JPH0511757B2 - - Google Patents

Info

Publication number
JPH0511757B2
JPH0511757B2 JP63049342A JP4934288A JPH0511757B2 JP H0511757 B2 JPH0511757 B2 JP H0511757B2 JP 63049342 A JP63049342 A JP 63049342A JP 4934288 A JP4934288 A JP 4934288A JP H0511757 B2 JPH0511757 B2 JP H0511757B2
Authority
JP
Japan
Prior art keywords
polyolefin resin
foam
aggregate
expansion ratio
resin foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63049342A
Other languages
Japanese (ja)
Other versions
JPH01222937A (en
Inventor
Toshiji Nakae
Kanji Tanaka
Shunji Ookubo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP63049342A priority Critical patent/JPH01222937A/en
Priority to KR1019890002369A priority patent/KR960000727B1/en
Priority to EP19890302005 priority patent/EP0331447B1/en
Priority to DE1989615817 priority patent/DE68915817T2/en
Publication of JPH01222937A publication Critical patent/JPH01222937A/en
Priority to US07/630,442 priority patent/US5075162A/en
Publication of JPH0511757B2 publication Critical patent/JPH0511757B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、ポリオレフイン系樹脂発泡体の両表
面の一方の面に表皮材を貼り合わせ、他方の面に
骨材用熱可塑性樹脂を一体成型した、自動車など
に用いられる車両用内装成型品に関する。 [従来の技術] この種の従来の車両用内装成型品としては、次
のようなものが知られている。 第1従来例 いわゆる注入−一体成型法と称されるもので、
ポリオレフイン系樹脂発泡体の一方の表面に軟質
塩化ビニルシートなどの表皮材を接着剤法や押出
機などによりラミネートして複合材を得、その複
合材を、得ようとする車両用内装成型品の型に合
うように成型しておいて金型内にセツトし、その
金型内の表皮材とは反対側の残りの空間内に、溶
融状態のポリプロピレン樹脂などの骨材用熱可塑
性樹脂を注入して所望形状の車両用内装成型品を
得る。 第2従来例 いわゆる真空圧縮成型法と称されるもので、特
開昭54−10367号公報に示されるように、予め所
望形状に成型された骨材を金型の雄型にセツト
し、その骨材の表面に有機溶剤で分散した接着剤
をスプレー等によつて塗布し、そこに、ポリオレ
フイン系樹脂発泡体に表皮材をラミネートした高
温加熱状態の複合材を載置し、雌型と複合材との
空間、および、複合材と骨材との空間それぞれの
空気を真空吸引により除去して雌型と複合材、お
よび、複合材と骨材それぞれを密着させ、しかる
後、複合材の表皮材側から圧縮空気を供給して複
合材を骨材側に圧縮して加圧し、所望形状の車両
用内装成型品を得る。 [発明が解決しようとする課題] しかしながら、上記第1および第2従来例で
は、それぞれ次の欠点があつた。 (i) 第1従来例の欠点 複合材を予め所望形状に成型しておかなければ
ならないために生産性が低下する欠点があり、ま
た、注入する骨材用熱可塑性樹脂の溶融温度が高
いため、その高温樹脂によりポリオレフイン系樹
脂発泡体が高温に加熱されるとともに、その加熱
状態でポリオレフイン系樹脂発泡体に圧力が加え
られ、ポリオレフイン系樹脂発泡体の骨材用熱可
塑性樹脂側が高温になり、気泡が膨張しながら変
形して破壊されるとともに、その破壊が表皮材側
の気泡にまで波及し、表皮材側に凹凸を発生し、
不良品を発生しやすくて製品歩留りが低い欠点が
あつた。 (ii) 第2従来例の欠点 骨材を予め所望形状に成型しておかなければな
らないうえに、その骨材の表面に接着剤を塗布し
なければならず、工程が多くなつて生産性が低下
する欠点があつた。 また、接着剤を分散するために有機溶剤が必要
であり、作業環境が悪化するとともに、その引火
性のために火災の虞があり、更に、コストが高く
なる欠点があつた。 本発明は、このような事情に鑑みてなされたも
のであつて、一体成型時に接着剤を使用せず、か
つ、複合材や骨材に対する前もつての成型を不用
にして、品質および生産性のいずれをも高くして
生産できる車両用内装成型品を提供することを目
的とする。 [課題を解決するための手段] 本発明に係る車両用内装成型品は、このような
目的を達成するために、ゲル分率が35%以上のポ
リオレフイン系樹脂発泡体であつて、その両面そ
れぞれにおける表面から0.5mmまでの厚み部分の
平均発泡倍率が、一方よりも他方の方が大きく、
かつ、両者の発泡倍率の差が2〜20倍であるポリ
オレフイン系樹脂発泡体の平均発泡倍率の高い側
の面に表皮材が貼り合わされ、一方、平均発泡倍
率の低い側の面に、ホツトスタンピングモールド
法により骨材用熱可塑性樹脂が一体成型されて成
ることを特徴としている。 ホツトスタンピングモールド法とは、金型の一
方のプレス面上に溶融状態の骨材用熱可塑性樹脂
を、団子状に点在するように、または、シート状
にして分配供給し、その上に、ポリオレフイン系
樹脂発泡体に表皮材を貼り合わせた所定大の複合
材を加熱状態で供給し、その状態で加圧すること
により複合材に骨材用熱可塑性樹脂を熱融着によ
つて一体化しながら成型する方法である。 また、このポリオレフイン系樹脂発泡体の材料
としては、エチレンが0.5〜35%、ランダムまた
はブロツクあるいはランダム−ブロツク状に共重
合されたポリプロピレン樹脂を用いるのが好まし
いが、密度0.897〜0.955g/c.c.のMI0.5〜50のポリ
エチレン樹脂や、エチレンとα・オレフインの共
重合ポリエチレン樹脂とか、エチレンと酢酸ビニ
ル、アクリル酸、アクリル酸エステル等のモノマ
ーが共重合されたポリエチレン樹脂、更には、前
述のようなポリプロピレン樹脂とポリエチレン樹
脂、または、共重合されたポリエチレン樹脂の混
和物から成る発泡体などが適用できる。 また、上述の樹脂に、発泡体に悪影響を与えな
い範囲で更に他の樹脂を混合しても良い。例え
ば、低密度、中密度あるいは高密度ポリエチレ
ン、α−オレフインを共重合したポリエチレン系
共重合体、または、エチレンを主成分とする酢酸
ビニルもしくはアクリル酸エステルとの共重合体
を混合しても良い。 本発明のポリオレフイン系樹脂発泡体に貼り合
わせる表皮材としては、天然、人造の繊維を用い
た布帛状物、ポリ塩化ビニル樹脂からなるシー
ト、熱可塑性エラストマーシート、レザー等の公
知のものを用いることができる。 本発明に用いる骨材用熱可塑性樹脂としては、
ポリプロピレン樹脂を用いるのが好ましいが、前
述したポリオレフイン系樹脂発泡体の材料と同様
のものや、ABS樹脂、ポリエチレン樹脂などが
適用できる。 また、ポリオレフイン系樹脂発泡体と骨材用熱
可塑性樹脂との組合せとしては、ポリプロピレン
系樹脂発泡体とポリプロピレン樹脂の場合が好ま
しいが、ポリエチレン系樹脂発泡体とポリエチレ
ン樹脂でも良く、また、ポリプロピレン系樹脂発
泡体とポリエチレン樹脂のように異質のものを組
合せても良い。但し、異質のものを組合せる場合
には、それらの間に、例えば、アドマーフイルム
(三井石油社製)やクランベター(倉敷紡績社製)
などの接着性フイルムを介在させて熱融着する。 本発明に用いるポリオレフイン系樹脂発泡体の
ゲル分率は35%以上であり、気泡の溶融破壊を抑
える上において、好ましくは46%以上である。ゲ
ル分率が35%未満では、成型時の熱および圧力に
より気泡破壊が発生し、表皮材側に凹凸を生じ
る。 なお、上記ポリオレフイン系樹脂発泡体のゲル
分率とは、次のようにして測定した値をいう。 まず、発泡体を約1mm角に切断し、0.1g程度を
採取し、これを試料として精秤し、その重量をA
(g)とする。 この試料を130℃の温度で3時間テトラリン中
で加熱した後に冷却し、さらにアセトンで洗浄し
た後に水洗して溶出分を除去した後に乾燥する。
この乾燥後の試料を精秤し、その重量をB(g)
とする。 ゲル分率(%)は次式で算出する。 ゲル分率(%)=B/A×100 また、ポリオレフイン系樹脂発泡体の両面それ
ぞれにおける表面から0.5mmまでの厚み部分の平
均発泡倍率の差としては、2〜20倍である。これ
は、2倍未満であると、表皮材側に凹凸を発生
し、一方、20倍を越えると、成型後の冷却に伴う
収縮の度合いの差により、反り等の変形を生じて
しまう。 本発明に用いるポリオレフイン系樹脂発泡体と
しては、熱分解型発泡剤を用いたものでも、押出
機内に液体とポリオレフイン系樹脂とを混練し、
その液体のガス化により得られたいわゆる押出発
泡と称する方法で製造されたものでも良く、公知
の架橋ポリオレフイン系樹脂発泡体を製造する方
法であれば、いかなる方法を用いても良い。そし
て、平均発泡倍率が5〜40倍のものが好適に使用
される。 特に好ましい方法としては、ポリオレフイン樹
脂、発泡剤、架橋促進剤からなる混合物を電離放
射線で架橋し、しかるのちに発泡剤の分解温度以
上に加熱して発泡させる方法、あるいは、ポリオ
レフイン樹脂、発泡剤、有機過酸化物、架橋促進
剤、場合によつては架橋調節剤からなる混合物を
有機過酸化物および発泡剤の分解温度以上に加熱
して架橋と発泡を行わせる方法などが挙げられ
る。これらの方法はエンドレスな連続シート状発
泡体を製造する場合に好適である。 発泡剤としては、常温で液体または固体の化合
物でポリオレフイン樹脂の溶融点以上に加熱され
たときに分解または気化する化合物でシート化や
架橋反応を実質的に妨害しない限り任意のものが
使用できるが、分解温度が180〜240℃の範囲のも
のが好ましい。その具体的な例としては、アゾジ
カルボンアミド、アゾジカルボン酸金属塩、ジニ
トロソペンタメチレンテトラミンなどがある。こ
れらの発泡剤は、ポリプロピレン樹脂に対して
0.1〜40重量%の範囲で使用され、それぞれの種
類や発泡倍率によつて任意に混合量を変えること
ができる。 架橋反応に有機過酸化物を用いる場合は、分解
温度が、本発明で用いるポリオレフイン樹脂の流
動開始温度以上のもので分解半減期が1分間の場
合の分解温度が約120℃以上のものが好ましく、
特に好ましくは150℃以上のものである。その具
体的な例としては、メチルエチルケトンパーオキ
シド(182℃)、t−ブチルパーオキシイソプロピ
ルカーボネート(153℃)、ジクミルパーオキシド
(171℃)などがある。これらの有機過酸化物はポ
リオレフイン樹脂に対して0.01〜10重量%、好ま
しくは0.05〜5重量%使用される。 架橋促進剤の代表的な例としては、ジビニルベ
ンゼン、ジアリルベンゼン、ジビニルナフタレン
などがあり、その好ましい添加量は、ポリオレフ
イン樹脂に対して0.1〜30重量%、より好ましく
は0.3〜20重量%である。 ポリオレフイン樹脂と発泡剤や架橋促進剤、有
機過酸化物の混合は、従来公知の混合方法によつ
て行うことができる。例えば、ヘンシエルミキサ
による混合、バンバリミキサによる混合、ミキシ
ングロールによる混合、混練押出機による混合、
発泡剤、架橋促進剤、有機過酸化物を溶解した溶
液にポリプロピレン樹脂を浸漬する方法などがあ
り、単独または併用して使われる。特に樹脂が粉
末状の場合は、ヘンシエルミキサによる粉末混合
が便利である。粉末混合は通常室温からら樹脂の
軟化温度の間で行われ、溶融混合は、通常、樹脂
の溶融温度から185℃の範囲で行われる。 連続シート状の発泡体を製造する場合は、発泡
体の分解温度以下で押出成形によりシート状に成
形しておくことが望ましい。 均一に混合または混練成形された発泡組成物の
架橋と発泡は有機過酸化物による場合は130〜300
℃好ましくは150〜260℃の温度範囲で常圧または
加圧下に加熱して行うことができる。架橋と発泡
剤の分解が加熱時にほとんど同時におこる場合は
加圧密閉できる金型の中で架橋と発泡に必要な時
間だけ加熱し、除圧と同時に発泡させる方法が用
いられる。粉末混合物をそのまま発泡させる場合
にはこの方法がきわめて有効である。また、加熱
架橋条件で発泡剤が分解しない場合には、架橋を
行つたあと発泡剤の分解温度以上で常圧または加
圧下に加熱して発泡させる方法が用いられる。特
に気泡が微細な発泡体を得るためには加圧下に発
泡させる方法が好ましい。架橋や発泡に必要な加
熱時間は組成加熱温度、被発泡物の厚さなどによ
つて異なるが、通常は1〜30分である。 発泡性組成物を電離性放射線を照射することに
よつて架橋する場合、電離性放射線としては、電
子線加速器からの電子線Co60その他の放射性同位
元素からのα、β、γ線が好ましいが、X線や紫
外線を用いても良い。これらの放射線照射量は架
橋促進剤の種類、目的とする架橋の割合によつて
異なるが、一般に0.1〜30Mrad、好ましくは0.5
〜20Mradである。 このようにして放射線架橋された樹脂の発泡
は、ポリプロピレン樹脂の溶融温度、好ましくは
190℃以上の温度に加熱する方法であれば、常圧、
加圧、減圧いずれの条件下でも良く、加熱源や加
熱媒体についても未発泡成形物の形状や発泡時の
圧力状態に応じて任意のものが使用できることは
前述の場合と同様である。 ポリオレフイン系樹脂発泡体の両面の平均発泡
倍率に差をつける手段としては、発泡機により、
発泡剤の分解温度以上の温度条件下で発泡体シー
トを発泡する際に、一方の面に対する加熱温度よ
りも他方の面に対する加熱温度を低くし、発泡剤
の分解とポリオレフイン系樹脂の溶融応力を調整
したり、両面の架橋反応度を変化させることによ
つて差を持たせることができる。また、平均発泡
倍率が異なるポリオレフイン系樹脂発泡体どうし
を、接着剤または好ましくは熱融着により一体化
して得ることができる。 [作用] ポリオレフイン系樹脂発泡体の平均発泡倍率が
低くて小さい気泡が存在する側の面を溶融状態の
骨材用熱可塑性樹脂に接触させ、一方、平均発泡
倍率が高くて大きい気泡が存在する側の面を溶融
状態の骨材用熱可塑性樹脂とは反対側で表皮材と
貼り合わせた側に位置させ、熱融着により一体化
しながら成型する。 [実施例] 実施例 図示のように、見掛け密度0.050g/cm3(全体の
平均発泡倍率20倍)、厚さ3.0mm、ゲル分率55%
で、かつ、両面のうちの一方の表面から0.5mmま
での厚み部分の見掛け密度が0.045g/cm3(平均発
泡倍率22倍)で他方の表面から0.5mmまでの厚み
部分の見掛け密度が0.0625g/cm3(平均発泡倍率
16倍)の架橋ポリプロピレン系樹脂発泡体1の平
均発泡倍率の高い側の面に、表皮材として、厚さ
0.45mmの軟質ポリ塩化ビニルシート2が2液型ポ
リエステル系接着剤により貼り合わされ、複合材
3が構成されている。 骨材用熱可塑性樹脂としてのポリプロピレン樹
脂を、195℃の温度で溶融した状態で、Tダイ法
により金型のプレス面上に重量56g分押し出し、
そのポリプロピレン樹脂上に、架橋ポリプロピレ
ン系樹脂発泡体1の平均発泡倍率の低い側の面が
接触するように複合材3を置き、40℃に加熱され
た26tonプレスにより、50,100,200Kg/cm2の圧
力をかけて一体成型し、複合材3に骨材4が熱融
着された車両用内装成型品5を得た。 比較例 1 上記実施例とは逆に、架橋ポリプロピレン系樹
脂発泡体の平均発泡倍率の低い側の面に表皮材を
貼り合わせ、一方、平均発泡倍率の高い側に、前
述実施例と同様にして、ポリプロピレン樹脂を熱
融着しながら一体成型して車両用内装成型品を得
た。 比較例 2 架橋ポリプロピレン系樹脂発泡体の一方の面の
平均発泡倍率と他方の面の平均発泡倍率との差が
2倍未満でほとんど差が無い一般市販品を用い、
その一方の面に表皮材を貼り合わせ、そして、前
述実施例と同様にして、ポリプロピレン樹脂を熱
融着しながら一体成型して車両用内装成型品を得
た。 上記実施例、比較例1および比較例2それぞれ
の表皮材の表面における凹凸の状態を観察したと
ころ、次表に示すような結果を得た。
[Industrial Application Field] The present invention is a polyolefin resin foam that is used in automobiles, etc., in which a skin material is bonded to one of both surfaces and a thermoplastic resin for aggregate is integrally molded to the other surface. Related to vehicle interior molded products. [Prior Art] The following are known as conventional vehicle interior molded products of this type. The first conventional example is the so-called injection-integral molding method,
A skin material such as a soft vinyl chloride sheet is laminated on one surface of a polyolefin resin foam using an adhesive method or an extruder to obtain a composite material. It is molded to fit the mold, set in the mold, and a thermoplastic aggregate resin such as molten polypropylene resin is injected into the remaining space in the mold on the opposite side from the skin material. Then, a vehicle interior molded product having a desired shape is obtained. Second conventional example This is the so-called vacuum compression molding method, as shown in Japanese Patent Application Laid-Open No. 54-10367, in which aggregate molded in advance into a desired shape is set in the male die of a mold. An adhesive dispersed with an organic solvent is applied to the surface of the aggregate by spraying, etc., and then a composite material made of a polyolefin resin foam laminated with a skin material heated at a high temperature is placed on the surface of the aggregate, and then the female mold and the composite material are placed. The air in the space between the mold and the composite material and the space between the composite material and the aggregate is removed by vacuum suction, and the female mold and the composite material, and the composite material and the aggregate are brought into close contact with each other, and then the skin of the composite material is removed. Compressed air is supplied from the material side to compress and pressurize the composite material toward the aggregate side, thereby obtaining a vehicle interior molded product having a desired shape. [Problems to be Solved by the Invention] However, the first and second conventional examples described above each have the following drawbacks. (i) Disadvantages of the first conventional example There is a disadvantage that productivity decreases because the composite material must be molded into the desired shape in advance, and the melting temperature of the thermoplastic resin for the aggregate to be injected is high. The polyolefin resin foam is heated to a high temperature by the high temperature resin, pressure is applied to the polyolefin resin foam in the heated state, and the aggregate thermoplastic resin side of the polyolefin resin foam becomes high temperature. As the bubbles expand and deform and are destroyed, the destruction spreads to the bubbles on the skin material side, causing unevenness on the skin material side.
The disadvantage was that it was easy to produce defective products and the product yield was low. (ii) Disadvantages of the second conventional example: In addition to having to mold the aggregate into a desired shape in advance, adhesive must be applied to the surface of the aggregate, which increases the number of steps and reduces productivity. There was a drawback that it deteriorated. Further, an organic solvent is required to disperse the adhesive, which worsens the working environment, poses a risk of fire due to its flammability, and has the disadvantages of increased cost. The present invention was made in view of these circumstances, and it improves quality and productivity by not using adhesives during integral molding and by eliminating the need for prior molding of composite materials and aggregates. The purpose of the present invention is to provide a vehicle interior molded product that can be produced with high levels of both. [Means for Solving the Problems] In order to achieve the above object, the vehicle interior molded product according to the present invention is a polyolefin resin foam with a gel fraction of 35% or more, The average foaming ratio of the thickness from the surface to 0.5mm is larger on one side than on the other.
In addition, a skin material is bonded to the side of the polyolefin resin foam with a higher average expansion ratio, and the difference in expansion ratio between the two is 2 to 20 times, while hot stamping is applied to the side of the polyolefin resin foam with a lower average expansion ratio. It is characterized in that the thermoplastic resin for aggregate is integrally molded using a molding method. In the hot stamping mold method, a molten thermoplastic resin for aggregate is distributed and supplied on one press surface of a mold in the form of dots or sheets, and then A composite material of a predetermined size, which is made by bonding a skin material to a polyolefin resin foam, is supplied in a heated state and pressurized in that state to integrate the thermoplastic resin for aggregate into the composite material by heat fusion. This is a molding method. As the material for this polyolefin resin foam, it is preferable to use a polypropylene resin copolymerized with 0.5 to 35% ethylene in a random, block, or random-block shape, but with a density of 0.897 to 0.955 g/cc. Polyethylene resins with an MI of 0.5 to 50, copolymerized polyethylene resins of ethylene and α-olefin, polyethylene resins copolymerized with ethylene and monomers such as vinyl acetate, acrylic acid, and acrylic esters, as well as those mentioned above. A foam made of a mixture of a polypropylene resin and a polyethylene resin, or a copolymerized polyethylene resin can be used. Furthermore, other resins may be mixed with the above-mentioned resins as long as they do not adversely affect the foam. For example, low-density, medium-density or high-density polyethylene, a polyethylene copolymer copolymerized with α-olefin, or a copolymer containing ethylene as a main component with vinyl acetate or acrylic ester may be mixed. . As the skin material to be attached to the polyolefin resin foam of the present invention, known materials such as fabrics made of natural or artificial fibers, sheets made of polyvinyl chloride resin, thermoplastic elastomer sheets, leather, etc. may be used. I can do it. As the thermoplastic resin for aggregate used in the present invention,
Although it is preferable to use polypropylene resin, materials similar to those of the polyolefin resin foam described above, ABS resin, polyethylene resin, etc. can be used. Furthermore, as a combination of polyolefin resin foam and thermoplastic resin for aggregate, polypropylene resin foam and polypropylene resin are preferred, but polyethylene resin foam and polyethylene resin may also be used. Different materials such as foam and polyethylene resin may be combined. However, when combining different materials, for example, use Admer Film (manufactured by Mitsui Oil Co., Ltd.) or Cranbetter (manufactured by Kurashiki Boseki Co., Ltd.) between them.
Heat-sealed with an adhesive film such as The gel fraction of the polyolefin resin foam used in the present invention is 35% or more, and preferably 46% or more in order to suppress melting and destruction of bubbles. If the gel fraction is less than 35%, bubbles will break due to the heat and pressure during molding, resulting in unevenness on the skin material side. Note that the gel fraction of the polyolefin resin foam mentioned above refers to a value measured as follows. First, cut the foam into approximately 1 mm squares, collect approximately 0.1 g, and accurately weigh this as a sample.
(g). This sample is heated in tetralin at a temperature of 130° C. for 3 hours, then cooled, washed with acetone and then water to remove the eluted matter, and then dried.
Accurately weigh this dried sample and calculate its weight as B (g)
shall be. The gel fraction (%) is calculated using the following formula. Gel fraction (%) = B/A x 100 Furthermore, the difference in the average expansion ratio between the thickness of 0.5 mm from the surface on each of both sides of the polyolefin resin foam is 2 to 20 times. If it is less than 2 times, unevenness will occur on the skin material side, while if it exceeds 20 times, deformation such as warping will occur due to the difference in the degree of shrinkage accompanying cooling after molding. The polyolefin resin foam used in the present invention may be one using a pyrolyzable blowing agent, but the polyolefin resin foam may be prepared by kneading a liquid and a polyolefin resin in an extruder.
It may be produced by a method called extrusion foam obtained by gasifying the liquid, and any known method for producing a crosslinked polyolefin resin foam may be used. A material having an average expansion ratio of 5 to 40 times is preferably used. Particularly preferred methods include a method in which a mixture consisting of a polyolefin resin, a blowing agent, and a crosslinking accelerator is crosslinked with ionizing radiation, and then foamed by heating to a temperature higher than the decomposition temperature of the blowing agent; Examples include a method in which a mixture of an organic peroxide, a crosslinking accelerator, and in some cases a crosslinking regulator is heated to a temperature higher than the decomposition temperature of the organic peroxide and the blowing agent to effect crosslinking and foaming. These methods are suitable for producing endless continuous sheet foams. As the blowing agent, any compound that is liquid or solid at room temperature and that decomposes or vaporizes when heated above the melting point of the polyolefin resin can be used as long as it does not substantially interfere with sheet formation or crosslinking reactions. , those with a decomposition temperature in the range of 180 to 240°C are preferred. Specific examples include azodicarbonamide, azodicarboxylic acid metal salts, dinitrosopentamethylenetetramine, and the like. These blowing agents are suitable for polypropylene resins.
It is used in a range of 0.1 to 40% by weight, and the mixing amount can be changed arbitrarily depending on the type and expansion ratio. When using an organic peroxide in the crosslinking reaction, it is preferable that the decomposition temperature is higher than the flow initiation temperature of the polyolefin resin used in the present invention, and the decomposition temperature is higher than about 120°C when the decomposition half-life is 1 minute. ,
Particularly preferred is a temperature of 150°C or higher. Specific examples thereof include methyl ethyl ketone peroxide (182°C), t-butylperoxyisopropyl carbonate (153°C), and dicumyl peroxide (171°C). These organic peroxides are used in an amount of 0.01 to 10% by weight, preferably 0.05 to 5% by weight, based on the polyolefin resin. Typical examples of crosslinking accelerators include divinylbenzene, diallylbenzene, divinylnaphthalene, etc., and the preferred amount added is 0.1 to 30% by weight, more preferably 0.3 to 20% by weight, based on the polyolefin resin. . The polyolefin resin, the blowing agent, the crosslinking accelerator, and the organic peroxide can be mixed by a conventionally known mixing method. For example, mixing with a Henschel mixer, mixing with a Banbury mixer, mixing with a mixing roll, mixing with a kneading extruder,
There are methods such as immersing polypropylene resin in a solution containing a blowing agent, a crosslinking accelerator, and an organic peroxide, which can be used alone or in combination. Particularly when the resin is in powder form, powder mixing using a Henschel mixer is convenient. Powder mixing is usually carried out between room temperature and the softening temperature of the resin, and melt mixing is usually carried out between the melting temperature of the resin and 185°C. When producing a foam in the form of a continuous sheet, it is desirable to form the foam into a sheet by extrusion at a temperature below the decomposition temperature of the foam. Crosslinking and foaming of a foaming composition that has been uniformly mixed or kneaded is 130 to 300% when using an organic peroxide.
It can be carried out by heating at a temperature range of 150 to 260°C, preferably at normal pressure or under pressure. If crosslinking and decomposition of the foaming agent occur almost simultaneously during heating, a method is used in which the mold is heated for the time necessary for crosslinking and foaming in a pressure-sealable mold, and the pressure is removed and foaming is simultaneously performed. This method is extremely effective when foaming a powder mixture as it is. If the foaming agent does not decompose under heat crosslinking conditions, a method is used in which, after crosslinking, the material is heated at normal pressure or under increased pressure at a temperature higher than the decomposition temperature of the foaming agent. In particular, in order to obtain a foam with fine cells, a method of foaming under pressure is preferred. The heating time required for crosslinking and foaming varies depending on the composition heating temperature, the thickness of the material to be foamed, etc., but is usually 1 to 30 minutes. When crosslinking the foamable composition by irradiating it with ionizing radiation, the ionizing radiation is preferably an electron beam from an electron beam accelerator or α, β, or γ rays from other radioactive isotopes. , X-rays and ultraviolet rays may also be used. These radiation doses vary depending on the type of crosslinking accelerator and the desired crosslinking ratio, but are generally 0.1 to 30 Mrad, preferably 0.5
~20 Mrad. The foaming of the radiation-crosslinked resin in this way is controlled at the melting temperature of the polypropylene resin, preferably
If the method involves heating to a temperature of 190℃ or higher, normal pressure,
The conditions may be either pressurized or reduced pressure, and as in the case described above, any heating source or heating medium can be used depending on the shape of the unfoamed molded product and the pressure state during foaming. As a means of making a difference in the average expansion ratio on both sides of the polyolefin resin foam, using a foaming machine,
When foaming a foam sheet at a temperature higher than the decomposition temperature of the blowing agent, the heating temperature for one side is lower than that for the other side to reduce the decomposition of the blowing agent and the melting stress of the polyolefin resin. Differences can be created by adjusting or changing the degree of crosslinking reactivity on both sides. Further, polyolefin resin foams having different average expansion ratios can be obtained by integrating them with an adhesive or preferably by heat fusion. [Function] The side of the polyolefin resin foam with a low average expansion ratio and small air bubbles is brought into contact with the molten thermoplastic resin for aggregate, while the side with a high average expansion ratio and large air bubbles is brought into contact with the molten aggregate thermoplastic resin. The side surface is located on the side opposite to the molten aggregate thermoplastic resin and on the side bonded to the skin material, and molded while being integrated by heat fusion. [Example] Example As shown, apparent density 0.050 g/cm 3 (overall average expansion ratio 20 times), thickness 3.0 mm, gel fraction 55%
And, the apparent density of the thickness part up to 0.5mm from one surface of both sides is 0.045g/cm 3 (average foaming ratio 22 times), and the apparent density of the thickness part up to 0.5mm from the other surface is 0.0625 g/cm 3 (average foaming ratio
16 times) on the side with a higher average expansion ratio of the cross-linked polypropylene resin foam 1, as a skin material.
A composite material 3 is constructed by bonding 0.45 mm soft polyvinyl chloride sheets 2 together using a two-component polyester adhesive. Polypropylene resin as a thermoplastic resin for aggregate was melted at a temperature of 195°C and extruded in an amount of 56 g onto the pressing surface of a mold using the T-die method.
The composite material 3 was placed on the polypropylene resin so that the surface of the cross-linked polypropylene resin foam 1 with the lower average expansion ratio was in contact with the polypropylene resin, and the composite material 3 was pressed to 50, 100, 200 kg/cm using a 26 ton press heated to 40°C. By applying a pressure of 2 and integrally molded, a vehicle interior molded product 5 in which the aggregate 4 was heat-sealed to the composite material 3 was obtained. Comparative Example 1 Contrary to the above example, a skin material was attached to the side of the crosslinked polypropylene resin foam with a lower average expansion ratio, and on the other hand, a skin material was attached to the side with a higher average expansion ratio in the same manner as in the above example. A vehicle interior molded product was obtained by integrally molding polypropylene resin while heat-sealing it. Comparative Example 2 Using a commercially available product in which the difference between the average expansion ratio of one side of a crosslinked polypropylene resin foam and the average expansion ratio of the other side is less than 2 times, and there is almost no difference.
A skin material was bonded to one side of the surface, and polypropylene resin was integrally molded while being heat-sealed in the same manner as in the previous example to obtain a vehicle interior molded product. When the state of unevenness on the surface of the skin material of each of the above Examples, Comparative Example 1, and Comparative Example 2 was observed, the results shown in the following table were obtained.

【表】 上記の結果から、本発明の実施例による車両用
内装成型品においては、200Kg/cm2プレスによつ
ても製品を得ることができ、それに対して、比較
例1では、せいぜい50Kg/cm2までで、それを越え
る圧力をかけることができず、複合材と骨材とし
てのポリプロピレン樹脂との融着が弱く、用途に
よつては製品を得ることできず、また、比較例2
に至つては、全く製品を得ることができないこと
が明らかであつた。 [発明の効果] 本発明に係る車両用内装成型品によれば、ポリ
オレフイン系樹脂発泡体の両面の一方と他方と
で、その表面から0.5mmの厚み部分の平均発泡倍
率に差を持たせ、その平均発泡倍率の低い側、即
ち、気泡の小さい部分側に溶融状態の骨材用熱可
塑性樹脂を接触させてホツトスタンピングモール
ド法により一体成型されるから、骨材用熱可塑性
樹脂からポリオレフイン系樹脂発泡体に熱が伝達
されても、その熱が伝達される接触面部分での気
泡が小さく、熱により膨張しても気泡の破壊にま
では至りにくく、また、気泡が破壊したとして
も、他の気泡に波及しにくく、表皮材の表面に凹
凸状態が発生することを防止でき、その製品歩留
りおよび品質のいずれをも向上できる。 また、複合材または骨材を予め成型せずに済む
から、工程少なく生産できるようになつて生産性
を向上できる。 更には、従来の真空圧縮成型法による場合に比
べれば、成型時に接着剤を使用しないから、コス
トが安くなるとともに、環境悪化や火災の虞もな
く、安全に車両用内装成型品を得ることができる
利点がある。
[Table] From the above results, the vehicle interior molded product according to the example of the present invention can be obtained even with a 200Kg/cm 2 press, whereas in Comparative Example 1, the product can be obtained by pressing at most 50Kg/cm2. cm 2 , it is not possible to apply pressure exceeding that, the fusion between the composite material and the polypropylene resin as aggregate is weak, and depending on the application, it is not possible to obtain a product, and Comparative Example 2
It was clear that no product could be obtained. [Effects of the Invention] According to the vehicle interior molded product according to the present invention, the average expansion ratio of the 0.5 mm thick portion from the surface of the polyolefin resin foam is made to differ between one side and the other side, The side with a lower average expansion ratio, that is, the side with smaller bubbles, is brought into contact with the molten aggregate thermoplastic resin and integrally molded using the hot stamping mold method. Even if heat is transferred to the foam, the bubbles at the contact surface where the heat is transferred are small, and even if the bubbles expand due to heat, it is difficult to destroy the bubbles, and even if the bubbles are destroyed, other It is difficult for the surface of the skin material to be affected by air bubbles, and the occurrence of unevenness on the surface of the skin material can be prevented, and both the product yield and quality can be improved. Furthermore, since it is not necessary to mold the composite material or aggregate in advance, production can be performed with fewer steps and productivity can be improved. Furthermore, compared to the conventional vacuum compression molding method, since no adhesive is used during molding, the cost is lower, and there is no risk of environmental deterioration or fire, making it possible to safely obtain molded vehicle interior parts. There are advantages that can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る車両用内装成型品の一実施
例の断面図である。 1…ポリプロピレン系樹脂発泡体、2…表皮
材、3…複合材、4…骨材。
The drawing is a cross-sectional view of one embodiment of the vehicle interior molded product according to the present invention. 1... Polypropylene resin foam, 2... Skin material, 3... Composite material, 4... Aggregate.

Claims (1)

【特許請求の範囲】[Claims] 1 ゲル分率が35%以上のポリオレフイン系樹脂
発泡体であつて、その両面それぞれにおける表面
から0.5mmまでの厚み部分の平均発泡倍率が、一
方よりも他方の方が大きく、かつ、両者の発泡倍
率の差が2〜20倍であるポリオレフイン系樹脂発
泡体の平均発泡倍率の高い側の面に表皮材が貼り
合わされ、一方、平均発泡倍率の低い側の面に、
ホツトスタンピングモールド法により骨材用熱可
塑性樹脂が一体成型されて成る車両用内装成型
品。
1 A polyolefin resin foam with a gel fraction of 35% or more, in which the average expansion ratio of the thickness up to 0.5 mm from the surface on each side of the foam is greater than that of the other, and the expansion ratio of both is greater than that of the other. A skin material is bonded to the side of the polyolefin resin foam with a difference in magnification of 2 to 20 times, the side having a higher average expansion ratio, while the surface material has a lower average expansion ratio,
A vehicle interior molded product made by integrally molding aggregate thermoplastic resin using the hot stamping molding method.
JP63049342A 1988-03-01 1988-03-01 Vehicular interior molded item Granted JPH01222937A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63049342A JPH01222937A (en) 1988-03-01 1988-03-01 Vehicular interior molded item
KR1019890002369A KR960000727B1 (en) 1988-03-01 1989-02-28 Process for preperation of molded laminated article
EP19890302005 EP0331447B1 (en) 1988-03-01 1989-02-28 Process for preparation of molded laminated article
DE1989615817 DE68915817T2 (en) 1988-03-01 1989-02-28 Process for making a molded laminated article.
US07/630,442 US5075162A (en) 1988-03-01 1990-12-20 Molded laminated article of cross-linked polyolifine foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63049342A JPH01222937A (en) 1988-03-01 1988-03-01 Vehicular interior molded item

Publications (2)

Publication Number Publication Date
JPH01222937A JPH01222937A (en) 1989-09-06
JPH0511757B2 true JPH0511757B2 (en) 1993-02-16

Family

ID=12828329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63049342A Granted JPH01222937A (en) 1988-03-01 1988-03-01 Vehicular interior molded item

Country Status (1)

Country Link
JP (1) JPH01222937A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135226A (en) * 1974-09-20 1976-03-25 Hitachi Electronics Niseshingojokyokairo
JPS54102367A (en) * 1978-01-31 1979-08-11 Asahi Chem Ind Co Ltd Easily moldable crosslinked polyethylenic foam
JPS59150740A (en) * 1983-02-16 1984-08-29 Sumitomo Chem Co Ltd Preparation of multi-layered molded article
JPS62181114A (en) * 1986-02-06 1987-08-08 Meiwa Sangyo Kk Manufacture of composite molded form
JPS6319232A (en) * 1986-07-11 1988-01-27 Toray Ind Inc Preparation of crosslinked polyolefinic resin laminated foamed body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140521Y2 (en) * 1981-06-15 1986-11-19
JPH0346997Y2 (en) * 1986-01-28 1991-10-04
JPH0716492Y2 (en) * 1986-06-02 1995-04-19 河西工業株式会社 Interior parts for automobiles
JPS6463111A (en) * 1987-09-03 1989-03-09 Chisso Corp Method for integrally forming composite formed item

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135226A (en) * 1974-09-20 1976-03-25 Hitachi Electronics Niseshingojokyokairo
JPS54102367A (en) * 1978-01-31 1979-08-11 Asahi Chem Ind Co Ltd Easily moldable crosslinked polyethylenic foam
JPS59150740A (en) * 1983-02-16 1984-08-29 Sumitomo Chem Co Ltd Preparation of multi-layered molded article
JPS62181114A (en) * 1986-02-06 1987-08-08 Meiwa Sangyo Kk Manufacture of composite molded form
JPS6319232A (en) * 1986-07-11 1988-01-27 Toray Ind Inc Preparation of crosslinked polyolefinic resin laminated foamed body

Also Published As

Publication number Publication date
JPH01222937A (en) 1989-09-06

Similar Documents

Publication Publication Date Title
US5075162A (en) Molded laminated article of cross-linked polyolifine foam
JP2577455B2 (en) Method for producing thermoplastic elastomer laminate
JPS5975929A (en) Production of polyolefin foam
CN1029984C (en) Method for manufacture of cross-linked polyolefin foam
JP3006378B2 (en) Vehicle interior molded product and method of manufacturing the same
JPH0622961B2 (en) Laminated molded article and method for producing the same
JPH0511757B2 (en)
JPS6259640A (en) Foaming of butyral resin composition
JPH01259936A (en) Laminated molded product and its manufacture
JPH053978B2 (en)
JP3110088B2 (en) Method for producing polypropylene foam molded article
JPH01222929A (en) Polyolefin-based resin foam for laminating skin material, manufacture thereof and composite material used therewith
JP3078089B2 (en) Interior molded products for vehicles
KR830001834B1 (en) Method of making crosslinked open cell polyole - fin foumed products
JPH02102034A (en) Interior molding form for vehicle
JP2627081B2 (en) Method for producing cross-linked polyolefin open cell
JP3337960B2 (en) Olefin resin crosslinked foam
JP2847723B2 (en) Method of manufacturing trunk room material
JPH0623919A (en) Forming method of interior trim material
KR20230056101A (en) Film type foam sheet with improved impact resistance and manufacturing method thereof
JPH0859872A (en) Crosslinked polyolefin resin foam
JPH04185328A (en) Manufacture of formed laminate article
JP3399864B2 (en) Recycled molded article of cross-linked polyethylene-based open cell scrap material and regenerated molding method
JPH09300509A (en) Olefinic resin foamed sheet and its production
JPH07102101A (en) Production of foamed sheet of cross-linked polypropylene resin

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees