JPH0511576B2 - - Google Patents

Info

Publication number
JPH0511576B2
JPH0511576B2 JP60073826A JP7382685A JPH0511576B2 JP H0511576 B2 JPH0511576 B2 JP H0511576B2 JP 60073826 A JP60073826 A JP 60073826A JP 7382685 A JP7382685 A JP 7382685A JP H0511576 B2 JPH0511576 B2 JP H0511576B2
Authority
JP
Japan
Prior art keywords
enzyme
membrane
urea
isfet
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60073826A
Other languages
Japanese (ja)
Other versions
JPS61231454A (en
Inventor
Masao Karube
Masao Goto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP60073826A priority Critical patent/JPS61231454A/en
Publication of JPS61231454A publication Critical patent/JPS61231454A/en
Publication of JPH0511576B2 publication Critical patent/JPH0511576B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、酵素固定化用膜に関する。更に詳し
くは、体液中の尿素濃度の迅速な測定などに使用
される電界効果型トランジスター尿素センサーな
どに用いられる酵素固定化用膜に関する。 〔従来の技術〕 医療分野においては、体液中の尿素濃度を測定
することは、腎臓の機能を知る上で不可欠のこと
とされている。従来用いられている尿素の定量法
の代表的なものとしては、酵素複合法が挙げられ
る。この方法は、ウレアーゼ酵素を用いて尿素を
分解し、生成したアンモニアをニコチン酸アデニ
ンジヌクレオチド(NADH)およびα−ケトグ
ルタール酸と、グルタミン酸デヒドロゲナーゼ
(GLDH)の存在下で反応させて、ニコチン酸ア
ミドアデニンジヌクレオチド(NAD)、グルタミ
ン酸および過酸化水素に分解し、このとき消費さ
れるNADHの量を比色法により測定する方法で
ある。 (NH22CO+H2O ウレアーゼ −−−−−−−→ 2NH3
CO2 NH3+H2O→NH4 ++OH- NADH+NH4 +α−ケトグルタール酸 GLDH −−−−→ NAD+グルタミン酸+H2O2 この方法は、検体の除たん白が必要であるこ
と、着色検体はそのまま使用できないことなど前
処理に手間がかかり、操作が煩雑であり、また酵
素が一回しか使用できないためコストが高くなる
などの欠点を有している。 これ以外の方法としては、固定化ウレアーゼ酵
素膜とアンモニウムイオン電極あるいはアンモニ
アガス電極を組合せた尿素センサーなどが開発さ
れているが、この場合には共存イオンや揮発性の
亮アミンなどの阻害物質の影響を受けるという欠
点がある。また、センサーは形状的に大きく、素
材的な強度も弱いため、例えば体内挿入のセンサ
ーとしては使用し得ないなどという欠点がある。 更に他の方法としては、水素イオン感応性電界
効果型トランジスター(ISFET)の窒化けい素
(Si3N4)面を高分子膜で覆い、その上にウレア
ーゼ酵素を固定化して尿素センサーとする試みも
みられる。 このようにして用いられる高分子膜をその厚さ
の点から分類すると、約1000〜2000μm程度の厚
膜のものと約100μm以下の薄膜のものとに分け
ることができる。前者の膜厚のものは、一般にデ
イツプ法などによつてトリ酢酸セルロース、ポリ
塩化ビニルなどから製膜され、酵素などを多量に
固定化することができるが応答速度が遅く、また
一般に剥離し易いという欠点を有している。反対
に、後者の膜厚のものは、一般に蒸着法などによ
つて製膜され、応答速度は速いが、酵素などを多
量に固定化できないという欠点を有している。 〔発明が解決しようとする問題点〕 このために、尿素の定量においては、将来の体
内計測への応用も考えた上で、より小さくて強固
であり、簡便で、迅速かつ廉価な定量手段が望ま
れている。 本発明者らは、ISFETの窒化けい素面にウレ
アーゼ酵素を固定化する方法として、酵素固定化
試薬をISFETの窒化けい素面に蒸着させる手段
をとることにより、かかる課題が効果的に解決さ
れることを先に見出した(第3回化学センサ−研
究発表会講演要旨集第5〜6頁)。具体的には、
ISFETの無機質担体面に酵素固定化試薬を蒸着
させ、この蒸着面の酵素固定化試薬の官能性基に
酵素のアミノ基を結合させることにより固定化酵
素膜を形成させて、電界効果型トランジスタ−尿
素センサーを構成させている。 本発明は、応答性の点ですぐれているかかる電
界効果型トランジスタ−尿素センサーとは別に、
酵素を多量に固定化し得る厚膜の膜状物であつ
て、しかも耐剥離性の良好なものを求めて種々検
討の結果、各種の高分子膜材料の中でポリブチル
ビニラールのみが耐剥離性にすぐれた固定化用膜
を形成し得ることを見出した。 〔問題点を解決するための手段〕および〔作用〕 従つて、本発明は酵素固定化用膜に係り、この
酵素固定化用膜は、無機質担体上にポリビニルブ
チラール、トリアミン化合物およびアルデヒド化
合物の混合物膜状体を形成せしめてなる。 無機質担体としては、例えば半導体の保護膜あ
るいは絶縁膜材料として用いられる窒化けい素
(Si3N4)、酸化けい素(SiO2)、酸化アルミニウ
ム(Al2O3)、酸化タリウム(Ta2O5)、窒化ホウ
素(BN)、酸化マグネシウム(MgO)、酸化ベリ
リウム(BeO)、ボロンガラス、リンガラス、ヒ
素ガラスなど、透明導電膜材料として用いられる
酸化錫(SnO2)、酸化インジウム(In2O3)、ヨウ
化銅(CuI)など、あるいは電極材料として用い
られるアルミニウム、金、パラジウムなどがそれ
ぞれ挙げられ、好ましくは窒化けい素が用いられ
る。 これらの無機質担体上には、ポリビニルブチラ
ール、トリアミン化合物およびアルデヒド化合物
の混合物膜状体が形成される。グルタルアルデヒ
ド、ホルムアルデヒド、アセトアルデヒドなど、
好ましくはグルタルアルデヒドによつて代表され
るアルデヒド化合物のアルデヒド基は、酵素のア
ミノ基と結合するが、その際1,8−ジアミノ−
4−アミノメチルオクタンはスペーサーとして上
記結合を穏かなものとする作用を有している。 このような酵素との結合有効成分は、混合物膜
状体として無機質担体上に固着されるが、次の表
に示されように、各種の高分子膜材料の中、ポリ
ビニルブチラールを用いたもののみが種々の液体
に対してすぐれた耐剥離性を示している。 即ち、各種高分子膜形形成材料の1%有機溶媒
溶液からなるドープ液を、窒化けい素で表面処理
したシリコンウエハー上に流延して室温で製膜
し、60℃のオープン中で20分間乾燥させたもの
を、40℃の種々の液体中に浸漬し、2時間後に取
り出し、窒化けい素面に対する膜状体の接着程度
を目視を評価した。
[Industrial Field of Application] The present invention relates to a membrane for enzyme immobilization. More specifically, the present invention relates to an enzyme immobilization membrane used in a field effect transistor urea sensor used for rapid measurement of urea concentration in body fluids. [Prior Art] In the medical field, measuring the urea concentration in body fluids is essential for understanding kidney function. A typical example of a conventionally used method for quantifying urea is an enzyme complex method. This method uses urease enzyme to decompose urea, and the generated ammonia is reacted with nicotinic acid adenine dinucleotide (NADH) and α-ketoglutaric acid in the presence of glutamate dehydrogenase (GLDH) to produce nicotinamide adenine dinucleotide. In this method, it is decomposed into dinucleotide (NAD), glutamic acid, and hydrogen peroxide, and the amount of NADH consumed at this time is measured by a colorimetric method. (NH 2 ) 2 CO + H 2 O Urease −−−−−−→ 2NH 3 +
CO 2 NH 3 + H 2 O → NH 4 + + OH - NADH + NH 4 + α-ketoglutaric acid GLDH −−−−→ NAD + Glutamic acid + H 2 O 2This method requires deproteinization of the specimen, and colored specimens are It has drawbacks such as the fact that it cannot be used as is, the pretreatment is time-consuming, the operation is complicated, and the cost is high because the enzyme can only be used once. Other methods have been developed, such as a urea sensor that combines an immobilized urease enzyme membrane with an ammonium ion electrode or an ammonia gas electrode, but in this case, it is difficult to detect coexisting ions or inhibitory substances such as volatile amines. It has the disadvantage of being affected. Additionally, the sensor is large in shape and has weak material strength, so it has the disadvantage that it cannot be used, for example, as a sensor inserted into the body. Another method is to cover the silicon nitride (Si 3 N 4 ) surface of a hydrogen ion-sensitive field effect transistor (ISFET) with a polymer film and immobilize urease enzyme on it to create a urea sensor. You can also see it. When the polymer membranes used in this manner are classified in terms of their thickness, they can be divided into thick films of about 1000 to 2000 μm and thin films of about 100 μm or less. The former film thickness is generally made from cellulose triacetate, polyvinyl chloride, etc. by the dip method, etc., and can immobilize a large amount of enzymes, etc., but has a slow response speed and is generally easy to peel off. It has the following drawbacks. On the other hand, films with the latter thickness are generally formed by vapor deposition and have a fast response speed, but have the drawback of not being able to immobilize large quantities of enzymes and the like. [Problems to be solved by the invention] For this reason, in the determination of urea, a smaller, more robust, simpler, faster, and less expensive means of determination is needed, taking into account future applications in internal measurements. desired. The present inventors believe that this problem can be effectively solved by using a method for immobilizing the urease enzyme on the silicon nitride surface of the ISFET by depositing an enzyme immobilization reagent on the silicon nitride surface of the ISFET. (pages 5-6 of the abstracts of the 3rd Chemical Sensor Research Conference). in particular,
An enzyme immobilization reagent is deposited on the inorganic carrier surface of the ISFET, and an amino group of the enzyme is bonded to the functional group of the enzyme immobilization reagent on the vapor deposition surface to form an immobilized enzyme film. It constitutes a urea sensor. In addition to such a field-effect transistor-urea sensor which is excellent in responsiveness, the present invention also provides the following features:
As a result of various studies in search of a thick membrane that could immobilize a large amount of enzymes and also had good peeling resistance, polybutylvinyral was the only one among various polymer membrane materials that was found to be resistant to peeling. We have found that it is possible to form an immobilization membrane with excellent properties. [Means for Solving the Problem] and [Operation] Therefore, the present invention relates to a membrane for enzyme immobilization, which comprises a mixture of polyvinyl butyral, a triamine compound, and an aldehyde compound on an inorganic carrier. It forms a membranous body. Examples of inorganic carriers include silicon nitride (Si 3 N 4 ), silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and thallium oxide (Ta 2 O), which are used as protective film or insulating film materials for semiconductors . 5 ), boron nitride (BN), magnesium oxide (MgO), beryllium oxide (BeO), boron glass, phosphorus glass, arsenic glass, tin oxide (SnO 2 ), indium oxide (In 2 ) used as transparent conductive film materials. O 3 ), copper iodide (CuI), aluminum, gold, palladium, etc. used as electrode materials, and silicon nitride is preferably used. A mixture film of polyvinyl butyral, a triamine compound, and an aldehyde compound is formed on these inorganic carriers. Glutaraldehyde, formaldehyde, acetaldehyde, etc.
The aldehyde group of the aldehyde compound, preferably represented by glutaraldehyde, is bonded to the amino group of the enzyme, with 1,8-diamino-
4-Aminomethyloctane acts as a spacer to weaken the above bond. The active ingredient that binds to the enzyme is fixed on an inorganic carrier as a mixture film, but as shown in the table below, among various polymer film materials, only one using polyvinyl butyral is used. shows excellent peeling resistance against various liquids. That is, a dope solution consisting of a 1% organic solvent solution of various polymer film-forming materials was cast onto a silicon wafer whose surface had been treated with silicon nitride to form a film at room temperature, and the film was formed in an open environment at 60°C for 20 minutes. The dried pieces were immersed in various liquids at 40°C, taken out after 2 hours, and visually evaluated for the degree of adhesion of the membrane to the silicon nitride surface.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明に係る酵素固定化用膜を設けた電界効果
型トランジスタ−尿素センサーは、厚さの点から
多量の酵素を固定化させることができ、しかも
ISFETの無機質担体面に設けられたポリビニル
ブチラールを用いた酵素などの固定化膜は良好な
接着性を示しており、それの尿素センサーとして
の応答性も良好である。 〔実施例〕 次に、実施例について本発明を説明する。 実施例 基板にP型ウエハーを用い、シリコンアイラン
ド作成−フイールド酸化−リン拡散(ソース・ド
レイン形成)−ゲート酸化.窒化けい素の化学蒸
着−プラズマエツチングによるコンタクトホール
穴あけ−アルミニウム蒸着による電極形成−水素
アニール−ワイヤーボンデイングという一連の工
程を経て、ISFETを製作した。このISFETは、
幅300μm、長さ4.0mmと小さく、そこに化学蒸着
させた窒化けい素の膜厚は約1500Åであつた。 次いで、このISFETについて、その窒化けい
素面上に混合物膜状体の形成を行なつた。即ち、
ポリビニルブチラールの1%塩化メチレン溶液10
ml中に50%グルタルアルデヒド水溶液0.2mlおよ
び1,8−ジアミノ−4−アミノメチルオクタン
1mlを加えて調製したドープ液中に2本の
ISFETを浸漬し、次いで引き上げて室温で乾燥
させた。 このようにしてその窒化けい素面上に混合物膜
状体を形成させた2本のISFETの内の1本を、
濃度5mg/mlのウレアーゼ(EC3.5,1.5シグマ社
製品)水溶液中に浸漬させ、4℃で24時間放置し
て、膜状体表面にウレアーゼ酵素を固定化させ
た。 これら2本のISFET、即ちウレアーゼ酵素固
定化ISFET1および酵素を固定化させていない
参照ISFET2は、第1図に示されるように、ア
ースされた銀/塩化銀参照電極3と共に、試験管
4中の被検液5中にそれぞれ浸漬される。 これらの各要素および差動アンプ6、レコーダ
7を有する差動測定システムを用いての尿素に対
する応答性が、次のようにして37℃、PH7.0の条
件下で調べられた。 試験管内の緩衝液(PH7.0、5mMトリス−
HCl)3.9mlに、各種濃度の尿素水溶溶液を注入
後の最終濃度が0.08,0.1,0.25,0.5,0・75ま
たは1.0mg/mlとなるように調整して、各100μ
をマイクロシリンダで注入した。各試料に対する
応答電位変化は、約2分間で定常値に達した。こ
の応答電位変化の初速度(ΔVg/Δt)と尿素濃
度の対数値とをプロツトすると、第2図に示され
ようなグラスが得られた。 この結果から、ウレアーゼ固定化ISFETは、
少くとも尿素濃度0.08〜1.0mg/mlの範囲内で、
尿素を定量的に検出し得ることが示される。
The field effect transistor-urea sensor provided with the membrane for enzyme immobilization according to the present invention can immobilize a large amount of enzyme in terms of thickness, and
An enzyme immobilization membrane using polyvinyl butyral provided on the inorganic support surface of the ISFET shows good adhesion, and its responsiveness as a urea sensor is also good. [Example] Next, the present invention will be explained with reference to an example. Example Using a P-type wafer as a substrate, silicon island creation - field oxidation - phosphorus diffusion (source/drain formation) - gate oxidation. The ISFET was fabricated through a series of steps: chemical vapor deposition of silicon nitride, contact hole drilling using plasma etching, electrode formation using aluminum vapor deposition, hydrogen annealing, and wire bonding. This ISFET is
It was small with a width of 300 μm and a length of 4.0 mm, and the silicon nitride film deposited on it by chemical vapor deposition was approximately 1500 Å thick. Next, a mixture film was formed on the silicon nitride surface of this ISFET. That is,
1% polyvinyl butyral solution in methylene chloride 10
ml of 50% glutaraldehyde aqueous solution and 1 ml of 1,8-diamino-4-aminomethyloctane.
The ISFET was immersed and then pulled out to dry at room temperature. One of the two ISFETs with a mixture film formed on the silicon nitride surface in this way,
The membrane was immersed in an aqueous solution of urease (EC3.5, 1.5 Sigma product) with a concentration of 5 mg/ml and left at 4°C for 24 hours to immobilize the urease enzyme on the surface of the membrane. These two ISFETs, urease enzyme-immobilized ISFET 1 and reference ISFET 2 without enzyme immobilization, are placed in a test tube 4 along with a grounded silver/silver chloride reference electrode 3, as shown in FIG. They are each immersed in the test liquid 5. The responsiveness to urea using a differential measurement system having each of these elements, a differential amplifier 6, and a recorder 7 was investigated under the conditions of 37°C and PH7.0 as follows. Buffer solution (PH7.0, 5mM Tris-
Adjust the final concentration after injection of urea aqueous solutions of various concentrations to 0.08, 0.1, 0.25, 0.5, 0.75 or 1.0 mg/ml to 3.9 ml of HCl), and add 100μ of each.
was injected with a micro cylinder. The response potential change for each sample reached a steady value in about 2 minutes. When the initial rate of response potential change (ΔVg/Δt) and the logarithm of the urea concentration were plotted, a glass as shown in FIG. 2 was obtained. From this result, urease-immobilized ISFET is
At least within the urea concentration range of 0.08 to 1.0 mg/ml,
It is shown that urea can be detected quantitatively.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る電界効果型トランジス
タ−尿素センサーを用いた差動測定システムの概
要図である。また、第2図は、このシステムによ
る応答電位変化の初速度と尿素濃度との関係を示
すグラフである。 符号の説明、1……酵素固定化ISFET、2…
…参照ISFET、3……銀/塩化銀参照電極、5
……被検液。
FIG. 1 is a schematic diagram of a differential measurement system using a field effect transistor-urea sensor according to the present invention. Further, FIG. 2 is a graph showing the relationship between the initial rate of response potential change and urea concentration by this system. Explanation of symbols, 1... Enzyme-immobilized ISFET, 2...
...Reference ISFET, 3...Silver/silver chloride reference electrode, 5
...Test liquid.

Claims (1)

【特許請求の範囲】 1 無機質担体上に、ポリビニルブチラール、
1,8−ジアミノ−4−アミノメチルオクタンお
よびアルデヒド化合物の混合物膜状体を形成せし
めた酵素固定化用膜。 2 電界効果型トランジスターの無機質担体面に
混合物膜状体を形成させた特許請求の範囲第1項
記載の酵素固定化用膜。
[Claims] 1. On an inorganic carrier, polyvinyl butyral,
An enzyme immobilization membrane comprising a mixture membrane of 1,8-diamino-4-aminomethyloctane and an aldehyde compound. 2. The membrane for enzyme immobilization according to claim 1, wherein a mixture membrane is formed on the surface of an inorganic carrier of a field effect transistor.
JP60073826A 1985-04-08 1985-04-08 Physiologically active substance immobilized membrane and electric field effect type transistor-urea sensor using the same Granted JPS61231454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60073826A JPS61231454A (en) 1985-04-08 1985-04-08 Physiologically active substance immobilized membrane and electric field effect type transistor-urea sensor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60073826A JPS61231454A (en) 1985-04-08 1985-04-08 Physiologically active substance immobilized membrane and electric field effect type transistor-urea sensor using the same

Publications (2)

Publication Number Publication Date
JPS61231454A JPS61231454A (en) 1986-10-15
JPH0511576B2 true JPH0511576B2 (en) 1993-02-15

Family

ID=13529338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60073826A Granted JPS61231454A (en) 1985-04-08 1985-04-08 Physiologically active substance immobilized membrane and electric field effect type transistor-urea sensor using the same

Country Status (1)

Country Link
JP (1) JPS61231454A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750063B2 (en) * 1987-12-09 1995-05-31 日本電気株式会社 Biosensor
JP3657591B2 (en) * 2003-03-25 2005-06-08 独立行政法人科学技術振興機構 P-channel field effect transistor and sensor using the same

Also Published As

Publication number Publication date
JPS61231454A (en) 1986-10-15

Similar Documents

Publication Publication Date Title
JP2943700B2 (en) Biosensor
Mann-Buxbaum et al. New microminiaturized glucose sensors using covalent immobilization techniques
Senillou et al. A miniaturized urea sensor based on the integration of both ammonium based urea enzyme field effect transistor and a reference field effect transistor in a single chip
van der Schoot et al. ISFET based enzyme sensors
Karbue et al. A microsensor for urea based on an ion-selective field effect transistor
Snejdarkova et al. Acetylcholinesterase sensors based on gold electrodes modified with dendrimer and polyaniline: A comparative research
Soldatkin et al. Creatinine sensitive biosensor based on ISFETs and creatinine deiminase immobilised in BSA membrane
Vianello et al. Potentiometric detection of formaldehyde in air by an aldehyde dehydrogenase FET
Gotoh et al. A microsensor for adenosine-5′-triphosphate pH-sensitive field effect transistors
Hendji et al. Sensitive detection of pesticides using a differential ISFET-based system with immobilized cholinesterases
Chi et al. Study on separative structure of EnFET to detect acetylcholine
Guilbault et al. Enzyme electrodes for the determination of 1-phenylalanine
JPS62232555A (en) Oxygen sensor
Du et al. Amperometric alcohol sensors based on protein multilayers composed of avidin and biotin‐labeled alcohol oxidase
US7638157B2 (en) Method of fabricating electrode assembly of sensor
Rahman Fabrication of L-lactate biosensor based on redox species mediated lactate oxidase using micro-device
Shul'ga et al. Removing the influence of buffer concentration on the response of enzyme field effect transistors by using additional membranes
Gotoh et al. Micro-FET biosensors using polyvinylbutyral membrane
Kullick et al. Application of enzyme field-effect transistor sensor arrays as detectors in a flow-injection system for simultaneous monitoring of medium components. Part I. Preparation and calibration.
JPH0511576B2 (en)
Vlasov et al. Enzyme semiconductor sensor based on butyrylcholinesterase
JPH0570103B2 (en)
Kuriyama et al. FET-based biosensors
Zhang et al. Simultaneous determination of glucose and sucrose by a dual‐working electrode multienzyme sensor flow‐injection system
JP2862940B2 (en) Immobilized enzyme and measuring device using the same