JPH05117780A - Fiber formed body for fiber-reinforced composite member - Google Patents

Fiber formed body for fiber-reinforced composite member

Info

Publication number
JPH05117780A
JPH05117780A JP28329991A JP28329991A JPH05117780A JP H05117780 A JPH05117780 A JP H05117780A JP 28329991 A JP28329991 A JP 28329991A JP 28329991 A JP28329991 A JP 28329991A JP H05117780 A JPH05117780 A JP H05117780A
Authority
JP
Japan
Prior art keywords
fiber
fibers
deformed
composite member
reinforced composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28329991A
Other languages
Japanese (ja)
Inventor
Tatsuya Suzuki
達也 鈴木
Hideyuki Fujishiro
秀行 藤代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP28329991A priority Critical patent/JPH05117780A/en
Priority to CA002081656A priority patent/CA2081656C/en
Publication of JPH05117780A publication Critical patent/JPH05117780A/en
Priority to US08/320,188 priority patent/US5458970A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/52Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To obtain an isotropic fiber formed body for the fiber-reinforced composite member wherein short fibers are oriented at random by dispersing a tetrapod deformed fiber consisting of the core and acicular part in short fibers and forming the product. CONSTITUTION:This fiber formed body 1 is formed with short fibers 2 such as whiskers and the deformed fibers 3 consisting of plural acicular parts 5 extending from the core 4. The deformed fibers 3 are dispersed to randomly orient the short fibers 2. The content of the deformed fiber 3 is preferably controlled to 0.3-55vol.%. The formed body 1 is obtained by dispersing a mixture of the short fiber 2 and the deformed fiber 3 in a specified ratio in water to obtain a slurry, injecting the slurry into the cavity of a forming die and press- forming the slurry with a presser punch. An isotropic fiber formed body 1 which can be thickened and lowered in density is obtained in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は繊維強化複合部材用繊維
成形体に関する。
TECHNICAL FIELD The present invention relates to a fiber molding for a fiber-reinforced composite member.

【0002】[0002]

【従来の技術】従来、この種繊維成形体としては、短繊
維、例えばウイスカより成形されたものが知られてい
る。この繊維成形体は、一般的には、短繊維を液体に分
散させたスラリ状成形材料を成形型内に注入し、次いで
液体を除去すると共に短繊維を堆積させる、といった方
法によって成形される。
2. Description of the Related Art Heretofore, as this kind of fiber molded article, a short fiber, for example, one molded from whiskers has been known. This fiber molded body is generally molded by a method of injecting a slurry molding material in which short fibers are dispersed in a liquid into a molding die, and then removing the liquid and depositing the short fibers.

【0003】[0003]

【発明が解決しようとする課題】しかしながら従来の繊
維成形体においては、短繊維がその長さ方向を堆積方向
に略直交させた規則的な配向性を有するため、繊維強化
複合部材がその特性において異方化を生じ、その複合部
材を多軸応力のかかる構造部材、異方向の摺動部を備え
た機能部材等に適用するには不適当である、といった問
題がある。
However, in the conventional fiber molded body, since the short fibers have a regular orientation in which the length direction thereof is substantially orthogonal to the stacking direction, the fiber-reinforced composite member has the following characteristics. There is a problem that it is unsuitable to apply the composite member to a structural member to which polyaxial stress is applied, a functional member having a sliding portion in different directions, etc. due to anisotropy.

【0004】また従来の繊維成形体は、その成形法に起
因して、肉厚が薄く、且つ高密度化し易いため、肉厚を
厚く、且つ低密度化を図る、といった要請に応じること
ができない、という問題もある。
Further, since the conventional fiber molded body has a thin wall thickness and is easily densified due to the molding method, it is not possible to meet the demands for increasing the wall thickness and reducing the density. There is also a problem.

【0005】本発明は前記に鑑み、特性において異方化
を緩和された繊維強化複合部材を得ることができ、また
肉厚を厚く、且つ低密度化を図る、といった要請に応じ
ることを可能にした前記繊維成形体を提供することを目
的とする。
In view of the above, the present invention makes it possible to obtain a fiber-reinforced composite member in which anisotropy is alleviated in characteristics, and to meet the demands of increasing the wall thickness and reducing the density. It is an object of the present invention to provide the above-mentioned fiber molded body.

【0006】[0006]

【課題を解決するための手段】本発明に係る繊維強化複
合部材用繊維成形体は、短繊維と、核部より延出する複
数の針状部を有する異形繊維とよりなり、前記異形繊維
を分散させることにより前記短繊維をランダム配向させ
たことを特徴とする。
A fiber molding for a fiber-reinforced composite member according to the present invention comprises a short fiber and a deformed fiber having a plurality of needle-shaped portions extending from a core portion. The short fibers are randomly oriented by being dispersed.

【0007】[0007]

【実施例】図1,図2は、繊維強化複合部材用繊維成形
体1の一実施例を示し、その繊維成形体1は短繊維2と
異形繊維3とより略円盤状に形成されている。
1 and 2 show an embodiment of a fiber molded body 1 for a fiber-reinforced composite member, which fiber molded body 1 is composed of short fibers 2 and deformed fibers 3 in a substantially disc shape. ..

【0008】短繊維2としては、長さをLとし、また直
径をDとしたとき、L/D>1の関係を持つ所定の長さ
を有するもの、本実施例では炭化ケイ素ウイスカ(Si
Cウイスカ)が用いられている。この炭化ケイ素ウイス
カの長さLは20〜60μm、直径Dは0.3〜0.6
μmである。また異形繊維3としては、図3に明示する
ように核部4より延出する複数、図示例では4本の針状
部5を有するテトラポット状のもの、本実施例では酸化
亜鉛ウイスカ(ZnOウイスカ)が用いられている。こ
の酸化亜鉛ウイスカにおいて、針状部5の核部4からの
長さは10〜100μmである。
The short fibers 2 have a predetermined length having a relationship of L / D> 1, where L is the length and D is the diameter. In this embodiment, the silicon carbide whiskers (Si) are used.
C whiskers) are used. This silicon carbide whisker has a length L of 20 to 60 μm and a diameter D of 0.3 to 0.6.
μm. Further, as the deformed fiber 3, as shown in FIG. 3, a tetrapod-shaped fiber having a plurality of needle-shaped portions 5 extending from the core portion 4 as shown in FIG. 3, zinc oxide whiskers (ZnO in this embodiment). Whiskers are used. In this zinc oxide whisker, the length of the needle-shaped portion 5 from the core portion 4 is 10 to 100 μm.

【0009】繊維成形体1において、異形繊維3は繊維
成形体1全体に亘って均一に分散しており、短繊維2は
ランダム配向している。
In the fiber molded body 1, the deformed fibers 3 are uniformly dispersed throughout the fiber molded body 1, and the short fibers 2 are randomly oriented.

【0010】次に、繊維成形体1の成形方法について説
明する。
Next, a method for molding the fiber molded body 1 will be described.

【0011】図4は、繊維成形体1の成形に用いられる
成形型6を示し、その成形型6は、上向きに開口するキ
ャビティ7を備えた型本体8と、そのキャビティ7に摺
動自在に嵌合される加圧パンチ9とより構成され、型本
体8のキャビティ底面には複数の排液孔10が開口して
いる。それら排液孔10の入口はフィルタ11により覆
われており、出口側は吸引ポンプ12に接続されてい
る。
FIG. 4 shows a molding die 6 used for molding the fiber molded body 1. The molding die 6 is provided with a mold body 8 having a cavity 7 opened upward, and slidably in the cavity 7. A plurality of drain holes 10 are formed on the bottom surface of the cavity of the mold body 8 and are configured by a press punch 9 to be fitted. The inlet of these drain holes 10 is covered with a filter 11, and the outlet side is connected to a suction pump 12.

【0012】先ず、短繊維2および異形繊維3よりなる
混合繊維を液体、この成形例では水に分散させてスラリ
状成形材料を調製する。
First, a mixed fiber composed of the short fibers 2 and the irregularly shaped fibers 3 is dispersed in a liquid, in this molding example, water to prepare a slurry molding material.

【0013】次いで、図4に示すように所定量のスラリ
状成形材料Sをキャビティ7に注入する。
Next, as shown in FIG. 4, a predetermined amount of the slurry-like molding material S is injected into the cavity 7.

【0014】その後、図5に示すように、吸引ポンプ1
2を作動させると共に加圧パンチ9を下降させて、液体
を除去すると共に混合繊維を堆積させて繊維成形体1を
成形する。
Thereafter, as shown in FIG. 5, the suction pump 1
2 is operated and the pressure punch 9 is moved down to remove the liquid and deposit the mixed fibers to form the fiber molded body 1.

【0015】この混合繊維の堆積中においては、異形繊
維3が短繊維2を抱き込みながら沈降するので、その短
繊維2の規則的な配向が妨げられ、また異形繊維3の各
針状部5により短繊維2の密集が妨げられるので、堆積
物は低密度に保たれる。
During the deposition of the mixed fibers, the irregularly shaped fibers 3 settle while embracing the short fibers 2, so that the regular orientation of the irregularly shaped fibers 2 is hindered, and the needle-shaped portions 5 of the irregularly shaped fibers 3 are prevented. As a result, the short fibers 2 are prevented from being densely packed, so that the deposit is kept at a low density.

【0016】上記工程を経て、短繊維2のランダム配
向、異形繊維3の均一分散、厚肉化および低密度化を達
成された繊維成形体1が得られる。
Through the above steps, the fiber molded body 1 in which the random orientation of the short fibers 2, the uniform dispersion of the irregularly shaped fibers 3, the thickening and the low density are achieved can be obtained.

【0017】繊維成形体1の成形条件の具体例を挙げれ
ば次の通りである。
Specific examples of molding conditions for the fiber molded body 1 are as follows.

【0018】繊維成形体の寸法:直径86mm、長さ25
mm;スラリ状成形材料:水1000cc、混合繊維97
g、異形繊維の配合量5体積%;加圧パンチの加圧力:
100kg/cm2 ;吸引ポンプの吸引圧:10Torr。異形
繊維3の配合量(体積%)は、混合繊維の体積(短繊維
2と異形繊維3との体積の和)をV1 、異形繊維3の体
積をV2 としたとき、(V2 /V1 )×100として表
わされる。
Dimensions of the fiber molding: diameter 86 mm, length 25
mm; Slurry molding material: 1000 cc of water, 97 mixed fibers
g, compounded amount of deformed fiber 5% by volume; pressure of pressure punch:
100 kg / cm 2 ; suction pressure of suction pump: 10 Torr. When the volume of the mixed fibers (the sum of the volumes of the short fibers 2 and the irregular fibers 3) is V 1 and the volume of the irregular fibers 3 is V 2 , the compounding amount (volume%) of the irregular fibers 3 is (V 2 / It is represented as V 1 ) × 100.

【0019】異形繊維3は、その取扱い中等において針
状部5が折れることがあるが、その針状部5は少なくと
も2本あれば、短繊維2の規則的配向防止等の効果があ
る。それらの効果は、針状部5の数の増加に伴い向上す
る。
The deformed fibers 3 may be broken at the needle-shaped portions 5 during handling thereof. If there are at least two needle-shaped portions 5, the staple fibers 2 can be prevented from being regularly oriented. Those effects are improved as the number of the needle-shaped portions 5 is increased.

【0020】図6は、本発明および比較例繊維成形体を
用いて得られた繊維強化複合部材の引張強さを比較した
ものである。図中、A方向は、図1に示すように堆積方
向と平行な方向を、またB方向は、図1に示すように堆
積方向、したがってA方向と直交する方向を示す。
FIG. 6 compares the tensile strengths of the fiber-reinforced composite members obtained by using the fiber moldings of the present invention and comparative examples. In the figure, the A direction indicates a direction parallel to the deposition direction as shown in FIG. 1, and the B direction indicates a deposition direction as shown in FIG. 1, and thus a direction orthogonal to the A direction.

【0021】本発明繊維成形体1は、短繊維2としての
炭化ケイ素ウイスカに、異形繊維3である酸化亜鉛ウイ
スカを5体積%配合したもので、炭化ケイ素ウイスカは
ランダム配向である。繊維強化複合部材における繊維成
形体1の体積分率Vfは20%である。
The fiber molding 1 of the present invention is a mixture of silicon carbide whiskers as the short fibers 2 with 5% by volume of the zinc oxide whiskers, which are the modified fibers 3, and the silicon carbide whiskers are randomly oriented. The volume fraction Vf of the fiber compact 1 in the fiber-reinforced composite member is 20%.

【0022】比較例繊維成形体は炭化ケイ素ウイスカの
みより成形されたもので、その体積分率Vfは20%で
あり、炭化ケイ素ウイスカは、その長さ方向をA方向に
略直交させた配向性を有する。
COMPARATIVE EXAMPLE A fiber molded product was formed from only silicon carbide whiskers and had a volume fraction Vf of 20%. Silicon carbide whiskers had an orientation in which the length direction was made substantially orthogonal to the A direction. Have.

【0023】マトリックス形成材料としては、Al−S
i−Cu−Mg系合金が用いられ、複合部材の製造に当
っては溶湯鍛造法が適用された。
As the matrix forming material, Al--S
An i-Cu-Mg-based alloy was used, and a molten metal forging method was applied in manufacturing the composite member.

【0024】図6から明らかなように、本発明繊維成形
体1を用いた繊維強化複合部材においては、A,B両方
向間の強度差が比較例を用いたものに比べて小さく、特
性の異方化が緩和されているもので、これは炭化ケイ素
ウイスカがランダム配向していることに起因する。
As is apparent from FIG. 6, in the fiber-reinforced composite member using the fiber molded body 1 of the present invention, the difference in strength between the A and B directions is smaller than that in the comparative example, and the characteristics are different. The directionality of the silicon carbide whiskers is relaxed because the silicon carbide whiskers are randomly oriented.

【0025】図7は、繊維強化複合部材において、異形
繊維3の配合量とA,B両方向間の強度差との関係を示
し、図8は、図7の要部を拡大したものである。図7,
図8より、異形繊維3の配合量を0.3体積%以上に設
定することによって、A,B両方向間の強度差が小さく
なることが判る。このような効果を得るための異形繊維
3の好ましい配合量は3体積%以上である。
FIG. 7 shows the relationship between the blending amount of the irregularly shaped fibers 3 and the strength difference between the directions A and B in the fiber-reinforced composite member, and FIG. 8 is an enlarged view of the main part of FIG. Figure 7,
From FIG. 8, it can be seen that the strength difference between the A and B directions is reduced by setting the blending amount of the deformed fiber 3 to 0.3% by volume or more. The preferable compounding amount of the deformed fiber 3 for obtaining such an effect is 3% by volume or more.

【0026】図9は、繊維強化複合部材において、異形
繊維3の配合量と摩耗量との関係を示す。図9より、異
形繊維3の配合によって複合部材の耐摩耗性が向上する
が、その上限は55体積%であることが判る。
FIG. 9 shows the relationship between the amount of the modified fibers 3 and the amount of wear in the fiber-reinforced composite member. From FIG. 9, it is understood that the abrasion resistance of the composite member is improved by blending the modified fibers 3, but the upper limit thereof is 55% by volume.

【0027】図10は、繊維成形体1において、異形繊
維3の配合量と成形可能な最低体積分率Vfとの関係を
示す。短繊維2としては、ホウ酸アルミニウムウイスカ
(9Al2 3 ・2B2 3 ウイスカ)が用いられ、そ
の長さLは10〜20μm、直径Dは0.5〜3μmで
ある。異形繊維3としては、前記酸化亜鉛ウイスカが用
いられた。図10から明らかなように、異形繊維3の配
合量0.3体積%以上において、最低体積分率Vfが低
下し、したがって肉厚が厚く、且つ低密度な繊維成形体
1を得ることが可能となる。
FIG. 10 shows the relationship between the compounding amount of the irregularly shaped fibers 3 and the minimum moldable volume fraction Vf in the fiber molded body 1. The short fibers 2, aluminum borate whisker (9Al 2 O 3 · 2B 2 O 3 whisker) is used, the length L is 10 to 20 [mu] m, the diameter D is 0.5 to 3 [mu] m. As the deformed fiber 3, the zinc oxide whisker was used. As is clear from FIG. 10, the minimum volume fraction Vf decreases when the content of the deformed fibers 3 is 0.3% by volume or more, so that the fiber molded body 1 having a large wall thickness and a low density can be obtained. Becomes

【0028】図11は、繊維成形体1において、異形繊
維3の針状部5の長さと成形可能な最低体積分率Vfと
の関係を示す。短繊維2および異形繊維3は、図10の
例と同じものである。図11より、針状部5の長さが増
すと、最低体積分率Vfが低下することが判る。
FIG. 11 shows the relationship between the length of the needle-like portion 5 of the irregularly shaped fiber 3 and the minimum volume fraction Vf that can be molded in the fiber molded body 1. The short fibers 2 and the irregularly shaped fibers 3 are the same as those in the example of FIG. It can be seen from FIG. 11 that the minimum volume fraction Vf decreases as the length of the needle portion 5 increases.

【0029】[0029]

【発明の効果】本発明によれば、短繊維および特定の異
形繊維を構成材料とすることによって、短繊維をランダ
ム配向させた繊維成形体を提供することができ、これに
より特性において異方化を緩和された繊維強化複合部材
を得ることができる。また肉厚が厚く、且つ低密度な繊
維成形体を提供することも可能である。
EFFECTS OF THE INVENTION According to the present invention, it is possible to provide a fiber molded product in which short fibers are randomly oriented by using short fibers and specific deformed fibers as constituent materials. It is possible to obtain a fiber-reinforced composite member that is relaxed. It is also possible to provide a fiber molded product having a large wall thickness and a low density.

【図面の簡単な説明】[Brief description of drawings]

【図1】繊維成形体の斜視図である。FIG. 1 is a perspective view of a fiber molded body.

【図2】図1の2−2線断面図である。2 is a sectional view taken along line 2-2 of FIG.

【図3】異形繊維の斜視図である。FIG. 3 is a perspective view of a deformed fiber.

【図4】成形型にスラリ状成形材料を注入した状態を示
す説明図である。
FIG. 4 is an explanatory view showing a state where a slurry-like molding material is injected into a molding die.

【図5】繊維成形体成形中の説明図である。FIG. 5 is an explanatory diagram during molding of the fiber molded body.

【図6】本発明繊維成形体を用いた繊維強化複合部材
と、比較例繊維成形体を用いた繊維強化複合部材との引
張強さを示すグラフである。
FIG. 6 is a graph showing the tensile strengths of a fiber-reinforced composite member using the fiber molding of the present invention and a fiber-reinforced composite member using the comparative fiber molding.

【図7】繊維強化複合部材において、異形繊維の配合量
と、A,B両方向間の強度差との関係を示すグラフであ
る。
FIG. 7 is a graph showing the relationship between the blending amount of irregularly shaped fibers and the strength difference between A and B directions in the fiber-reinforced composite member.

【図8】図7の要部拡大図である。FIG. 8 is an enlarged view of a main part of FIG.

【図9】繊維強化複合部材において、異形繊維の配合量
と摩耗量との関係を示すグラフである。
FIG. 9 is a graph showing the relationship between the amount of modified fibers and the amount of wear in a fiber-reinforced composite member.

【図10】異形繊維の配合量と、繊維成形体の成形可能
な最低体積分率との関係を示すグラフである。
FIG. 10 is a graph showing the relationship between the blending amount of irregularly shaped fibers and the minimum moldable volume fraction of a fiber molded body.

【図11】異形繊維の針状部の長さと、繊維成形体の成
形可能な最低体積分率との関係を示すグラフである。
FIG. 11 is a graph showing the relationship between the length of the needle-shaped portion of the irregularly shaped fiber and the minimum volume fraction of the fiber molded body that can be molded.

【符号の説明】[Explanation of symbols]

1 繊維成形体 2 短繊維 3 異形繊維 4 核部 5 針状部 1 Fiber molding 2 Short fiber 3 Deformed fiber 4 Core part 5 Needle part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 短繊維(2)と、核部(4)より延出す
る複数の針状部(5)を有する異形繊維(3)とよりな
り、前記異形繊維(3)を分散させることにより前記短
繊維(2)をランダム配向させたことを特徴とする繊維
強化複合部材用繊維成形体。
1. A short fiber (2) and a modified fiber (3) having a plurality of needle-shaped parts (5) extending from a core part (4), wherein the modified fiber (3) is dispersed. The short fiber (2) is randomly oriented according to the above to provide a fiber molding for a fiber-reinforced composite member.
【請求項2】 前記異形繊維(3)の配合量を0.3体
積%以上、55体積%以下に設定した、請求項1記載の
繊維強化複合部材用繊維成形体。
2. The fiber molding for a fiber-reinforced composite member according to claim 1, wherein the compounded amount of the irregularly shaped fibers (3) is set to 0.3 volume% or more and 55 volume% or less.
JP28329991A 1991-10-29 1991-10-29 Fiber formed body for fiber-reinforced composite member Pending JPH05117780A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP28329991A JPH05117780A (en) 1991-10-29 1991-10-29 Fiber formed body for fiber-reinforced composite member
CA002081656A CA2081656C (en) 1991-10-29 1992-10-28 Fiber shaped-article for fiber-reinforced composite members and method of producing the same
US08/320,188 US5458970A (en) 1991-10-29 1994-10-07 Shaped-articles made of fibers for use in producing fiber-reinforced composite members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28329991A JPH05117780A (en) 1991-10-29 1991-10-29 Fiber formed body for fiber-reinforced composite member

Publications (1)

Publication Number Publication Date
JPH05117780A true JPH05117780A (en) 1993-05-14

Family

ID=17663656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28329991A Pending JPH05117780A (en) 1991-10-29 1991-10-29 Fiber formed body for fiber-reinforced composite member

Country Status (1)

Country Link
JP (1) JPH05117780A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994008912A2 (en) * 1992-10-13 1994-04-28 Ushers Inc. Improved aggregates, and apparatus and method for making same
US5674802A (en) * 1992-10-13 1997-10-07 Ushers, Inc. Shares for catalyst carrier elements, and catalyst apparatuses employing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994008912A2 (en) * 1992-10-13 1994-04-28 Ushers Inc. Improved aggregates, and apparatus and method for making same
WO1994008912A3 (en) * 1992-10-13 1994-05-26 Improved aggregates, and apparatus and method for making same
US5433777A (en) * 1992-10-13 1995-07-18 Ushers, Inc. Aggregates and materials employing same
US5674802A (en) * 1992-10-13 1997-10-07 Ushers, Inc. Shares for catalyst carrier elements, and catalyst apparatuses employing same

Similar Documents

Publication Publication Date Title
CA1283763C (en) Fibrous material for composite materials, fiber- reinforced composite materials produced therefrom, and processes for producing same
DE60110180T2 (en) Thermally conductive polymer film
US5037102A (en) Golf club head
EP0223478A2 (en) Fibre-reinforced metal matrix composites
DE3885259T2 (en) Sintered magnesium-based composite material and process for its production.
DE69514013T2 (en) Reinforcement for composite and composite using it
DE2113740A1 (en) Punchable glass fiber reinforced thermoplastic composition and process for producing a molded part therefrom
JPH05117780A (en) Fiber formed body for fiber-reinforced composite member
DE3875363T2 (en) GRANULATED COMPOSITION CONTAINING METAL FIBERS AND PLASTIC OBJECTS MADE THEREOF.
DE68916515T2 (en) Process for the production of composite material with a metal matrix with controlled reinforcement phase.
US5458970A (en) Shaped-articles made of fibers for use in producing fiber-reinforced composite members
JP3000404B2 (en) Method of forming hybrid fiber molded product for fiber reinforced composite member
JP3000405B2 (en) Method of forming fiber molded article for fiber reinforced composite member
DE69023802T2 (en) Metal-based composite body and method for its production.
DE2318108B2 (en) Spring area for the Fourdrinier of a paper machine
DE68909526T2 (en) Mullite material reinforced with fibers and dispersed particles and process for its production.
JPH0344432A (en) Manufacture of fiber reinforced metallic composite material
DE3220559C2 (en)
JP2925378B2 (en) Manufacturing method of composite material
JPS62131034A (en) Carbon fiber/resin composite
JPH0368090B2 (en)
KR100256365B1 (en) The manufacturing method for composite material with directional properties
JP3006263B2 (en) Method for producing metal powder sintered body
DE202022103231U1 (en) A device for the production of aluminum hybrid composites
JP3619258B2 (en) Manufacturing method of composite reinforcement for functionally graded metal matrix composite