるので、不都合はない。
In addition, in this embodiment, unlike each of the above-mentioned embodiments, one isolation damper 16 is installed in each of the air supply and exhaust ducts 12 and 13, but both housing portions 10A and 10B
Since either one of the two can be isolated from the reactor building 1 and communicated with the other, there is no problem.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、原子炉格納容器
から原子炉建屋内へ放射性物質が漏洩する可能性
のある事故が発生し、当該事故により出力される
事故信号を受けた時に閉鎖される隔離ダンパによ
り、収容部を原子炉建屋より隔離することができ
るので、収容部へ可燃性ガス濃度制御装置を搬入
し、据付ける際の作業員の放射線被曝量を低減す
ることができる。
As explained above, the present invention provides an isolation damper that is closed when an accident in which radioactive materials may leak from the reactor containment vessel into the reactor building occurs and an accident signal output from the accident is received. As a result, the accommodating section can be isolated from the reactor building, so it is possible to reduce the amount of radiation exposure of workers when the flammable gas concentration control device is carried into the accommodating section and installed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る原子力プラントの換気設
備の一実施例の全体構成を示す模式図、第2図は
本発明の他の実施例の全体構成を示す模式図、第
3図は本発明のさらに他の実施例の全体構成を示
す模式図である。 1……原子炉建屋、2……原子炉格納容器、3
……換気設備、3A……給気ダクト、3B……排
気ダクト、8……非常用ガス処理装置、10,1
0A,10B……収容部、11,11A,11B
……可燃性ガス濃度制御装置、12,12A,1
2B……給気分岐ダクト、13,13A,13B
……排気分岐ダクト、14,15……連絡ダク
ト、16……隔離ダンパ。
FIG. 1 is a schematic diagram showing the overall configuration of an embodiment of ventilation equipment for a nuclear power plant according to the present invention, FIG. 2 is a schematic diagram showing the overall configuration of another embodiment of the present invention, and FIG. FIG. 3 is a schematic diagram showing the overall configuration of still another example. 1... Reactor building, 2... Reactor containment vessel, 3
...Ventilation equipment, 3A...Air supply duct, 3B...Exhaust duct, 8...Emergency gas processing device, 10,1
0A, 10B...accommodating section, 11, 11A, 11B
...Flammable gas concentration control device, 12, 12A, 1
2B...Air supply branch duct, 13, 13A, 13B
...Exhaust branch duct, 14,15...Connection duct, 16...Isolation damper.

Claims (1)

【特許請求の範囲】 1 原子炉圧力容器を格納する原子炉格納容器を
さらに収容する原子炉建屋内に空気を供給する給
気ダクトと、前記原子炉建屋内の空気を外部に排
気する排気ダクトと、前記原子炉建屋と隔離して
設置されて可燃性ガスの濃度を低減させ搬出入が
可能な可搬式可燃性ガス濃度制御装置を収容しか
つこの可搬式可燃性ガス濃度制御装置を搬出入す
る機器搬出入扉を前記原子炉建屋から隔離して配
設した収容部の内部を、前記給気ダクトおよび前
記排気ダクトの途中にそれぞれ連通させる給気分
岐ダクトおよび排気分岐ダクトとを有する原子力
プラントの換気設備であり、かつ前記給気ダク
ト、前記排気ダクト、前記給気分岐ダクトおよび
前記排気分岐ダクトに、前記原子炉格納容器から
前記原子炉建屋内へ放射性物質が漏洩する可能性
のある事故が発生したときに出力される事故信号
を受けたときに閉じ前記収容部を前記原子炉建屋
より隔離する隔離ダンパをそれぞれ設けたことを
特徴とする原子力プラントの換気設備。 2 隔離ダンパは少なくとも2台を直列状に設け
ている特許請求の範囲第1項に記載の原子力プラ
ントの換気設備。 3 事故信号が、原子炉圧力容器の冷却材喪失事
故の発生時に出力される冷却材喪失事故信号であ
る特許請求の範囲第1項または第2項に記載の原
子力プラントの換気設備。
[Scope of Claims] 1. An air supply duct that supplies air into a reactor building that further accommodates a reactor containment vessel that houses a reactor pressure vessel, and an exhaust duct that exhausts air inside the reactor building to the outside. and a portable combustible gas concentration control device that is installed separately from the reactor building and can be carried in and out to reduce the concentration of flammable gas, and the portable combustible gas concentration control device can be carried in and out. A nuclear power plant having an air supply branch duct and an exhaust branch duct that connect the inside of a housing part in which an equipment loading/unloading door is arranged to be isolated from the reactor building to the middle of the air supply duct and the exhaust duct, respectively. accident in which radioactive materials may leak from the reactor containment vessel into the reactor building into the ventilation equipment, and into the supply air duct, the exhaust duct, the supply air branch duct, and the exhaust branch duct. 1. A ventilation system for a nuclear power plant, characterized in that isolation dampers are provided, each of which closes when receiving an accident signal output when an accident occurs to isolate the accommodation section from the reactor building. 2. The ventilation equipment for a nuclear power plant according to claim 1, wherein at least two isolation dampers are provided in series. 3. The ventilation equipment for a nuclear power plant according to claim 1 or 2, wherein the accident signal is a loss of coolant accident signal that is output when a loss of coolant accident occurs in a reactor pressure vessel.
JP61103932A 1986-05-08 1986-05-08 Ventilation facility for nuclear power plant Granted JPS62261995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61103932A JPS62261995A (en) 1986-05-08 1986-05-08 Ventilation facility for nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61103932A JPS62261995A (en) 1986-05-08 1986-05-08 Ventilation facility for nuclear power plant

Publications (2)

Publication Number Publication Date
JPS62261995A JPS62261995A (en) 1987-11-14
JPH0511878B2 true JPH0511878B2 (en) 1993-02-16

Family

ID=14367207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61103932A Granted JPS62261995A (en) 1986-05-08 1986-05-08 Ventilation facility for nuclear power plant

Country Status (1)

Country Link
JP (1) JPS62261995A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069121A (en) * 2007-09-18 2009-04-02 Hitachi-Ge Nuclear Energy Ltd Nuclear power plant

Also Published As

Publication number Publication date
JPS62261995A (en) 1987-11-14

Similar Documents

Publication Publication Date Title
JPH0511598B2 (en)
JPH0511878B2 (en)
EP2515310B1 (en) Shielded protective tent assembly
JP2963728B2 (en) Emission radioactivity reduction device
US4117333A (en) Nuclear fuel element leak detection system
JP2005043131A (en) Exhaust gas treatment facility for nuclear reactor building
JPH11311693A (en) Taking-out method of nuclear reactor pressurized vessel and opening and closing device therefor
JPH10293196A (en) Flammable gas concentration controller
Sissingh et al. Tritium facility at TFTR
JPH1090475A (en) Mox fuel treatment facility and mox fuel treatment method
JPS63293497A (en) Vent device for reactor container
US3667370A (en) Nuclear containment emergency ventilating system
JP3124377B2 (en) Reactor containment vessel
JPH0140316B2 (en)
JPS6333193Y2 (en)
JP2024051957A (en) Radioactive material storage device and method
JPS622220B2 (en)
JPH04351995A (en) Gas treating for emergency of nuclear reactor
JPS61139798A (en) Controller for concentration of combustible gas in nuclear reactor
JPS6175297A (en) Controller for atmosphere in container for nuclear reactor
JPH04369496A (en) Ventilation and air conditioning system for reactor power plant turbine buildinc
JPH0582920B2 (en)
JPH1194979A (en) Containment vent equipment
PICCOT Ventilation systems at Atomics International
JP2000292581A (en) Reactor containment vessel

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term