JPH05116026A - Tooth surface correction method of gear - Google Patents

Tooth surface correction method of gear

Info

Publication number
JPH05116026A
JPH05116026A JP23499391A JP23499391A JPH05116026A JP H05116026 A JPH05116026 A JP H05116026A JP 23499391 A JP23499391 A JP 23499391A JP 23499391 A JP23499391 A JP 23499391A JP H05116026 A JPH05116026 A JP H05116026A
Authority
JP
Japan
Prior art keywords
tooth surface
gear
surface shape
corrected
tooth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23499391A
Other languages
Japanese (ja)
Inventor
Toshiki Hirogaki
俊樹 廣垣
Tsutomu Ida
力 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP23499391A priority Critical patent/JPH05116026A/en
Publication of JPH05116026A publication Critical patent/JPH05116026A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gear Processing (AREA)
  • Gears, Cams (AREA)

Abstract

PURPOSE:To provide a tooth surface correction method of a gear by which gears with a good tooth surface profile can be efficiently produced without hardly inviting the rise of manufacturing cost. CONSTITUTION:A plurality of simplified reference tooth surface profiles based on the difference in the tooth surface error distribution to the ideal tooth surface profile of a gear are set, and corrected reference tooth surface profiles approximate to the actual tooth surface profiles of the gear after these plural reference tooth surface profiles have been deformed and quenched respectively are obtained. Engagement transmission errors of the gear based on the corrected tooth surface profiles calculated by the difference between these corrected reference tooth surface profiles and the actual tooth surface profiles after quenching are calculated respectively. In such a constitution, the tooth surface of the gear is corrected to suit a corrected reference tooth surface profile in which the above engagement transmission errors are minimized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、焼入れ後における歯車
の歯面誤差に基づいて効率良く歯面を修正するようにし
た歯車の歯面修正方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gear tooth surface correction method for efficiently correcting the tooth surface based on the tooth surface error of the gear after quenching.

【0002】[0002]

【従来の技術】自動車の動力伝達系には多種多様な歯車
が組み込まれている。この内、特に大きな力が作用する
歯車についてはその歯面をはすばに形成し、その仕上げ
加工後に焼入れを施して充分な強度を持たせている。
2. Description of the Related Art A wide variety of gears are incorporated in a power transmission system of an automobile. Of these gears, particularly gears on which a large force acts have tooth flanks formed on a helix, and are hardened after finishing to give sufficient strength.

【0003】通常、歯車材料として用いられる炭素鋼
は、焼入れによってその硬度が著しく向上するものの、
歯切りされた歯車に対する焼入れの際の熱歪み等によっ
て、その歯面形状がかなり劣化する。このため、従来で
はホブ盤等で歯切りされた歯車の歯面をシェービングカ
ッタ等によって予め仕上げ加工し、これを焼入れするこ
とによって熱歪みに伴う歯面誤差が極力少なくなるよう
に配慮し、更にこの歯車の焼き入れ後に簡単な検査を行
い、歯面形状が特に悪い歯車を排除するようにしてい
る。
Carbon steel, which is usually used as a gear material, has its hardness remarkably improved by quenching.
The tooth surface shape is considerably deteriorated due to heat distortion or the like during hardening of the gear that has been cut. For this reason, conventionally, the tooth surface of the gear that has been gear-cut with a hobbing machine or the like is pre-finished with a shaving cutter or the like, and by quenching this, the tooth surface error due to thermal strain is taken into consideration as much as possible. After quenching the gears, a simple inspection is performed to eliminate gears with particularly bad tooth surface shapes.

【0004】[0004]

【発明が解決しようとする課題】このような現在の歯車
の製造方法では、理想的なインボリュート歯面に対して
数マイクロメートルから数十マイクロメートルの単位で
歯面誤差が発生し、この歯面誤差が歯車の噛み合い起振
力を増大させ、動力伝達系の振動や騒音の発生源となっ
ていることは、周知の通りである。
In the present method of manufacturing a gear as described above, a tooth surface error occurs in units of several micrometers to several tens of micrometers with respect to an ideal involute tooth surface. It is well known that the error increases the meshing excitation force of the gears and is a source of vibration and noise of the power transmission system.

【0005】製造コストや生産性を考慮せずに特に精度
の高い歯車を得るためには、歯車の焼入れ後に歯車形砥
石等で研削することが考えられるが、自動車等のように
製造コストや生産性を重視する必要があるものに対して
は、このような方法を全ての車種に採用することはでき
ない。
In order to obtain a highly accurate gear without considering the manufacturing cost and productivity, it is conceivable to grind with a gear wheel after quenching the gear. It is not possible to adopt such a method for all vehicle types for those that require importance to the car.

【0006】従来、焼入れ後の歯車の歯面誤差を焼入れ
前にどのような形状にどの程度修正したならば、効率良
く歯車の噛み合い起振力を低減できるのか、生産管理の
手法が全く判っていなかった。
[0006] Conventionally, a production management method has been completely known as to how to correct the tooth surface error of a gear after quenching to what shape and to what extent before quenching can effectively reduce the meshing vibration force of the gear. There wasn't.

【0007】[0007]

【発明の目的】本発明は、歯車の理想的な歯面形状に対
して歯面誤差の分布に基づく複数の基準歯面形状を設定
し、この基準歯面形状に対応して修正することにより、
製造コストの上昇をほとんど招くことなく、良好な歯面
形状の歯車を効率良く生産し得る歯車の歯面修正方法を
提供することを目的とする。
It is an object of the present invention to set a plurality of reference tooth surface shapes based on the distribution of tooth surface errors with respect to an ideal tooth surface shape of a gear, and correct the tooth surface shapes in accordance with the reference tooth surface shapes. ,
An object of the present invention is to provide a tooth flank correction method for a gear, which can efficiently produce a gear having a good tooth flank shape with almost no increase in manufacturing cost.

【0008】[0008]

【課題を解決するための手段】本発明による歯車の歯面
修正方法は、歯車の理想的な歯面形状に対して歯面誤差
の分布の相違に基づく複数の単純化された基準歯面形状
を設定し、これら複数の基準歯面形状をそれぞれ変形し
て焼入れ後の実際の前記歯車の歯面形状に対して近似す
る補正基準歯面形状を求め、これら補正基準歯面形状と
前記焼入れ後の実際の歯車の歯面形状との差から算出さ
れる修正歯面形状に基づいて前記歯車の噛み合い伝達誤
差をそれぞれ演算し、この噛み合い伝達誤差が最小とな
る前記補正基準歯面形状に対応して前記歯車の歯面を修
正するようにしたことを特徴とするものである。
SUMMARY OF THE INVENTION A tooth flank correction method of a gear according to the present invention comprises a plurality of simplified reference tooth flank shapes based on differences in distribution of tooth flank errors with respect to an ideal tooth flank shape of the gear. To obtain a corrected reference tooth surface shape that approximates the actual tooth surface shape of the gear after quenching by deforming each of these plurality of reference tooth surface shapes, The gear transmission error of each gear is calculated based on the corrected tooth surface shape calculated from the difference with the actual tooth surface shape of the gear, and the gear transmission transmission error corresponds to the corrected reference tooth surface shape that minimizes the gear transmission error. The tooth flank of the gear is corrected by the above.

【0009】歯車の歯面形状を修正する場合、この歯車
の焼入れ前に行われるシェービング加工等の仕上げ加工
時に歯面修正を行う方法が、シェービングカッタの刃形
修正が容易であること及び加工能率等の点で、焼入れ後
の研削による歯面修正を行う場合よりも有利である。
In the case of correcting the tooth flank shape of a gear, the method of correcting the tooth flank at the time of finishing such as shaving, which is performed before quenching of the gear, makes it easy to correct the blade shape of the shaving cutter and improve the machining efficiency. In this respect, it is more advantageous than the case of performing tooth surface modification by grinding after quenching.

【0010】[0010]

【作用】焼き入れ後の実際の歯面誤差を測定し、この歯
面形状に対して予め設定した複数の単純化された基準歯
面形状を変形して焼き入れ後の実際の歯面形状に近似す
る補正基準歯面形状をそれぞれ求める。
[Function] The actual tooth flank error after quenching is measured, and a plurality of simplified reference tooth flank shapes preset for this tooth flank shape are deformed to obtain the actual tooth flank shape after quenching. The approximate correction reference tooth surface shape is obtained.

【0011】次に、これら補正基準歯面形状と実際の歯
面形状との差に基づく修正歯面形状をそれぞれ算出し、
これら修正歯面形状による歯車の噛み合い伝達誤差をそ
れぞれ演算する。そして、この噛み合い伝達誤差が最小
となる補正基準歯面形状を選択する。
Next, a corrected tooth surface shape is calculated based on the difference between the corrected reference tooth surface shape and the actual tooth surface shape,
Gear mesh transmission errors due to these modified tooth surface shapes are respectively calculated. Then, a corrected reference tooth surface shape that minimizes this meshing transmission error is selected.

【0012】しかる後、加工される歯車の歯面が前記修
正歯面形状となるように、選択された補正基準歯面形状
と対応する工具等を用いて歯車の歯面を修正加工し、噛
み合い伝達誤差が小さくなるように配慮する。ここで、
焼入れ方法の変更等により歯面形状が修正可能である場
合には、選択された補正基準歯面形状と対応する焼入れ
方法を採用して歯車の歯面を修正加工する。
After that, the tooth flanks of the gears are corrected by using a tool or the like corresponding to the selected corrected reference tooth flank shape so that the tooth flanks of the gears to be machined have the corrected tooth flank shape, and meshed. Consider to reduce the transmission error. here,
When the tooth surface shape can be corrected by changing the hardening method, the tooth surface of the gear is corrected by adopting the hardening method corresponding to the selected corrected reference tooth surface shape.

【0013】[0013]

【実施例】本実施例では、歯車の理想的な歯面形状に対
する歯面誤差の分布に基づいて10種類(正負逆の状態
を含めると20種類)の基準歯面形状1〜10を設定
し、理想的なインボリュート歯面を基準としてそれぞれ
歯面の歯すじ方向と歯たけ方向とにそれぞれ等間隔に5
点ずつプロットした座標位置における歯面誤差の量を下
記数1〜数10に示す行列式R1〜R10で表すと共にこ
れらの基準歯面形状1〜10を図1〜図10に模式的に
表す。この場合、理想的なインボリュート歯面に対して
加工不足となる最大の歯面誤差(正の値で示される)の
絶対値と加工し過ぎとなる最大の歯面誤差(負の値で示
される)の絶対値との和が1となるように各座標位置に
おける歯面誤差の値を設定し、これに対して比例定数h
を乗算したものを補正基準歯面形状としている。
EXAMPLE In this example, 10 types of reference tooth surface shapes 1 to 10 (20 types including positive and negative reversed states) are set based on the distribution of tooth surface errors with respect to the ideal tooth surface shape of a gear. , With an ideal involute tooth surface as a reference, 5 at equal intervals in the tooth trace direction and the tooth brush direction of the tooth surface, respectively.
The amount of the tooth flank error at the coordinate position plotted point by point is represented by the determinants R 1 to R 10 shown in the following equations 1 to 10 , and these reference tooth flank shapes 1 to 10 are schematically shown in FIGS. Represent In this case, the absolute value of the maximum tooth surface error (indicated by a positive value) that results in insufficient machining and the maximum tooth surface error that results in excessive machining (indicated by a negative value) with respect to the ideal involute tooth surface. ), The value of the tooth surface error at each coordinate position is set so that the sum of the absolute value and the absolute value of
The corrected reference tooth surface shape is obtained by multiplying by.

【0014】[0014]

【数1】 [Equation 1]

【0015】この数1に示す基準歯面形状は図1に対応
し、歯すじ方向両端部における歯面誤差が、歯たけ方向
に逆にねじれた状態となっているものである。
The reference tooth surface shape shown in Equation 1 corresponds to FIG. 1, and the tooth surface error at both ends in the tooth trace direction is in a state of being twisted in the reverse direction in the tooth depth direction.

【0016】[0016]

【数2】 [Equation 2]

【0017】この数2に示す基準歯面形状は図2に対応
し、歯すじ方向中央部が歯たけ方向に沿って引っ込む円
柱状に湾曲したものである。
The reference tooth surface shape shown in the equation 2 corresponds to FIG. 2, and the central portion in the tooth trace direction is curved in a cylindrical shape retracted along the tooth depth direction.

【0018】[0018]

【数3】 [Equation 3]

【0019】この数3に示す基準歯面形状は図3に対応
し、歯すじ方向に沿って3/4周期のサインカーブとな
ったものである。
The reference tooth surface shape shown in Equation 3 corresponds to FIG. 3 and is a sine curve of 3/4 cycle along the tooth trace direction.

【0020】[0020]

【数4】 [Equation 4]

【0021】この数4に示す基準歯面形状は図4に対応
し、歯すじ方向に沿って1周期のサインカーブとなった
ものである。
The reference tooth surface shape shown in the equation 4 corresponds to FIG. 4, and is a sine curve of one cycle along the tooth trace direction.

【0022】[0022]

【数5】 [Equation 5]

【0023】この数5に示す基準歯面形状は図5に対応
し、歯たけ方向中央部が歯すじ方向に沿って突出する円
柱状に湾曲したものである。
The reference tooth surface shape shown in the equation 5 corresponds to FIG. 5, and has a cylindrical shape in which the central portion in the toothbrush direction projects along the tooth trace direction.

【0024】[0024]

【数6】 [Equation 6]

【0025】この数6に示す基準歯面形状は図6に対応
し、歯たけ方向に沿って3/4周期のサインカーブとな
ったものである。
The reference tooth surface shape shown in the equation 6 corresponds to FIG. 6 and is a sine curve of 3/4 cycle along the toothbrush direction.

【0026】[0026]

【数7】 [Equation 7]

【0027】この数7に示す基準歯面形状は図7に対応
し、歯たけ方向に沿って1周期のサインカーブとなった
ものである。
The reference tooth surface shape shown in the equation 7 corresponds to FIG. 7 and is a sine curve of one cycle along the tooth brush direction.

【0028】[0028]

【数8】 [Equation 8]

【0029】この数8に示す基準歯面形状は図8に対応
し、歯すじ方向中央部と歯たけ方向中央部とが突出する
球面状に湾曲したものである。
The reference tooth surface shape shown in the equation 8 corresponds to FIG. 8 and is curved in a spherical shape in which the central portion in the tooth trace direction and the central portion in the tooth depth direction project.

【0030】[0030]

【数9】 [Equation 9]

【0031】この数9に示す基準歯面形状は図9に対応
し、歯すじ方向に沿って傾斜したものである。
The reference tooth surface shape shown in the equation 9 corresponds to FIG. 9 and is inclined along the tooth trace direction.

【0032】[0032]

【数10】 [Equation 10]

【0033】この数10に示す基準歯面形状は図10に
対応し、歯たけ方向に沿って傾斜したものである。
The reference tooth surface shape shown in the equation 10 corresponds to FIG. 10 and is inclined along the tooth brush direction.

【0034】なお、上述した10種類の基準歯面形状の
他に、これ以外の基準歯面形状を設定することも当然可
能であり、測定精度を向上させるために歯面誤差のプロ
ット位置を更に多く設定するようにしても良い。
In addition to the above-mentioned ten types of reference tooth surface shapes, it is of course possible to set reference tooth surface shapes other than this, and in order to improve the measurement accuracy, the plot position of the tooth surface error is further increased. You may make it set many.

【0035】一方、焼入れ加工後の実際の歯車の歯面形
状を理想的なインボリュート歯面を基準としてそれぞれ
歯面の歯すじ方向と歯たけ方向とにそれぞれ等間隔に5
点ずつプロットした座標位置における歯面誤差の量を下
記数11に示す行列式SXで表す。
On the other hand, with reference to the ideal involute tooth surface, the actual tooth surface shape of the gear after quenching is 5 at equal intervals in the tooth trace direction and the tooth drop direction of the tooth surface.
The amount of tooth flank error at the coordinate position plotted point by point is represented by the determinant S X shown in the following Expression 11.

【0036】[0036]

【数11】 [Equation 11]

【0037】この焼入れ加工後の実際の歯車の歯面形状
に基づいて上述した数1〜数10に示す基準歯面形状1
〜10の行列式R1〜R10に適当な比例定数hを乗算
し、実際の歯車の歯面形状に近似する補正基準歯面形状
をそれぞれ算出する。具体的には、数11にて表される
行列式SXと下記数12にて表される基準歯面形状の行
列式Rとの差を演算し、この差が最小となる場合の行列
式Rを補正基準歯面形状として選択する。つまり、上述
した行列式R1〜R10に例えば±0.1毎に比例定数を代
えた補正基準歯面形状に基づいて行列式SXと行列式R
との差を繰り返し演算するのである。
Based on the tooth flank shape of the actual gear after this quenching, the reference tooth flank shape 1 shown in the above equations 1 to 10 is given.
By multiplying the determinants R 1 to R 10 of Nos. 10 to 10 with an appropriate proportionality constant h, the corrected reference tooth surface shapes approximate to the actual tooth surface of the gear are calculated. Specifically, the difference between the determinant S X expressed by the equation 11 and the determinant R of the reference tooth surface shape expressed by the following equation 12 is calculated, and the determinant when this difference becomes the minimum Select R as the corrected reference tooth surface shape. That is, the determinant S X and the determinant R are based on the corrected reference tooth surface shape obtained by changing the proportional constants for each ± 0.1 to the above determinants R 1 to R 10.
The difference between and is repeatedly calculated.

【0038】[0038]

【数12】 [Equation 12]

【0039】従って、行列式SXと行列式Rとの差は下
記数13の通りとなる。
Therefore, the difference between the determinant S X and the determinant R is given by the following equation 13.

【0040】[0040]

【数13】 [Equation 13]

【0041】この数13の値が最小となる比例定数hを
各行列式R1〜R10毎に求め、これを元の基準歯面形状
の行列式R1〜R10に乗算して補正基準歯面形状の行列
式を得た後、これら補正基準歯面形状と焼入れ後の実際
の歯車の歯面形状との差から算出される修正歯面形状に
基づいて歯車の噛み合い伝達誤差をそれぞれ演算する。
The proportionality constant h that minimizes the value of the equation 13 is obtained for each determinant R 1 to R 10 , and this is multiplied by the determinant R 1 to R 10 of the original reference tooth surface shape to obtain the correction reference. After obtaining the tooth surface shape determinant, calculate the gear mesh transmission error based on the corrected tooth surface shape calculated from the difference between these corrected reference tooth surface shapes and the actual tooth surface shape of the gear after quenching. To do.

【0042】例えば、焼入れ後の実際の歯車の歯面誤差
が数14にて表される行列式SBの場合、各行列式R1
10に対応して上述した差が最小となる比例定数hの値
は下記表1に示す通りとなる。そして、これによる補正
基準歯面形状と焼入れ後の実際の歯車の歯面形状との差
から算出される修正歯面形状に基づいて歯車の噛み合い
伝達誤差を演算するが、その結果を前記表1に併せて示
す。
For example, in the case of the determinant S B in which the tooth flank error of the actual gear after quenching is expressed by equation 14, each determinant R 1 ~
The value of the proportional constant h that minimizes the above-mentioned difference corresponding to R 10 is as shown in Table 1 below. Then, the gear engagement transmission error is calculated based on the corrected tooth surface shape calculated from the difference between the corrected reference tooth surface shape and the actual tooth surface shape of the gear after quenching. The result is shown in Table 1 above. Is also shown.

【0043】[0043]

【数14】 [Equation 14]

【0044】[0044]

【表1】 [Table 1]

【0045】この表1から明らかなように、数6の行列
式R6に6.9(マイクロメートル)の比例定数hを乗算
した補正基準歯面形状に対し、噛み合い伝達誤差を最小
の0.28マイクロメートルにすることができる。この
数6の行列式R6に対応する修正歯面形状の行列式SO
下記数15に記す。
As is clear from Table 1, the determinant R 6 of the equation 6 is multiplied by the proportional constant h of 6.9 (micrometer) to the corrected reference tooth surface shape, and the meshing transmission error is reduced to the minimum value of 0. It can be 28 micrometers. The determinant S O fixes tooth surface shape corresponding to the determinant R 6 of 6 referred to below several 15.

【0046】[0046]

【数15】 [Equation 15]

【0047】この数15に対応するシェービングカッタ
を用い、焼入れ前の歯車に修正用の仕上げ加工を施した
歯車の歯面誤差は、下記数16の行列式SFに示す通り
であり、その噛み合い伝達誤差は0.21マイクロメー
トルとなった。つまり、修正前の噛み合い伝達誤差であ
る0.77マイクロメートルよりも、噛み合い伝達誤差
を相当小さくすることができる。
Using the shaving cutter corresponding to the equation (15), the tooth flank error of the gear that has been subjected to the correction finishing process on the gear before quenching is as shown in the determinant S F of the following equation (16), and the meshing thereof is shown. The transmission error was 0.21 micrometers. That is, the mesh transmission error can be made considerably smaller than the mesh transmission error before correction of 0.77 micrometer.

【0048】[0048]

【数16】 [Equation 16]

【0049】なお、本実施例では焼入れ後の歯車の歯面
誤差に応じて焼き入れ前の歯車の歯面をシェービングカ
ッタにて修正仕上げするようにしたが、焼入れ方法を工
夫したり或いは焼入れ後の研削加工によって歯面を修正
するようにしても良い。ここで、焼入れ後に研削加工を
行って歯面を修正する場合、正規のインボリュート歯面
まで研削することなく、修正歯面形状に歯車を研削する
ことによって、ある程度の良好な噛み合い伝達誤差に収
めることができるため、研削時間を著しく短縮すること
が可能となる。
In this embodiment, the tooth surface of the gear before quenching is corrected and finished by the shaving cutter according to the tooth surface error of the gear after quenching. However, the quenching method may be devised or after quenching. The tooth surface may be corrected by the grinding process. Here, when the tooth surface is corrected by grinding after quenching, the gear should be ground to the corrected tooth surface shape without grinding to the regular involute tooth surface, so that a good mesh transmission error can be accommodated to some extent. Therefore, the grinding time can be significantly shortened.

【0050】又、本実施例では焼入れ加工後の実際の歯
車の歯面形状を表す行列式SXと基準歯面形状の行列式
Rとの差の最小値を数13に示した最小二乗法により演
算したが、その他の周知の演算方法によって行うことも
当然可能である。
Further, in this embodiment, the least squares method shown in the equation 13 is the minimum value of the difference between the determinant S X representing the actual tooth flank shape of the gear after quenching and the determinant R of the reference tooth flank shape. However, it is of course possible to use other well-known calculation methods.

【0051】[0051]

【発明の効果】本発明の歯車の歯面修正方法によると、
焼入れ後の歯車の歯面形状に基づいて複数の単純な基準
歯面形状を近似させ、この場合の噛み合い伝達誤差を算
出して最適な修正基準歯面形状に対応する修正加工を歯
車の歯面に施すようにしたので、歯車の歯面を効率良く
修正することができ、噛み合い伝達誤差を確実に減らす
ことが可能となった。
According to the gear tooth surface correcting method of the present invention,
Approximate a plurality of simple reference tooth surface shapes based on the tooth surface shape of the gear after quenching, calculate the meshing transmission error in this case, and perform correction processing that corresponds to the optimum corrected reference tooth surface shape. Since the gear tooth surface of the gear can be efficiently corrected, it is possible to reliably reduce the mesh transmission error.

【図面の簡単な説明】[Brief description of drawings]

【図1】図2〜図10と共に本発明による基準歯面形状
の一例を表す模式図である。
FIG. 1 is a schematic view showing an example of a reference tooth surface shape according to the present invention together with FIGS.

【図2】図1及び図3〜図10と共に本発明による基準
歯面形状の一例を表す模式図である。
FIG. 2 is a schematic view showing an example of a reference tooth surface shape according to the present invention together with FIGS. 1 and 3 to 10.

【図3】図1,図2及び図4〜図10と共に本発明によ
る基準歯面形状の一例を表す模式図である。
FIG. 3 is a schematic view showing an example of a reference tooth surface shape according to the present invention together with FIGS. 1, 2 and 4 to 10.

【図4】図1〜図3及び図5〜図10と共に本発明によ
る基準歯面形状の一例を表す模式図である。
FIG. 4 is a schematic view showing an example of a reference tooth surface shape according to the present invention, together with FIGS. 1 to 3 and FIGS. 5 to 10.

【図5】図1〜図4及び図6〜図10と共に本発明によ
る基準歯面形状の一例を表す模式図である。
FIG. 5 is a schematic view showing an example of a reference tooth surface shape according to the present invention together with FIGS. 1 to 4 and 6 to 10.

【図6】図1〜図5及び図7〜図10と共に本発明によ
る基準歯面形状の一例を表す模式図である。
FIG. 6 is a schematic view showing an example of a reference tooth surface shape according to the present invention, together with FIGS. 1 to 5 and FIGS. 7 to 10.

【図7】図1〜図6及び図8〜図10と共に本発明によ
る基準歯面形状の一例を表す模式図である。
FIG. 7 is a schematic view showing an example of a reference tooth surface shape according to the present invention together with FIGS. 1 to 6 and 8 to 10.

【図8】図1〜図7及び図9,図10と共に本発明によ
る基準歯面形状の一例を表す模式図である。
FIG. 8 is a schematic view showing an example of a reference tooth surface shape according to the present invention, together with FIGS. 1 to 7, 9 and 10.

【図9】図1〜図8及び図10と共に本発明による基準
歯面形状の一例を表す模式図である。
9 is a schematic view showing an example of a reference tooth surface shape according to the present invention together with FIGS. 1 to 8 and FIG.

【図10】図1〜図9と共に本発明による基準歯面形状
の一例を表す模式図である。
FIG. 10 is a schematic view showing an example of a reference tooth surface shape according to the present invention together with FIGS. 1 to 9.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 歯車の理想的な歯面形状に対して歯面誤
差の分布の相違に基づく複数の単純化された基準歯面形
状を設定し、これら複数の基準歯面形状をそれぞれ変形
して焼入れ後の実際の前記歯車の歯面形状に対して近似
する補正基準歯面形状を求め、これら補正基準歯面形状
と前記焼入れ後の実際の歯車の歯面形状との差から算出
される修正歯面形状に基づいて前記歯車の噛み合い伝達
誤差をそれぞれ演算し、この噛み合い伝達誤差が最小と
なる前記補正基準歯面形状に対応して前記歯車の歯面を
修正するようにしたことを特徴とする歯車の歯面修正方
法。
1. A plurality of simplified reference tooth surface shapes based on a difference in tooth surface error distribution with respect to an ideal tooth surface shape of a gear are set, and the plurality of reference tooth surface shapes are respectively transformed. Calculated from the difference between the corrected reference tooth surface shape and the actual tooth surface shape of the hardened gear after obtaining the corrected reference tooth surface shape that approximates the actual tooth surface shape of the gear after quenching The gear transmission error of the gear is calculated based on the corrected tooth surface shape, and the tooth surface of the gear is corrected according to the corrected reference tooth surface shape that minimizes the gear transmission error. To correct the tooth flank of the gear.
JP23499391A 1991-09-13 1991-09-13 Tooth surface correction method of gear Pending JPH05116026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23499391A JPH05116026A (en) 1991-09-13 1991-09-13 Tooth surface correction method of gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23499391A JPH05116026A (en) 1991-09-13 1991-09-13 Tooth surface correction method of gear

Publications (1)

Publication Number Publication Date
JPH05116026A true JPH05116026A (en) 1993-05-14

Family

ID=16979470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23499391A Pending JPH05116026A (en) 1991-09-13 1991-09-13 Tooth surface correction method of gear

Country Status (1)

Country Link
JP (1) JPH05116026A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310266A (en) * 2001-04-16 2002-10-23 Mazda Motor Corp Gear mesh adjusting method
WO2015015806A1 (en) * 2013-08-02 2015-02-05 東洋電機製造株式会社 Railway car gearing of parallel cardan drive format

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002310266A (en) * 2001-04-16 2002-10-23 Mazda Motor Corp Gear mesh adjusting method
JP4639513B2 (en) * 2001-04-16 2011-02-23 マツダ株式会社 Gear mesh adjustment method
WO2015015806A1 (en) * 2013-08-02 2015-02-05 東洋電機製造株式会社 Railway car gearing of parallel cardan drive format
CN105452731A (en) * 2013-08-02 2016-03-30 东洋电机制造株式会社 Railway car gearing of parallel cardan drive format
JPWO2015015806A1 (en) * 2013-08-02 2017-03-02 東洋電機製造株式会社 Parallel cardan drive type railway vehicle gear system
US10036464B2 (en) 2013-08-02 2018-07-31 Toyo Denki Seizo Kabushiki Kaisha Railway vehicle gear device of parallel cardan drive system

Similar Documents

Publication Publication Date Title
EP1552191B1 (en) Herringbone gear teeth and method for manufacturing same
Spitas et al. Increasing the strength of standard involute gear teeth with novel circular root fillet design
US20100242283A1 (en) Method for finishing a gear surface
US6324931B1 (en) Straight bevel gears with improved tooth root area geometry and method for manufacturing forging die for making thereof
JP5308362B2 (en) Tooth profile management system for shaving cutter tooth profile grinder
CN109376456B (en) Numerical calculation method for tooth surface load contact performance of spiral bevel gear with installation error
CN104889501A (en) Non-full-symmetry involute gear, gear cutting hob special for same, and machining method of non-full-symmetry involute gear
WO2016197905A1 (en) Gear-cutting hob and designing method therefor, and non-fully-symmetric involute gear and machining method therefor
CN106369139A (en) Method for obtaining machining parameters of hypoid gear meeting high-order transmission error
CN111299982A (en) Shape-modifying machining process for gear of agricultural machine
CN113843457A (en) Method for producing a gear, machine tool control device and machine tool
CN106735612A (en) A kind of method for improving gear honing processing
JPH05116026A (en) Tooth surface correction method of gear
JP2002021977A (en) Method for determining the shape of tooth working flank of conjugate gear having designated gear tooth contact area and method for making forging die for conjugate gear having designated gear tooth contact area
CN107127404B (en) A kind of method for improving internal honing wheel strength gear honing machining accuracy
EP1792690B1 (en) Method of evaluating cutting edge profile of re-sharpening pinion cutter
Kimme et al. Simulation of error-prone continuous generating production processes of helical gears and the influence on the vibration excitation in gear mesh
CN107378646B (en) A kind of Shaving Dressing method based on involute key point
CN115270324A (en) Cold extrusion gear tooth root modeling method
CN105156634A (en) Involute straight tooth gear modification optimization method
US6164880A (en) Method for producing and controlling a fillet on a gear
WO2020207237A1 (en) Gear-formation-oriented machining method for matching gear
CN110802282B (en) Spiral bevel gear tooth crest rounding processing method
CN110102829B (en) Comparison method of bevel gear machining process
CN112238267A (en) Crowned tooth machining method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970708