JPH05118626A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH05118626A
JPH05118626A JP3279766A JP27976691A JPH05118626A JP H05118626 A JPH05118626 A JP H05118626A JP 3279766 A JP3279766 A JP 3279766A JP 27976691 A JP27976691 A JP 27976691A JP H05118626 A JPH05118626 A JP H05118626A
Authority
JP
Japan
Prior art keywords
compressor
air conditioner
operating frequency
value
maximum amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3279766A
Other languages
Japanese (ja)
Inventor
Kazuya Oyama
和也 尾山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP3279766A priority Critical patent/JPH05118626A/en
Publication of JPH05118626A publication Critical patent/JPH05118626A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To provide an air conditioner in which a compressor can be operated practically at the number of rotation approximating to its target number of rotation and a low vibration occurs in it. CONSTITUTION:In an air conditioner 1, a curve Fa expressing a relation between an operating frequency M of a compressor 2 and an inverse number 1/Am of the maximum amplitude value at each of the portions of the air conditioner 1 is set in advance by a control part 6 of the air conditioner. Then, an operation part 4 for calculating a temporary number of rotation of the compressor calculates a temporary operating frequency Mt to be applied as a target for the compressor 2 in response to the air conditioning data such as a room temperature and the like. Then, the control part 6 of the compressor makes a membership function Fm based on the temporary operating frequency Mt and sets a range of number of rotation having a desired width based on the temporary operating frequency Mt by using the membership function Fm and the curve Fa. Then, the segment 9 for determining the number of rotation of the compressor determines the operating frequency Ma of the compressor 2 getting the maximum amplitude width which is the most suitable in the operating frequency range having the desired width in reference to the curve Fa and then outputs it to the compressor 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,冷媒を圧縮する圧縮機
の回転数を制御することにより空気調和能力を調整する
空気調和機に係り,特に,実用上の空気調和能力を保持
しつつ機内各部の振動を抑えることのできる空気調和機
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner that adjusts the air conditioning capacity by controlling the rotational speed of a compressor that compresses a refrigerant, and more particularly to an air conditioner that maintains practical air conditioning capacity. The present invention relates to an air conditioner capable of suppressing vibration of each part.

【0002】[0002]

【従来の技術】家庭用もしくは産業用の空気調和機とし
ては,室内空気の温度や湿度といった条件に応じて冷凍
サイクルの圧縮機の回転数を制御することにより目標と
する温度や湿度に空気調和を行うものが広く用いられて
いる。ところで,上記したような空気調和機において
は,圧縮機の回転数を決定する例えば電源周波数,即ち
運転周波数と,空気調和機のいずれかの部分の共振周波
数とが同じ値になることがある。このような場合には空
気調和機の振動や騒音が非常に大きくなり,その運転周
波数で長時間運転を行うと,最悪の場合,上記振動によ
り冷媒管等が破損することもあり得る。そこで,大きな
振動を生ずることなく上記圧縮機の回転数制御を行うこ
とのできる空気調和機の一例を図6に示す。同図に示す
空気調和機1a では空気調和データ検出部3により検出
された,冷凍サイクルの室内熱交換器や室外熱交換器
(いずれも図外)の温度,室温,外気温度等といった室
内空気の空気調和のために必要な空気調和データに基づ
いて,圧縮機制御部6a が圧縮機2の最適な運転周波数
を決定し,この運転周波数に応じて圧縮機の回転数を制
御するようになっている。具体的には,上記圧縮機2の
運転周波数(回転数に対応)と上記空気調和機1 a のい
ずれかの部分に設けられた複数個の振動検出部5からの
最大振幅値との関係を予め求めておき,これらの関係か
ら上記振動が十分に小さな状態で運転し得る運転周波数
を複数個選定しておき,これらの運転周波数のいずれか
により圧縮機2の制御が行われていた。上記したような
最大振幅値Am と圧縮機2の回転数に対応した運転周波
数Mとの関係を図7の曲線に示す。図7中において,D
1〜D6は,ある程度振動が小さい時の6つの運転周波
数段階を示し,これらは上記した曲線から予め設定さ
れ,上記圧縮機制御部6a の図外のメモリに格納されて
いる。尚,圧縮機2は,当該圧縮機2へ出力される電源
周波数に係る信号に対してほぼ同じ値の周波数で回転す
ることが知られているため,回転周波数の検知部を別途
設ける必要はなく,上記圧縮機2へ出力される信号の周
波数が上記運転周波数Mとされる。上記空気調和機1a
では,空気調和データ検出部3により検出された空気調
和データに基づいて,圧縮機制御部6a が仮の運転周波
数を求め,更に例えば当該仮の運転周波数に最も近い値
の運転周波数段階D1〜D6のいずれかを選定し,これ
を圧縮機2の運転周波数Mとして出力していた。これに
より,上記空気調和機1a の振動をある程度抑えつつ上
記圧縮機2の実用上の制御を行うことができていた。一
方,上記したような空気調和機の別例としては,図8に
示す空気調和機1bが挙げられる。上記空気調和機1b
によれば,圧縮機仮回転数演算部4a が上記空気調和デ
ータ検出部3からの空気調和データを基に,まず目標と
する仮の運転周波数Jを決定し,これを圧縮機制御部6
b に出力する。そこで,上記圧縮機制御部6b は,上記
仮の回転周波数Jに応じて一旦圧縮機2の運転を行い,
振動検出部5により検知された空気調和機1b の振動の
大きさ(振幅)が予め設定された基準値を越えているか
いないかを判定する。そして,上記振幅が上記基準値を
越えていない場合には,上記仮の回転周波数Jのままで
圧縮機2を運転し,越えている場合はその時検出された
振幅Kを記憶する。次に,上記仮の運転周波数Jより所
定幅分小さな運転周波数で運転し,このときの振幅Lを
検出し記憶する。今度は逆に上記仮の運転周波数Jより
所定幅分高い運転周波数で運転し,このときの振幅Pを
検出し記憶する。そして,上記記憶されている振幅K,
L,Pの内で最も小さな値の振幅を抽出し,この振幅に
対応する運転周波数により上記圧縮機2の運転を行うよ
うになっている。尚,上記振幅K,L,Pがいずれも上
記基準値を越えている場合には,少なくとも最小の振幅
値が上記基準値以下になるまで同様の処理が繰り返し実
行されて上記運転周波数が変更されて決定される。但
し,上記仮の運転周波数Jにおける振幅Kが他の振幅
L,Pより小さな例えば極小値であった時は,上記仮の
運転周波数Jのままで圧縮機2の運転が行われる。
2. Description of the Related Art As a home or industrial air conditioner
For example, refrigerating the room air according to the temperature and humidity conditions.
By controlling the number of revolutions of the compressor in the cycle,
Widely used are those that adjust the air temperature and humidity
There is. By the way, in the above-mentioned air conditioner
Determines the number of revolutions of the compressor.
Operating frequency and resonance frequency of any part of the air conditioner
The number may be the same value. Empty in such cases
Vibration and noise of the air conditioner become very large,
When operating for a long time at the wave number, in the worst case, the above vibration may cause
The refrigerant pipe may be damaged. So big
The rotation speed of the compressor should be controlled without causing vibration.
An example of an air conditioner that can be used is shown in FIG. Shown in the figure
Air conditioner 1aThen, it is detected by the air conditioning data detection unit 3.
Indoor heat exchanger or outdoor heat exchanger for refrigeration cycle
Room (such as outside temperature), room temperature, outside temperature, etc.
Based on the air conditioning data required for air conditioning of the inside air
The compressor control unit 6aIs the optimum operating frequency of the compressor 2
And the compressor speed is controlled according to this operating frequency.
It is designed to be controlled. Specifically, the compressor 2
Operating frequency (corresponding to the rotation speed) and the air conditioner 1 aNoi
From a plurality of vibration detection units 5 provided in some parts
Determine the relationship with the maximum amplitude value in advance, and determine whether these relationships
The operating frequency at which the above vibration can be operated in a sufficiently small state
Select one of these operating frequencies and select one of these operating frequencies.
The compressor 2 was controlled by. As above
Maximum amplitude value AmAnd operating frequency corresponding to the number of revolutions of compressor 2
The relationship with the number M is shown in the curve of FIG. In FIG. 7, D
1 to D6 are 6 operating frequencies when the vibration is small to some extent
It shows several steps, which are preset from the above curve.
The compressor control unit 6aStored in memory outside the figure
There is. The compressor 2 is a power source output to the compressor 2.
Rotates at a frequency of almost the same value for a signal related to frequency
It is known that the rotation frequency detection unit
It is not necessary to provide it, and the frequency of the signal output to the compressor 2 is
The wave number is the operating frequency M. The air conditioner 1a
Then, the air conditioning detected by the air conditioning data detection unit 3
Compressor control unit 6 based on the sum dataaIs a temporary operating frequency
Then, for example, the value closest to the tentative operating frequency
One of the operating frequency steps D1 to D6 of
Was output as the operating frequency M of the compressor 2. to this
Therefore, the air conditioner 1aWhile suppressing the vibration of
The compressor 2 could be controlled practically. one
On the other hand, as another example of the air conditioner as described above, FIG.
Air conditioner 1 to showbIs mentioned. The air conditioner 1b
According to the compressor temporary rotation speed calculation unit 4aIs the air conditioning
Based on the air conditioning data from the data detector 3,
The tentative operating frequency J to be determined is determined and is determined by the compressor control unit 6
bOutput to. Therefore, the compressor control unit 6bIs above
The compressor 2 is temporarily operated according to the provisional rotation frequency J,
Air conditioner 1 detected by the vibration detection unit 5bOf vibration
Whether the size (amplitude) exceeds the preset reference value
Determine if there is not. Then, the above amplitude is equal to the above reference value.
If it does not exceed, keep the above provisional rotation frequency J
The compressor 2 was operated, and if it was exceeded, it was detected at that time.
The amplitude K is stored. Next, from the tentative operating frequency J above,
Operate at a smaller operating frequency by a constant width, and change the amplitude L at this time.
Detect and store. On the contrary, from the above tentative operating frequency J
Operate at a higher operating frequency by a specified width, and change the amplitude P at this time.
Detect and store. Then, the stored amplitude K,
Extract the amplitude of the smallest value of L and P, and
The compressor 2 is operated at the corresponding operating frequency.
Growling. The above amplitudes K, L, and P are all above
If the specified value is exceeded, at least the minimum amplitude
The same process is repeated until the value falls below the standard value above.
Then, the operating frequency is changed and determined. However
However, the amplitude K at the above-mentioned provisional operating frequency J is
When the value is smaller than L and P, for example, the minimum value, the above temporary
The compressor 2 is operated at the operating frequency J as it is.

【0003】[0003]

【発明が解決しようとする課題】ところで,上記従来の
空気調和機1a (図6)によれば,空気調和機各部の振
動の小さな運転周波数段階が,出荷前に妥当に決定され
ていたとしても,当該空気調和機が据え付けられる条件
(据付場所等)の違いにより,それぞれの製品毎に据付
前後に差を生じることがある。例えば,図9に示す曲線
は,極端に悪い例を示しており,実線で示した曲線は出
荷前に実験等によって予め測定されたもの(図7の曲線
に対応)であって,破線で示した曲線は同じ製品をある
場所に実際に据え付けた後に測定されたものである。こ
の場合,特に運転周波数段階D5において,出荷前と据
付後の最大振幅値が大きく隔たっており,例えば上記制
御部6a により上記運転周波数段階D5が決定され,こ
れにより圧縮機2が運転されると,空気調和機1aは非
常に大きな振動を伴うこととなる。一方,上記従来の空
気調和機1b において,運転周波数Mと上記最大振幅値
m との関係は予め設定されないが,当該関係が図10
に示すような曲線の関係である場合,例えば上記演算さ
れた上記仮の運転周波数がaの時,この仮の運転周波数
aにおける最大振幅値Am は極小値であるため,上記仮
の運転周波数aからの運転周波数M領域の変化幅によっ
ては,上記圧縮機2は仮の運転周波数aのままで運転さ
れることがあり,基準値αよりも大きな振幅で制御され
ることになる。一方,例えば,上記演算された仮の運転
周波数がbの場合,この仮の運転周波数bから僅かにず
れた運転周波数Nで運転すれば振幅の極めて小さな運転
周波数領域で運転を行うことができるにもかかわらず,
この仮の運転周波数bに対応する最大振幅値Am が基準
値αを下回っているため,圧縮機2は上記仮の運転周波
数bのままで運転され,比較的大きな振動を伴うことに
なる。上記したように,目標とする運転周波数に十分近
い値であって,且つ上記振動を小さくすることのできる
運転周波数を決定する演算処理を行うことは不可能では
ないが,このような処理を一般のアルゴリズムにより実
現しようとすると,アルゴリズム自体が極めて複雑にな
り,特に家庭用の空気調和機の制御に用いられているよ
うな1チップマイクロコンピュータ程度の構成によって
は実現することが困難である。従って,本発明の目的と
するところは,実用上目標に近い回転数で圧縮機を駆動
することが可能で,且つ振動を小さくすることのできる
空気調和機を提供することにある。
By the way, the above-mentioned conventional
Air conditioner 1aAccording to (Fig. 6), the vibration of each part of the air conditioner
Small operating frequency steps are reasonably determined before shipping
Even if the air conditioner is installed
Installation for each product due to differences in installation location etc.
There may be a difference between the front and back. For example, the curve shown in Figure 9
Shows an extremely bad example, and the solid line shows the curve.
What was measured in advance by experiments before loading (the curve in Fig. 7
Corresponding to the above), and the curve shown by the broken line is the same product.
It was measured after it was actually installed in the place. This
In particular, in the operation frequency stage D5, before shipment and installation
The maximum amplitude values after attachment are widely separated.
Part 6aThe operating frequency step D5 is determined by
When the compressor 2 is operated by this, the air conditioner 1aIs non
It will always be accompanied by large vibrations. On the other hand, the conventional empty
Air conditioner 1bAt the operating frequency M and the maximum amplitude value
A mAlthough the relationship with is not set in advance,
In the case of the relationship of curves as shown in
When the above-mentioned provisional operating frequency is a, this provisional operating frequency is
Maximum amplitude value A at amIs a minimum value,
Depending on the change width of the operating frequency M region from the operating frequency a of
The compressor 2 is operated at the temporary operating frequency a.
Control is performed with an amplitude larger than the reference value α.
Will be. On the other hand, for example, the temporary operation calculated above
If the frequency is b, there is a slight difference from this temporary operating frequency b.
If the driving frequency is N, the amplitude is extremely small.
Despite being able to operate in the frequency domain,
Maximum amplitude value A corresponding to this provisional operating frequency bmIs the standard
Since it is below the value α, the compressor 2 is
It is operated as it is for a few b and is accompanied by relatively large vibration.
Become. As mentioned above, it is close enough to the target operating frequency.
It is a small value and can reduce the above vibration.
It is not possible to perform arithmetic processing to determine the operating frequency
There is no such algorithm, but this kind of processing is performed by a general algorithm.
If you try to reveal it, the algorithm itself becomes extremely complicated.
It is especially used for controlling home air conditioners.
With the configuration of a one-chip microcomputer
Is difficult to realize. Therefore, the purpose of the present invention is
In practice, drive the compressor at a rotational speed that is close to the target for practical use.
It is possible to reduce the vibration
To provide an air conditioner.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に,本発明が採用する主たる手段は,その要旨とすると
ころが,少なくとも,冷媒を圧縮する圧縮機を有する冷
凍サイクルを備えた空気調和機により空気調和を行うに
あたり,検出された空気調和データと,予め設定された
上記圧縮機の回転数と上記空気調和機の最大振幅値との
関係に基づいて上記圧縮機の回転数を制御する空気調和
機において,上記検出された空気調和データに応じて上
記圧縮機の回転数の仮出力値を演算する仮出力値演算手
段と,上記演算された回転数の仮出力値に基づく所定幅
の回転数領域における最良の最大振幅値を得る圧縮機の
回転数を,上記予め設定された圧縮機の回転数と空気調
和機の最大振幅値との関係から決定し出力する圧縮機制
御手段とを具備してなる点に係る空気調和機として構成
されている。また,上記構成における回転数領域の所定
幅としては,上記演算された回転数の仮出力値と上記回
転数領域において一致する重心値を有する所定形状のメ
ンバシップ関数により決定されるものであっても良い。
In order to achieve the above object, the main means adopted by the present invention is, in summary, an air conditioner having a refrigeration cycle having at least a compressor for compressing a refrigerant. The air for controlling the rotation speed of the compressor based on the detected air-conditioning data and the preset relationship between the rotation speed of the compressor and the maximum amplitude value of the air conditioner when performing air conditioning by In the air conditioner, temporary output value calculating means for calculating a temporary output value of the rotational speed of the compressor according to the detected air conditioning data, and rotation of a predetermined width based on the temporary output value of the calculated rotational speed. Compressor control means for determining and outputting the number of revolutions of the compressor that obtains the best maximum amplitude value in several ranges from the relationship between the preset number of revolutions of the compressor and the maximum amplitude value of the air conditioner. Shi It is configured as an air conditioner according to become points. Further, the predetermined width of the rotational speed region in the above configuration is determined by a membership function of a predetermined shape having a tentative output value of the calculated rotational speed and a centroid value that matches in the rotational speed region. Is also good.

【0005】[0005]

【作用】本発明に係る空気調和機においては,冷凍サイ
クルの圧縮機の回転数と上記空気調和機の最大振幅値と
の関係が予め設定されている。そこで,仮出力値演算手
段が,検出された空気調和データに応じて上記圧縮機の
回転数の仮出力値を演算する。そして,圧縮機制御手段
は,上記演算された回転数の仮出力値に基づく所定幅の
回転数領域における最良の最大振幅値を得る圧縮機の回
転数を,上記予め設定された圧縮機の回転数と空気調和
機の最大振幅値との関係から決定する。上記決定された
回転数は圧縮機に出力され,これに基づいて圧縮機が駆
動制御される。従って,上記圧縮機は上記検出された空
気調和データに応じて制御されるべき適切な仮出力値に
比較的近く,且つ空気調和機の最大振幅値の小さな状態
で運転される。尚,上記回転数領域の所定幅として上記
した構成の如くの所定形状のメンバシップ関数,例えば
上記最大振幅値が最良の方向に向けて頂点を有する三角
形状のメンバシップ関数を用いて決定した場合には,上
記回転数の仮出力値に基づく所定幅が等しい幅の場合と
比べて,空気調和機の振動を小さくできるのはもちろん
のこと,目標値とすべき上記回転数の上記仮出力値によ
り近い値の回転数で上記圧縮機を運転することができ
る。
In the air conditioner according to the present invention, the relationship between the rotation speed of the compressor of the refrigeration cycle and the maximum amplitude value of the air conditioner is preset. Therefore, the temporary output value calculation means calculates the temporary output value of the rotation speed of the compressor according to the detected air conditioning data. Then, the compressor control means sets the rotation speed of the compressor that obtains the best maximum amplitude value in the rotation speed region of the predetermined width based on the calculated temporary output value of the rotation speed to the rotation speed of the preset compressor. It is determined from the relationship between the number and the maximum amplitude value of the air conditioner. The determined rotation speed is output to the compressor, and the compressor is drive-controlled based on the output rotation speed. Therefore, the compressor is operated relatively close to an appropriate provisional output value to be controlled according to the detected air conditioning data, and the air conditioner has a small maximum amplitude value. In the case where the predetermined width of the rotational speed region is determined by using a membership function having a predetermined shape as described above, for example, a triangular membership function having the apex toward the best maximum amplitude value. In addition to the fact that the vibration of the air conditioner can be reduced compared to the case where the predetermined width based on the temporary output value of the rotational speed is the same width, the temporary output value of the rotational speed that should be the target value can be reduced. The compressor can be operated at a rotation speed closer to the above.

【0006】[0006]

【実施例】以下添付図面を参照して,本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は,本発明を具体化した一例であって,本発
明の技術的範囲を限定する性格のものではない。ここ
に,図1は本発明の一実施例に係る空気調和機の圧縮機
の回転数制御の処理に係る概要を示すブロック図,図2
は上記空気調和機の概略構成を示すブロック図,図3は
上記空気調和機の圧縮機制御部のメモリに格納されてい
る上記空気調和機の最大振幅値の逆数と上記圧縮機の運
転周波数との関係を表す曲線を示すグラフ図,図4は上
記空気調和機の圧縮機仮回転数演算部により演算された
仮運転周波数周辺の図3の曲線を運転周波数方向に拡大
し且つ上記仮運転周波数と上記運転周波数領域において
一致する重心値を有する三角形状のメンバシップ関数と
を重合わせて併記したグラフ図,図5は図4に示す曲線
とメンバシップ関数との重合わせ部分のみを図示した説
明図である。但し,図6及び図8に示した上記従来の空
気調和機1a,1b と共通する要素には同一の符号を使
用すると共に,その詳細な説明は省略する。本実施例に
係る空気調和機1は,図2に示すように,それぞれ図外
の室内熱交換器,室外熱交換器,冷媒絞り機構及びこれ
らを連結する冷媒管と共に冷凍サイクルを構成し冷媒を
圧縮するための圧縮機2と,上記空気調和データを検出
する空気調和データ検出部3と,上記検出された空気調
和データに応じて上記圧縮機2の目標とすべき仮運転周
波数(回転数の仮出力値)Mt を演算する圧縮機仮回転
数演算部4と,上記空気調和機1の各部に複数設けら
れ,当該部分の振動を検出する振動検出部5と,上記圧
縮機仮回転数演算部4からの仮運転周波数Mt と,予め
設定された上記圧縮機2の運転周波数Mと上記空気調和
機1の最大振幅値の逆数1/Am との関係に基づいて上
記圧縮機2の運転周波数(回転数)を制御する圧縮機制
御部6とを備えてなっている。尚,上記振動検出部5は
空気調和機1の本体内の,振動することにより騒音を生
じたり,あるいは部分的に破壊する可能性のあるような
場所について一箇所もしくは複数箇所取り付けられてい
る。本実施例に係る空気調和機1は上記したように構成
されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and are not of the nature to limit the technical scope of the present invention. Here, FIG. 1 is a block diagram showing the outline of the processing of the rotation speed control of the compressor of the air conditioner according to one embodiment of the present invention, FIG.
Is a block diagram showing a schematic configuration of the air conditioner, and FIG. 3 is a reciprocal of a maximum amplitude value of the air conditioner stored in a memory of a compressor control unit of the air conditioner and an operating frequency of the compressor. FIG. 4 is a graph showing a curve showing the relationship of FIG. 4, FIG. 4 is an enlarged view of the curve of FIG. 3 around the provisional operating frequency calculated by the compressor provisional speed calculating unit of the air conditioner in the operating frequency direction, and the provisional operating frequency is And a triangular membership function having the same center-of-gravity value in the above-mentioned operating frequency region, which are shown in a superimposed manner. FIG. 5 illustrates only the overlapping portion of the curve shown in FIG. 4 and the membership function. It is a figure. However, the same reference numerals are used for the elements common to the conventional air conditioners 1 a and 1 b shown in FIGS. 6 and 8, and the detailed description thereof will be omitted. As shown in FIG. 2, the air conditioner 1 according to the present embodiment constitutes a refrigeration cycle together with an indoor heat exchanger, an outdoor heat exchanger, a refrigerant expansion mechanism, and a refrigerant pipe connecting these elements, which are not shown in the figure, to form a refrigerant. A compressor 2 for compression, an air-conditioning data detection unit 3 that detects the air-conditioning data, and a temporary operating frequency that should be a target of the compressor 2 according to the detected air-conditioning data (rotation speed Temporary output value) M t of the compressor temporary rotation speed calculation unit 4, a plurality of vibration detection units 5 provided in each part of the air conditioner 1 for detecting vibration of the part, and the temporary compressor rotation speed. The compressor 2 based on the relationship between the provisional operating frequency M t from the computing unit 4, the preset operating frequency M of the compressor 2 and the reciprocal 1 / A m of the maximum amplitude value of the air conditioner 1. And the compressor control unit 6 for controlling the operating frequency (rotation speed) of It has become Ete. The vibration detecting section 5 is attached at one or more places in the body of the air conditioner 1 where vibration may generate noise or cause partial destruction. The air conditioner 1 according to this embodiment is configured as described above.

【0007】引き続き,上記空気調和機1の動作につ
き,図1を中心として用い,以下説明する。先ず,圧縮
機制御部6の実回転数対最大振幅値関係算出部8は,圧
縮機2の運転周波数Mとこれに対応した上記振動検出部
5からの最大振幅値Am の逆数1/Am との関係を上記
運転周波数領域全般にわたって算出する機能を備えてい
る。上記最大振幅値の逆数1/Am は値が大きいほど振
動が少ないこと,即ち機能上の満足度を表すものであっ
て,変換テーブルが予め用意されており,当該変換テー
ブルに基づいて振動検出部5からの最大振幅値Am から
容易に求められるようになっている。尚,上記逆数1/
m の値は,製品の出荷時には,上記全ての運転周波数
領域にわたって,実験等で予め求められた代表的な値
(曲線等)もしくは例えば全て1の値が圧縮機制御部6
のメモリMに予め格納されている。これらの値は随時書
替え可能であって,上記空気調和機1が出荷後実際に適
所に据えつけられた後,圧縮機2の回転周波数を変更し
つつ全ての領域にわたって試運転を行い,この時振動検
出部5からの最大振幅値Am により得た最大振幅値の逆
数1/Am との関係が,例えば曲線Fa のように求めら
れる。空気調和機1の据付後の試運転により実際に得た
上記した如くの関係を示す曲線Fa は図3に示す通りで
あって,上記メモリMに書替え可能に格納されている。
一方,空気調和データ検出部3により検出された上記空
気調和データに基づいて,圧縮機仮回転数演算部4はこ
の時の空気調和データに対する目標となる圧縮機2の仮
運転周波数Mt を演算する。上記仮運転周波数Mt は圧
縮機制御部6の回転数領域所定幅設定部7に入力され
る。即ち,上記圧縮機仮回転数演算部4により上記検出
された空気調和データに応じて上記圧縮機の回転数の仮
出力値を演算する機能を実現する手段が本発明の仮出力
値演算手段である。
The operation of the air conditioner 1 will be described below with reference to FIG. First, the actual revolution speed and the maximum amplitude value relationship calculating section 8 of the compressor control unit 6, the reciprocal 1 / A of the maximum amplitude value A m from the vibration detecting unit 5 corresponding to the operating frequency M of the compressor 2 It has a function to calculate the relationship with m over the entire operating frequency range. The reciprocal 1 / A m of the maximum amplitude value indicates that the larger the value, the smaller the vibration, that is, the degree of functional satisfaction. A conversion table is prepared in advance, and vibration detection is performed based on the conversion table. It is adapted to be readily determined from the maximum amplitude value a m from part 5. The reciprocal 1 /
As the value of A m , when the product is shipped, a typical value (curve or the like) obtained in advance by experiments or the like, or a value of all 1 is the compressor control unit 6 over all the above operating frequency regions.
Stored in the memory M in advance. These values are rewritable at any time, and after the air conditioner 1 is actually installed in the proper place after shipment, a test operation is performed over the entire range while changing the rotation frequency of the compressor 2, and vibration at this time is performed. The relationship with the reciprocal 1 / A m of the maximum amplitude value obtained from the maximum amplitude value A m from the detection unit 5 is obtained, for example, as a curve F a . A curve F a showing the relationship as described above, which is actually obtained by the test operation after the installation of the air conditioner 1, is as shown in FIG. 3, and is rewritably stored in the memory M.
On the other hand, based on the air-conditioning data detected by the air-conditioning data detecting unit 3, the temporary compressor rotation speed calculating unit 4 calculates the target temporary operating frequency M t of the compressor 2 for the air-conditioning data at this time. To do. The temporary operation frequency M t is input to the rotation speed region predetermined width setting unit 7 of the compressor control unit 6. That is, the provisional output value computing means of the present invention is means for realizing the function of computing the provisional output value of the rotation number of the compressor in accordance with the air conditioning data detected by the compressor provisional rotation number computing unit 4. is there.

【0008】そして,上記回転数領域所定幅設定部7で
は,上記演算された仮運転周波数M t と上記運転周波数
領域(圧縮機の回転数領域)において一致する重心値を
有し,上記最大振幅値の逆数1/Am の方向に頂点を備
え,運転周波数方向に底辺を有した二等辺三角形状のメ
ンバシップ関数Fm を作成する。そして,上記圧縮機制
御部6の圧縮機回転数決定部9は,実回転数対最大振幅
値関係算出部8からの曲線Fa と,上記回転数領域所定
幅決定部7からのメンバシップ関数Fm とを重合わせ
(図4参照),これらの重合わせ部分よりなる曲線Fc
を求める。そして,上記圧縮機回転数決定部9は上記曲
線Fc において上記逆数1/Am の最大値,即ち最良の
最大振幅値Am を得る圧縮機の運転周波数M a を決定し
(図5参照),この運転周波数Ma を上記圧縮機2へ出
力する。即ち,圧縮機制御部6の回転数領域所定幅決定
部7,実回転数対最大振幅値関係算出部8及び圧縮機回
転数決定部9において,上記演算された回転数の仮出力
値に基づく所定幅の回転数領域における最良の最大振幅
値を得る圧縮機の回転数を,上記予め設定された圧縮機
の回転数と空気調和機の最大振幅値との関係から決定
し,出力する機能を実現する手段が本発明の圧縮機制御
手段である。上記実施例の場合,上記所定幅の回転数領
域は,上記重合せられた曲線Fc により占める範囲内で
ある。尚,上記演算された運転周波数Ma は目標とされ
る仮運転周波数Mt に近く,且つこの近傍の運転周波数
領域においては十分振動(振幅)の小さい運転周波数で
あることがわかる。尚,上記運転周波数Ma の演算は,
複雑なアルゴリズムを用いた特別な演算処理を必要とせ
ず,メンバシップ関数Fm 又は直線Lの作成時及び曲線
c の作成時の演算に用いられる,単なる加算,減算及
び数値比較のみの演算により行うことができる。従っ
て,上記した如くの本実施例の演算処理は汎用の1チッ
プマイクロコンピュータによっても比較的容易に実現す
ることが可能である。
Then, in the rotation speed region predetermined width setting unit 7,
Is the temporary operating frequency M calculated above. tAnd above operating frequency
The centroid value that matches in the range (compressor speed range)
Has, the reciprocal 1 / A of the maximum amplitude valuemEquipped with vertices in the direction of
, An isosceles triangular mesh with a base in the operating frequency direction.
Nambaship function FmTo create. And the above compressor control
The compressor rotation speed determination unit 9 of the control unit 6 determines the actual rotation speed vs. maximum amplitude.
Curve F from the value relation calculation unit 8aAnd the rotation speed range specified above
Membership function F from width determination unit 7mSuperimpose
(See FIG. 4), a curve F composed of these overlapping partsc
Ask for. Then, the compressor rotation number determination unit 9
Line FcAt the above reciprocal 1 / AmThe maximum of, ie the best
Maximum amplitude value AmOperating frequency M of compressor aDecide
(See FIG. 5), this operating frequency MaTo compressor 2 above
Force That is, the rotation speed region predetermined width of the compressor control unit 6 is determined.
Part 7, actual rotation speed vs. maximum amplitude value relationship calculation part 8 and compressor rotation
In the number-of-turns determining unit 9, the temporary output of the number of rotations calculated above is output.
The best maximum amplitude in the speed range of a given width based on the value
The number of revolutions of the compressor that obtains the value is determined by the preset compressor.
Determined from the relationship between the engine speed and the maximum amplitude of the air conditioner
The means for realizing the function of outputting and outputting is the compressor control of the present invention.
It is a means. In the case of the above embodiment, the rotation speed range of the above predetermined width
The area is the superposed curve FcWithin the range occupied by
is there. The operating frequency M calculated aboveaIs targeted
Temporary operating frequency MtFrequency near and near
In the region, at the operating frequency with sufficiently small vibration (amplitude)
I know there is. The above operating frequency MaIs calculated as
Requires special arithmetic processing using complex algorithms
No, membership function FmOr when creating straight line L and curve
FcSimple addition, subtraction and
And numerical comparison only. Obey
Thus, the arithmetic processing of this embodiment as described above is performed by a general-purpose 1-chip.
It is relatively easy to implement even with a microcomputer.
It is possible to

【0009】尚,上記実施例では,予め設定された圧縮
機2の運転周波数Mと空気調和機1の最大振幅値の逆数
1/Am との関係から最良の最大振幅値を得る時の圧縮
機仮回転数演算部4により演算された仮運転周波数Mt
に基づく運転周波数領域の所定幅を決定する手法とし
て,上記三角形状のメンバシップ関数を用いたが,これ
に限定されず,例えば台形状のメンバシップ関数であっ
ても良い。またこれらのメンバシップ関数に限らず,上
記所定幅としては,図5に示すように仮運転周波数Mt
から上記運転周波数領域方向にWの所定幅にある直線L
をそれぞれ設定しても良く,これによっも相応の効果を
得ることができる。但し,上記した如く三角形状のメン
バシップ関数Fmを設定した場合の,上記仮運転周波数
t からの幅Wa と比べると,圧縮機2に出力される運
転周波数Ma ′は上記仮運転周波数Mt から遠い値とな
る。本実施例装置は,上記したように簡単な演算手法に
より,空気調和機の振動の振幅が小さく,且つ目標とさ
れる運転周波数に十分近い値で圧縮機の運転を行うこと
ができる。
In the above embodiment, the compression for obtaining the best maximum amplitude value from the relationship between the preset operating frequency M of the compressor 2 and the reciprocal 1 / A m of the maximum amplitude value of the air conditioner 1 Temporary operating frequency M t calculated by the temporary machine speed calculator 4
As a method of determining the predetermined width of the operating frequency region based on the above, the above-mentioned triangular membership function is used, but the present invention is not limited to this, and for example, a trapezoidal membership function may be used. Further, the provisional operation frequency M t is not limited to these membership functions, and the predetermined width is as shown in FIG.
To a straight line L with a predetermined width of W in the direction of the operating frequency range
May be set individually, and this also produces the corresponding effect. However, compared with the width W a from the tentative operating frequency M t when the triangular membership function F m is set as described above, the operating frequency M a ′ output to the compressor 2 is the tentative operating frequency. The value is far from the frequency M t . The apparatus of the present embodiment can operate the compressor with a small amplitude of vibration of the air conditioner and at a value sufficiently close to the target operating frequency by the simple calculation method as described above.

【0010】[0010]

【発明の効果】上記したように,本発明によれば,少な
くとも,冷媒を圧縮する圧縮機を有する冷凍サイクルを
備えた空気調和機により空気調和を行うにあたり,検出
された空気調和データと,予め設定された上記圧縮機の
回転数と上記空気調和機の最大振幅値との関係に基づい
て上記圧縮機の回転数を制御する空気調和機において,
上記検出された空気調和データに応じて上記圧縮機の回
転数の仮出力値を演算する仮出力値演算手段と,上記演
算された回転数の仮出力値に基づく所定幅の回転数領域
における最良の最大振幅値を得る圧縮機の回転数を,上
記予め設定された圧縮機の回転数と空気調和機の最大振
幅値との関係から決定し出力する圧縮機制御手段と,を
具備してなることを特徴とする空気調和機が提供され
る。それにより,目標に近い回転数で圧縮機を駆動しつ
つ,且つ振動の十分小さな運転を行うことができる。
As described above, according to the present invention, at the time of performing air conditioning by an air conditioner having a refrigeration cycle having a compressor for compressing a refrigerant, the detected air conditioning data and the In an air conditioner that controls the rotation speed of the compressor based on the relationship between the set rotation speed of the compressor and the maximum amplitude value of the air conditioner,
Temporary output value calculating means for calculating a temporary output value of the rotational speed of the compressor according to the detected air conditioning data, and the best in a rotational speed region of a predetermined width based on the calculated temporary output value of the rotational speed. And a compressor control means for determining and outputting the number of revolutions of the compressor for obtaining the maximum amplitude value from the relationship between the preset number of revolutions of the compressor and the maximum amplitude value of the air conditioner. An air conditioner characterized by the above is provided. As a result, it is possible to drive the compressor at a rotation speed close to the target and perform operation with sufficiently small vibration.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る空気調和機の圧縮機
の回転数制御の処理に係る概要を示すブロック図。
FIG. 1 is a block diagram showing an outline of processing for controlling a rotation speed of a compressor of an air conditioner according to an embodiment of the present invention.

【図2】 上記空気調和機の概略構成を示すブロック
図。
FIG. 2 is a block diagram showing a schematic configuration of the air conditioner.

【図3】 上記空気調和機の圧縮機制御部のメモリに格
納されている上記空気調和機の最大振幅値の略数と上記
圧縮機の運転周波数との関係を表す曲線を示すグラフ
図。
FIG. 3 is a graph showing a curve representing the relationship between the approximate number of maximum amplitude values of the air conditioner stored in the memory of the compressor control unit of the air conditioner and the operating frequency of the compressor.

【図4】 上記空気調和機の圧縮機仮回転数演算部によ
り演算された仮運転周波数周辺の図3の曲線を運転周波
数方向に拡大し且つ上記仮運転周波数と上記運転周波数
領域において一致する重心値を有する三角形状のメンバ
シップ関数とを重合わせて併記したグラフ図。
FIG. 4 is a center of gravity that expands the curve of FIG. 3 around the temporary operating frequency calculated by the compressor temporary speed calculating unit of the air conditioner in the operating frequency direction and matches the temporary operating frequency in the operating frequency range. FIG. 6 is a graph chart in which a triangular membership function having a value and a membership function are overlapped and described together.

【図5】 図4に示す曲線とメンバシップ関数との重合
わせ部分のみを図示した説明図。
FIG. 5 is an explanatory diagram illustrating only the overlapping portion of the curve and the membership function shown in FIG.

【図6】 本発明の背景の一例となる従来の空気調和機
の概略構成を示すブロック図。
FIG. 6 is a block diagram showing a schematic configuration of a conventional air conditioner as an example of the background of the present invention.

【図7】 図6の空気調和機に予め設定されている圧縮
機の運転周波数と上記従来の空気調和機の最大振幅値と
の関係を表す曲線及び当該曲線において最大振幅値が比
較的低い運転周波数段階を示すグラフ図。
7 is a curve showing the relationship between the operating frequency of the compressor preset in the air conditioner of FIG. 6 and the maximum amplitude value of the conventional air conditioner, and the operation in which the maximum amplitude value is relatively low in the curve. The graph figure which shows a frequency step.

【図8】 本発明の背景の別例となる従来の空気調和機
の概略構成を示すブロック図。
FIG. 8 is a block diagram showing a schematic configuration of a conventional air conditioner that is another example of the background of the present invention.

【図9】 図7に示す曲線と上記従来の空気調和機を出
荷据付後に実測した曲線とを併記したグラフ図。
FIG. 9 is a graph showing both the curve shown in FIG. 7 and the curve measured after shipping and installing the conventional air conditioner.

【図10】 図8の空気調和機の圧縮機制御部による最
大振幅幅に応じた運転周波数決定の態様を示す説明図。
FIG. 10 is an explanatory diagram showing a mode of operating frequency determination according to a maximum amplitude width by a compressor control unit of the air conditioner of FIG. 8.

【符号の説明】[Explanation of symbols]

1,1a ,1b …空気調和機 2…圧縮機 3…空気調和データ検出部 4,4a …圧縮機仮回転数演算部 5…振動検出部 6,6a ,6b …圧縮機制御部 7…回転数領域所定幅設定部 8…実回転数対最大振幅値関係算出部 9…圧縮機回転数決定部 Fm …メンバシップ関数 Fa …曲線 Mt …仮運転周波数 Ma ,Ma ′…運転周波数 W…設定幅1, 1 a , 1 b ... Air conditioner 2 ... Compressor 3 ... Air conditioner data detection unit 4, 4 a ... Compressor temporary rotation speed calculation unit 5 ... Vibration detection unit 6, 6 a , 6 b ... Compressor control part 7 ... speed range predetermined width setting section 8 ... rotational speed actual revolution speed and the maximum amplitude value relationship calculating section 9 ... compressor determining unit F m ... membership function F a ... curve M t ... temporary operating frequency M a, M a '... Operating frequency W ... Setting width

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも,冷媒を圧縮する圧縮機を有
する冷凍サイクルを備えた空気調和機により空気調和を
行うにあたり,検出された空気調和データと,予め設定
された上記圧縮機の回転数と上記空気調和機の最大振幅
値との関係に基づいて上記圧縮機の回転数を制御する空
気調和機において,上記検出された空気調和データに応
じて上記圧縮機の回転数の仮出力値を演算する仮出力値
演算手段と,上記演算された回転数の仮出力値に基づく
所定幅の回転数領域における最良の最大振幅値を得る圧
縮機の回転数を,上記予め設定された圧縮機の回転数と
空気調和機の最大振幅値との関係から決定し出力する圧
縮機制御手段とを具備してなることを特徴とする空気調
和機。
1. When air conditioning is performed by an air conditioner including at least a refrigeration cycle having a compressor for compressing a refrigerant, detected air conditioning data, preset rotational speed of the compressor, and the above In an air conditioner that controls the rotational speed of the compressor based on the relationship with the maximum amplitude value of the air conditioner, a temporary output value of the rotational speed of the compressor is calculated according to the detected air conditioning data. The provisional output value computing means and the number of revolutions of the compressor that obtains the best maximum amplitude value in the number of revolutions of a predetermined width based on the calculated provisional output value of the number of revolutions is the number of revolutions of the preset compressor. And a compressor control means for determining and outputting the maximum amplitude value of the air conditioner.
【請求項2】 上記回転数領域の所定幅が,上記演算さ
れた回転数の仮出力値と上記回転数領域において一致す
る重心値を有する所定形状のメンバシップ関数により決
定される請求項1記載の空気調和機。
2. The predetermined width of the rotational speed region is determined by a membership function of a predetermined shape having a centroid value that matches the tentative output value of the calculated rotational speed in the rotational speed region. Air conditioner.
JP3279766A 1991-10-25 1991-10-25 Air conditioner Pending JPH05118626A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3279766A JPH05118626A (en) 1991-10-25 1991-10-25 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3279766A JPH05118626A (en) 1991-10-25 1991-10-25 Air conditioner

Publications (1)

Publication Number Publication Date
JPH05118626A true JPH05118626A (en) 1993-05-14

Family

ID=17615611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3279766A Pending JPH05118626A (en) 1991-10-25 1991-10-25 Air conditioner

Country Status (1)

Country Link
JP (1) JPH05118626A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108644969A (en) * 2018-05-16 2018-10-12 珠海格力电器股份有限公司 Method, device and system for controlling compressor and air conditioner
CN113847689A (en) * 2021-09-23 2021-12-28 佛山市顺德区美的电子科技有限公司 Air conditioner resonance control method and device, air conditioner and storage medium
CN115493319A (en) * 2021-06-18 2022-12-20 重庆海尔制冷电器有限公司 Noise reduction control method of refrigeration equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108644969A (en) * 2018-05-16 2018-10-12 珠海格力电器股份有限公司 Method, device and system for controlling compressor and air conditioner
CN115493319A (en) * 2021-06-18 2022-12-20 重庆海尔制冷电器有限公司 Noise reduction control method of refrigeration equipment
CN113847689A (en) * 2021-09-23 2021-12-28 佛山市顺德区美的电子科技有限公司 Air conditioner resonance control method and device, air conditioner and storage medium
CN113847689B (en) * 2021-09-23 2023-05-26 佛山市顺德区美的电子科技有限公司 Air conditioner resonance control method and device, air conditioner and storage medium

Similar Documents

Publication Publication Date Title
JP4495755B2 (en) Cooler sound reduction control system and method
KR960011330A (en) Air conditioner and operation control method
JP7300252B2 (en) AIR CONDITIONER AND CONTROL METHOD OF AIR CONDITIONER
JPS63131942A (en) Control system of air-conditioning machine
WO2017158693A1 (en) Air conditioner
JPH05118626A (en) Air conditioner
US5093864A (en) Silencer
JPH09300951A (en) Air-conditioning control device for electric vehicle
WO2017221315A1 (en) Defrost determination equipment, defrost control equipment, and air conditioner
JP3378757B2 (en) Control device for air conditioner
JPS62129586A (en) Airconditioning device
WO2021140582A1 (en) Air conditioner
JPH02219941A (en) Method for controlling air conditioner
WO2022097225A1 (en) Air conditioner control device
JP3360530B2 (en) Control device for air conditioner
JPH0733930B2 (en) Air conditioner
KR100502306B1 (en) Method for controlling operation of air-conditioner
JPS5927145A (en) Air conditioner
JPH05164383A (en) Air conditioner
JP2002286276A (en) Air conditioner and control method therefor
JPH0387546A (en) Air conditioner
JPH02136641A (en) Operating method for air conditioner
JP2753052B2 (en) Duct air conditioner capacity control method
JP3397842B2 (en) Air conditioner
JP2795067B2 (en) Air conditioner