JPH05118255A - Air and fuel mixing device for gas engine - Google Patents

Air and fuel mixing device for gas engine

Info

Publication number
JPH05118255A
JPH05118255A JP22485691A JP22485691A JPH05118255A JP H05118255 A JPH05118255 A JP H05118255A JP 22485691 A JP22485691 A JP 22485691A JP 22485691 A JP22485691 A JP 22485691A JP H05118255 A JPH05118255 A JP H05118255A
Authority
JP
Japan
Prior art keywords
air
amount
valve
negative pressure
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22485691A
Other languages
Japanese (ja)
Inventor
Koichi Sugawara
光一 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP22485691A priority Critical patent/JPH05118255A/en
Publication of JPH05118255A publication Critical patent/JPH05118255A/en
Pending legal-status Critical Current

Links

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To prevent a maximum output from being reduced so much compared with that before the regulations are intensified while maintaining the incidence of NOx at a low reference value after the regulations are intensified when the engine is operated with low output or medium output. CONSTITUTION:An intake valve 8 which is operated based on intake negative pressures on the downstream side of a throttle valve 2 is connected to a gas supply passage 6 on the upstream side of the throttle valve 2 so that air can be entered. In a high negative pressure operating state where negative pressures are high, the amount of opening of the intake valve 8 becomes large to increase the amount of air entering the gas supply passage 6. Besides, in a low negative pressure operating state, the amount of opening of the intake valve 8 becomes small to decrease the amount of air entering the gas supply passage. Thus, when the engine is operated with low or medium output, the incidence of NOx is reduced below a reference value, and when the engine is operated with maximum output, the value of maximum output is almost not reduced compared with that before the regulations are intensified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、ガスエンジンの空燃
混合装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel mixing device for a gas engine.

【0002】[0002]

【従来の技術】ガスエンジンの空燃混合装置の基本構造
は、従来より例えば図3に示すように構成されている。
即ち、スロットル弁2を有するミキサー本管1の上流側
にベンチュリー管3を連設し、ベンチュリー管3の内壁
3aに複数の燃料吐出用ピトー口4を臨ませ、ベンチュ
リー管3の周囲に各ピトー口4と連通する環状の給燃ポ
ート5を形成し、給燃ポート5に燃料ガスGの供給管6
を接続して構成されている。
2. Description of the Related Art The basic structure of an air-fuel mixing device for a gas engine is conventionally constructed as shown in FIG.
That is, a venturi pipe 3 is continuously provided on the upstream side of a mixer main pipe 1 having a throttle valve 2, a plurality of fuel discharge pitot ports 4 are exposed to an inner wall 3a of the venturi pipe 3, and each pitot pipe 3 is surrounded by each pitot pipe 3. An annular fuel supply port 5 that communicates with the port 4 is formed, and a fuel gas G supply pipe 6 is formed in the fuel supply port 5.
It is configured by connecting.

【0003】ところで近々、エンジンの排気ガスNOX
の規制が厳しくなる。つまり、図2において、NOX
基準値はL0からL1に引き下げられる。NOXの排出量
は、定格出力K0で基準値L1以下にするために、規制強
化前のグラフB0から規制強化後のグラフB1にする必要
がある。このグラフB1を得るための方法として希薄燃
焼法がある。即ち、空気過剰率を規制強化前の低い値γ
0から規制強化後の高い値γ1に変更すれば良い。この規
制強化後の空気過剰率γ1を得るために、従来技術では
図3の基本構造において、燃料吐出用ピトー口4の通路
断面積を規制強化前の値からこれよりも小さい値に絞り
込んでいた。
By the way, engine exhaust gas NO x is coming soon.
Regulations will be tightened. That is, in FIG. 2, the reference value of NO X is lowered from L 0 to L 1 . The NO x emission amount needs to be changed from the graph B 0 before the regulation is tightened to the graph B 1 after the regulation is tightened in order to keep the rated output K 0 to be equal to or less than the reference value L 1 . There is a lean burn method as a method for obtaining this graph B 1 . That is, the excess air ratio is set to a low value γ
The value should be changed from 0 to a higher value γ 1 after tightening regulations. In order to obtain the excess air ratio γ 1 after the regulation is tightened, in the conventional technique, in the basic structure of FIG. 3, the passage cross-sectional area of the fuel discharge pitot port 4 is narrowed down from the value before the regulation is tightened to a smaller value. I was there.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術では、ピ
トー口4の通路断面積を狭く設定していたので、次の問
題がある。空気過剰率は、最小出力Kminから最大出力
Kmaxまでの全域に亙り、規制強化後の高い値γ1(グラ
フA1)に一定に保たれる。このため、エンジンの最大
出力は規制強化前の場合と比べて、空気過剰率がγ0
らγ1に高くなった分だけ出力低下する。本発明はこの
ような事情を考慮してなされたもので、低出力ないし中
出力運転時には、NOXの発生率を規制強化後の低い基
準値L1に維持しながらも、最大出力を規制強化前の場
合と比べて、それほど低下させないようにすることを技
術課題とする。
In the above-mentioned conventional technique, the passage cross-sectional area of the pitot port 4 is set to be narrow, which causes the following problems. The excess air ratio is kept constant at a high value γ 1 (graph A 1 ) after tightening the regulation over the entire range from the minimum output Kmin to the maximum output Kmax. For this reason, the maximum output of the engine is reduced as compared with the case before the regulation is strengthened by the amount that the excess air ratio is increased from γ 0 to γ 1 . The present invention has been made in consideration of such circumstances, and at the time of low-power or medium-power operation, the maximum output is strengthened while the NO X generation rate is maintained at the low reference value L 1 after the restriction is strengthened. It is a technical issue to prevent the deterioration so much compared to the previous case.

【0005】[0005]

【課題を解決するための手段】本発明は上記課題を解決
するものとして、以下のように構成される。即ち、ミキ
サー本管1内でスロットル弁2の上流側ベンチュリー部
3に燃料吐出用ピトー口4を開口し、このピトー口4に
燃料ガスGのガス供給路6を接続して構成したガスエン
ジンの空燃混合装置において、上記スロットル弁2の下
流側の吸気負圧に基づき作動する給気弁8を、上記ガス
供給路6に空気混入可能に接続し、上記吸気負圧が高い
高負圧運転状態においては、給気弁8の開弁量が大きく
なって、上記ガス供給路6への空気混入量を多くするの
に対し、低負圧運転状態においては、その開弁量が小さ
くなって、その空気混入量を少なくするように構成した
ことを特徴とするものである。
The present invention is configured as follows to solve the above problems. That is, in the mixer main pipe 1, the fuel discharge pitot port 4 is opened in the upstream venturi portion 3 of the throttle valve 2, and the gas supply passage 6 of the fuel gas G is connected to the pitot port 4 of the gas engine. In the air-fuel mixing device, an air supply valve 8 that operates based on the intake negative pressure on the downstream side of the throttle valve 2 is connected to the gas supply passage 6 so that air can be mixed therein, and a high negative pressure operation with a high intake negative pressure is performed. In the state, the opening amount of the air supply valve 8 becomes large and the amount of air mixed into the gas supply path 6 increases, whereas in the low negative pressure operating state, the opening amount becomes small. It is characterized in that the air mixing amount is reduced.

【0006】[0006]

【作 用】本発明は、以下のように作用する。エンジン
の低出力ないし中出力運転時には、スロットル弁2が絞
り込まれて、吸気負圧が高くなり、給気弁8の開弁量が
大きくなって、ガス供給路6への空気混入量が多くな
る。これにより、図2においてグラフA2に示すよう
に、空気過剰率が規制強化後の高い値γ1になり、グラ
フB2に示すように、NOXの発生率は規制強化後の低い
基準値L1よりも低くなる。
[Operation] The present invention operates as follows. During low or medium output operation of the engine, the throttle valve 2 is throttled, the intake negative pressure is increased, the opening amount of the intake valve 8 is increased, and the amount of air mixed into the gas supply passage 6 is increased. .. As a result, as shown in the graph A 2 in FIG. 2, the excess air ratio becomes a high value γ 1 after the regulation is strengthened, and as shown in the graph B 2 , the NO X generation rate is the low reference value after the regulation is strengthened. It becomes lower than L 1 .

【0007】エンジンの最大出力運転時には、スロット
ル弁2が全開されて、吸気負圧が低くなり、給気弁8の
開弁量が小さくなって、ガス供給路6への空気混入量が
少なくなる。これにより、グラフA2に示すように、空
気過剰率が規制強化後の高い値γ1から下がってきて、
規制強化前の低い値γ0又はこれに近い値になり、最大
出力の値が規制強化前の場合と比べて、殆ど低下しな
い。
During the maximum output operation of the engine, the throttle valve 2 is fully opened, the intake negative pressure is reduced, the opening amount of the intake valve 8 is reduced, and the amount of air mixed in the gas supply passage 6 is reduced. .. As a result, as shown in the graph A 2 , the excess air ratio decreases from the high value γ 1 after the tightening of regulations,
It becomes a low value γ 0 before the regulation is tightened or a value close to this value, and the maximum output value is hardly reduced as compared with the case before the regulation is tightened.

【0008】[0008]

【実施例】以下本発明の実施例を図面に基づいてさらに
詳しく説明する。図1は本発明の実施例に係るガスエン
ジンの空燃混合装置の断面図である。この実施例装置
は、スロットル弁2を有するミキサー本管1と、ミキサ
ー本管1の上流側に連設したベンチュリー管3と、ベン
チュリー管3に接続した燃料ガスGの供給管6と、エン
ジンの吸気負圧で作動する給気弁8とを具備して成る。
Embodiments of the present invention will now be described in more detail with reference to the drawings. FIG. 1 is a sectional view of an air-fuel mixing device for a gas engine according to an embodiment of the present invention. In this embodiment, the mixer main pipe 1 having a throttle valve 2, a venturi pipe 3 connected upstream of the mixer main pipe 1, a fuel gas G supply pipe 6 connected to the venturi pipe 3, and an engine And an air supply valve 8 that operates at negative intake pressure.

【0009】上記ベンチュリー管3の内壁3aには、複
数の燃料吐出用ピトー口4が臨ませて開口され、ベンチ
ュリー管3の周囲には各ピトー口4と連通し、燃料ガス
供給路6の一部を構成する環状の給燃ポート5が形成さ
れ、この給燃ポート5には燃料供給管6aが接続されて
いる。そして、ベンチュリー管3の給燃ポート5とスロ
ットル弁2の下流側との間にはエンジンの吸気負圧で作
動する上記給気弁8が付設されている。
A plurality of fuel discharge pitot ports 4 are opened in the inner wall 3a of the venturi pipe 3, and the venturi pipe 3 is communicated with the pitot ports 4 around the venturi pipe 3 to form one of the fuel gas supply paths 6. A ring-shaped fuel supply port 5 forming a part is formed, and a fuel supply pipe 6a is connected to the fuel supply port 5. Further, between the fuel supply port 5 of the Venturi pipe 3 and the downstream side of the throttle valve 2, the air supply valve 8 which is operated by the intake negative pressure of the engine is attached.

【0010】上記給気弁8は、内部にダイヤフラム作動
室11を形成する一対のケース本体10a・10bと、ダ
イヤフラム作動室11を一次作動室11aと二次作動室
11bとに仕切るダイヤフラム12と、ダイヤフラム1
2の中央部に固定された弁体13と、ダイヤフラム12
及び弁体13を一次作動室11a側へ押圧付勢する付勢
バネ17とから成り、一次作動室11aの給気入口14
を大気連通するとともに、給気出口15をベンチュリー
管3の給燃ポート5に連通し、二次作動室11bの連通
口16をスロットル弁2の下流側に連通して構成されて
いる。
The air supply valve 8 has a pair of case bodies 10a and 10b which form a diaphragm working chamber 11 therein, a diaphragm 12 which partitions the diaphragm working chamber 11 into a primary working chamber 11a and a secondary working chamber 11b. Diaphragm 1
2, the valve body 13 fixed to the central part of 2 and the diaphragm 12
And an urging spring 17 for urging the valve element 13 toward the primary working chamber 11a side, and the air supply inlet 14 of the primary working chamber 11a.
Is connected to the atmosphere, the air supply outlet 15 is connected to the fuel supply port 5 of the Venturi pipe 3, and the communication opening 16 of the secondary working chamber 11b is connected to the downstream side of the throttle valve 2.

【0011】この給気弁8によれば、エンジンの低出力
ないし中出力運転時には、スロットル弁2が絞り込まれ
て、吸気負圧が高くなり、一次作動室11aの圧力が押
圧付勢バネ17に打ち勝って給気出口15を全開する。
これにより、図2においてグラフA2に示すように、空
気過剰率が規制強化後の高い値γ1になり、グラフB2
示すように、NOXの発生率は規制強化後の低い基準値
1よりも低くなる。
According to the air supply valve 8, the throttle valve 2 is narrowed down and the intake negative pressure is increased during the low or medium output operation of the engine, and the pressure in the primary working chamber 11a is applied to the pressing bias spring 17. Overcome and fully open the air supply outlet 15.
As a result, as shown in the graph A 2 in FIG. 2, the excess air ratio becomes a high value γ 1 after the regulation is strengthened, and as shown in the graph B 2 , the NO X generation rate is the low reference value after the regulation is strengthened. It becomes lower than L 1 .

【0012】一方エンジンの定格出力K0ないし高出力
運転時には、吸気負圧が低くなり、、押圧付勢バネ17
が弁体13を押圧付勢して一次作動室11aの給気出口
15を絞り込んで行き、ガス供給路6への空気混入量が
少なくなる。これにより、最大出力運転時にはグラフA
2に示すように、空気過剰率が規制強化後の高い値γ1
ら下がってきて、規制強化前の低い値γ0又はこれに近
い値になり、最大出力の値が規制強化前の場合と比べ
て、殆ど低下しない。なお、本発明は上記実施例に限る
ものではなく、例えば吸気負圧を負圧センサーで検出し
て、その検出信号に基づき、電動アクチュエータを介し
て給気弁を作動させるように構成しても良く、適宜変更
を加えて実施し得ることは、多言を要しない。
On the other hand, when the engine is operating at the rated output K 0 or high output, the intake negative pressure becomes low, and the pressing bias spring 17
Presses the valve body 13 to narrow down the air supply outlet 15 of the primary working chamber 11a, and the amount of air mixed into the gas supply passage 6 decreases. As a result, at the time of maximum output operation, graph A
As shown in Fig. 2 , the excess air ratio decreases from the high value γ 1 after stricter regulation and becomes the low value γ 0 before stricter regulation or a value close to this, and the maximum output value is In comparison, it hardly decreases. The present invention is not limited to the above-described embodiment, and for example, the intake negative pressure may be detected by the negative pressure sensor, and the air supply valve may be operated via the electric actuator based on the detection signal. Well, it does not require many words that it can be implemented with appropriate changes.

【0013】[0013]

【発明の効果】本発明では、スロットル弁2の下流側の
吸気負圧に基づき作動する給気弁8を、上記ガス供給路
6に空気混入可能に接続し、吸気負圧が高い高負圧運転
状態においては、上記ガス供給路6への空気混入量を多
くするのに対し、低負圧運転状態においては、その空気
混入量を少なくするように構成したので、低出力ないし
中出力運転時には、NOXの発生率を規制強化後の低い
基準値L1に維持しながらも、最大出力を規制強化前の
場合と比べて、それほど低下させないようにすることが
できる。
According to the present invention, the intake valve 8 operating on the downstream side of the intake valve negative pressure of the throttle valve 2 is connected to the gas supply path 6 so that air can be mixed therein, and the intake negative pressure is high. In the operating state, the amount of air mixed into the gas supply passage 6 is increased, while in the low negative pressure operating state, the amount of air mixed is reduced, so that during low output or medium output operation. , NO x can be maintained at a low reference value L 1 after the regulation is reinforced, but the maximum output can be prevented from being lowered so much as compared with the case before the regulation is reinforced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係るガスエンジンの空燃混合
装置の断面図である。
FIG. 1 is a sectional view of an air-fuel mixing device for a gas engine according to an embodiment of the present invention.

【図2】エンジンの出力に対するNOX発生率と空気過
剰率を例示するグラフである。
FIG. 2 is a graph illustrating an NO X generation rate and an excess air ratio with respect to an engine output.

【図3】従来技術に係るガスエンジンの空燃混合装置の
断面図である。
FIG. 3 is a cross-sectional view of an air-fuel mixing device for a gas engine according to a conventional technique.

【符号の説明】[Explanation of symbols]

1…ミキサー本管、 2…スロットル
弁、3…ベンチュリー部(ベンチュリー管)、4…燃料
吐出用ピトー口、 6…燃料ガス供給路、8…
給気弁、 G…燃料ガス。
1 ... Mixer main pipe, 2 ... Throttle valve, 3 ... Venturi part (venturi pipe), 4 ... Fuel discharge pitot port, 6 ... Fuel gas supply passage, 8 ...
Air supply valve, G ... Fuel gas.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年10月16日[Submission date] October 16, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Name of item to be amended] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【特許請求の範囲】[Claims]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ミキサー本管(1)内でスロットル弁(2)
の上流側ベンチュリー部(3)に燃料吐出用ピトー口(4)
を開口し、このピトー口(4)に燃料ガス(G)のガス供給
路(6)を接続して構成したガスエンジンの空燃混合装置
において、 上記スロットル弁(2)の下流側の吸気負圧に基づき作動
する給気弁(8)を、上記ガス供給路(6)に空気混入可能
に接続し、 上記吸気負圧が高い高負圧運転状態においては、給気弁
(8)の開弁量が大きくなって、上記ガス供給路(6)への
空気混入量を多くするのに対し、 低負圧運転状態においては、その開弁量が小さくなっ
て、その空気混入量を少なくするように構成したことを
特徴とするガスエンジンの空燃混合装置。
1. A throttle valve (2) in a mixer main (1).
Pitot port (4) for fuel discharge in the upstream venturi section (3)
In the air-fuel mixing device of the gas engine, which is configured by connecting the gas supply passage (6) for the fuel gas (G) to the pitot opening (4), the intake air intake downstream of the throttle valve (2) is The air supply valve (8) that operates based on the pressure is connected to the gas supply passage (6) so that air can be mixed, and the air supply valve (8) is operated in a high negative pressure operation state where the intake negative pressure is high.
While the valve opening amount of (8) becomes large and the amount of air mixed into the gas supply path (6) increases, the valve opening amount becomes small in the low negative pressure operation state and An air-fuel mixing device for a gas engine, which is configured so as to reduce the amount of mixing.
JP22485691A 1991-08-09 1991-08-09 Air and fuel mixing device for gas engine Pending JPH05118255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22485691A JPH05118255A (en) 1991-08-09 1991-08-09 Air and fuel mixing device for gas engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22485691A JPH05118255A (en) 1991-08-09 1991-08-09 Air and fuel mixing device for gas engine

Publications (1)

Publication Number Publication Date
JPH05118255A true JPH05118255A (en) 1993-05-14

Family

ID=16820242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22485691A Pending JPH05118255A (en) 1991-08-09 1991-08-09 Air and fuel mixing device for gas engine

Country Status (1)

Country Link
JP (1) JPH05118255A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1536127A1 (en) * 2002-08-09 2005-06-01 Isuzu Motors Limited Gas fuel feed device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4980428A (en) * 1972-12-08 1974-08-02
JPS5035200A (en) * 1973-05-07 1975-04-03

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4980428A (en) * 1972-12-08 1974-08-02
JPS5035200A (en) * 1973-05-07 1975-04-03

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1536127A1 (en) * 2002-08-09 2005-06-01 Isuzu Motors Limited Gas fuel feed device
EP1536127A4 (en) * 2002-08-09 2010-06-30 Isuzu Motors Ltd Gas fuel feed device

Similar Documents

Publication Publication Date Title
US4320726A (en) Internal combustion engine
US4269028A (en) Secondary air supply system for the exhaust system of an internal combustion engine
JPS5455221A (en) Internal combustion engine with plurality of intake ports
US4048968A (en) Exhaust gas recirculation system
CA1073290A (en) Engine exhaust gas recirculation control system
US4111170A (en) Air-fuel ratio control system
JPH05118255A (en) Air and fuel mixing device for gas engine
US4586481A (en) Secondary air supply for internal combustion engine
JPS59194069A (en) Intake secondary air feeder of exhaust gas reflux controller-mounted internal-combustion engine
US4146986A (en) Device for supplying secondary air for purifying exhaust gases discharged from internal combustion engine
US4183333A (en) EGR Control system
US3927524A (en) Engine exhaust reactor air flow ratio control method and apparatus
US4185607A (en) Dual displacement engine control
US4211074A (en) Secondary air supply system for the exhaust system of an internal combustion engine
US4222237A (en) Exhaust gas purifying apparatus for internal combustion engine
US4186699A (en) Exhaust gas recirculation system
US4170972A (en) Exhaust gas recirculation control system
JPS555473A (en) Air-fuel ratio controller
US4178896A (en) Exhaust gas recycling system
US4681078A (en) Air-fuel ratio control system for an internal combustion engine
US4617891A (en) Secondary air supply for internal combustion engine
JPS54129228A (en) Internal combustion engine fuel injector
JPS5924266B2 (en) Air-fuel ratio control device for internal combustion engines
US4156345A (en) Secondary air feed control device
JPS6121555Y2 (en)