JPH0511515B2 - - Google Patents

Info

Publication number
JPH0511515B2
JPH0511515B2 JP62285089A JP28508987A JPH0511515B2 JP H0511515 B2 JPH0511515 B2 JP H0511515B2 JP 62285089 A JP62285089 A JP 62285089A JP 28508987 A JP28508987 A JP 28508987A JP H0511515 B2 JPH0511515 B2 JP H0511515B2
Authority
JP
Japan
Prior art keywords
weight
film
resin
coating
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62285089A
Other languages
Japanese (ja)
Other versions
JPH01127084A (en
Inventor
Toshio Odajima
Yoshihiko Hirano
Teruyoshi Hiraoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28508987A priority Critical patent/JPH01127084A/en
Publication of JPH01127084A publication Critical patent/JPH01127084A/en
Publication of JPH0511515B2 publication Critical patent/JPH0511515B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は耐食性、溶接性、加工性に優れ、か
つ、鮮映性に優れた有機複合鋼板に関するもので
ある。すなわち、本発明は各種のめつき鋼板にク
ロメート処理を施し、更にその上に特定の微細な
粒度のコロイド(ゾル)を特定の割合になるよう
に調整した特殊な有機樹脂を塗布し、特定の温度
範囲で焼付−乾燥を行う有機複合鋼板の製造方法
である。 〔従来の技術〕 周知の如く電気亜鉛めつき鋼板や溶融めつき鋼
板あるいは各種合金めつき鋼板が、自動車、家
電、建材などに広く使用されている。 こうした中で、近年、特に耐食性に優れた表面
処理材料に対する要求がますます強くなり、この
ような鋼板の需要は今後ますます増加する傾向に
ある。 例えば、家電業界では省工程、省コストの観点
から塗装を省略できる裸使用の可能な優れた耐食
性を有する鋼板に対する要求がある。また、自動
車業界でも最近の環境の変化、例えば北米、北欧
での冬の道路の凍結防止のために散布する岩塩に
よる腐食、また、工業地帯でのSO2ガスの発生に
よる酸性雨による腐食など、車体は激しい腐食環
境にさらされ安全上の観点から優れた耐食性を有
する表面処理鋼板が強く要求されている。 これら問題点を解決するため種々の検討がなさ
れ、多くの製品が開発されてきた。 これまで鋼板の耐食性を向上するために亜鉛め
つきが行なわれてきた。 亜鉛めつき鋼板は、亜鉛の犠牲防食作用によつ
て鋼板の腐食を防止するものであり、耐食性を得
ようとすれば亜鉛付着量を増加しなければならな
い。このため必要亜鉛量のコストアツプあるいは
加工性、溶接性、生産性の低下等いくつかの問題
点がある。また、一般に亜鉛めつき鋼板の塗料密
着性は悪い。 このような亜鉛めつき鋼板の特に耐食性を改善
する方法として、各種合金めつき鋼板が開発され
てきた。これら合金めつき鋼板として、例えば
Zn−Ni系、Zn−Ni−Co系、Zn−Ni−Cr系、Zn
−Fe系、Zn−Co系、Zn−Mn系等をあげること
ができる。これら合金めつきにより、通常の亜鉛
めつき鋼板に比べ裸の耐食性は約3〜5倍向上す
ることが認められる。しかし、それでも長期間屋
外に放置したり、水や塩水を噴霧すると白錆や赤
錆が発生しやすいことが問題である。 耐食性を改善するためにめつきした後にクロメ
ート処理を施す方法もあり、かなり有効ではある
が、高温多湿化や塩分含有雰囲気下では約100〜
150時間で白錆が発生する。 更に耐食性を改善するために、亜鉛系めつき鋼
板のクロメート処理材に各種の樹脂を塗布した、
いわゆる簡易プレコート鋼板(以下有機複合鋼板
と呼ぶ)が開発され一部市販されている。 その一例を以下に列挙する。 特開昭58−210190号公報 特開昭58−210192号公報 亜鉛系合金単層めつき又は2層めつき上にクロ
メート処理を施し、その上に導電性物質(Zn、
Al、Sn、Fe、Ni、Co、Cr、Mn)を含有する樹
脂塗料を塗布した溶接可能な塗装鋼板で、溶接
性、塗膜密着性及び耐食性の向上を目的としたも
の 特開昭58−224174号公報 亜鉛合金めつき鋼板の表面の塗布型クロメート
処理を施し、続いて水洗することなく複合有機シ
リケート樹脂溶液で処理する高耐食性防錆被覆鋼
板の製造法で、耐食性の向上を目的としたもの 特開昭59−116397号公報 鋼板の両面に第1層としてNi−Zn、Fe−Znの
如き高耐食性電気めつき層を有し、第2層として
片面にFe−Znの如き薄電気めつき層を、他面に
導電性顔料を含む樹脂又は膜厚0.5〜3.0μの樹脂
膜を有する高耐食性防錆鋼板で、外面側は耐食
性、塗料密着性を付与し、内面側はスポツト溶接
性、加工性を付与することを目的としたもの 特公昭61−36587号公報 電気亜鉛めつき鋼板の表面にクロメート皮膜を
形成し、その上にコロイダルシリカを含有する特
殊樹脂水溶液を塗布乾燥する電気亜鉛めつき鋼板
の表面処理法で、耐指紋性、塗料密着性、硬度、
耐食性の向上を目的としたもの 特開昭60−149786号公報 上記特公昭61−36587号と軌を一にした処理法
で、ベースめつきを亜鉛系合金に限定し、且つ特
公昭61−36587号とは異る樹脂を用いた表面処理
法であり、上記に対してより一層の耐食性と耐溶
剤性を付加したもの 特開昭61−167545号公報 亜鉛系合金めつき層の上にクロメート処理を施
し、その上に硬質金属粉、硬質炭化粉の1種又は
2種と、亜鉛粉末を含む塗料を塗布した、高耐食
性溶接可能塗装鋼板で、耐食性及び溶接性の向上
を目的としたもの 上記に例示のものは、いずれも有機複合鋼板と
呼ばれるもので、諸特性の向上が得られるもので
ある。 〔発明が解決しようとする問題点〕 しかし、有機複合鋼板にED塗装(電着塗装)
をする際、形成されるED塗膜は下地の有機皮膜
の影響を大きく受け、一般にED塗膜の鮮映性、
耐クレータリング性は通常の化成処理した冷延鋼
板やめつき鋼板と比べかなり劣る。 これに対し、本発明はED後の鮮映性、耐クレ
ータリング性に優れた有機複合鋼板を提供するも
のである。 〔問題点を解決するための手段〕 本発明は水系樹脂分散体に微粒のSiO2
Cr2O3、Fe2O3、Fe3O4、MgO、ZrO2、SnO2
Al2O3、Sb2O5のコロイド(ゾル)の1種または
2種以上を特定の割合含有せしめ、クロメート被
覆めつき鋼板に塗布し、特定の温度に加熱(焼付
−乾燥)することにより有機皮膜のED後の鮮映
性、耐クレータリング性を著しく向上せしめるも
のである。 本発明の優れた特性は水系樹脂分散体に特定の
粒径以下の微粒のコロイド(ゾル)を特定量添加
し、かつ、有機樹脂を乾燥するに際し特定の温度
に加熱することによりはじめて得られる。 本発明者等は詳細に検討した結果、コロイド
(ゾル)に次の条件がなければならないことをみ
いだした。 コロイド(ゾル)の粒径:1mμ〜12mμ コロイド(ゾル)の添加量:共存する樹脂100部
に対し5〜100部(重量部) 上記条件を満足する浴をめつき鋼板上に塗布し
100〜150℃に加熱・焼付することにより、ED後
の鮮映性、耐クレータリング性にきわめて優れた
有機複合鋼板を製造できることを確認した。 本発明の有機樹脂皮膜のED後の鮮映性、耐ク
レータリング性を大幅に向上させる方法について
具体的に説明する。 第1図、第2図はクロム付着量が75mg/m2とな
るようにクロメート処理したZn−Ni系合金めつ
き鋼板の上に、 アクリル系樹脂:コロダイルシリカ=100:20
(固形分重量比) となるように固定し、コロダイルシリカ(SiO2
の粒度をかえた水性液を塗布し120℃に加熱し、
乾燥後の皮膜が1μとなるように塗布し、ED後の
鮮映性と耐クレータリング性がどのように変化す
るかを示したものである。 第3図、第4図は同じくクロム付着量が75mg/
m2となるようにクロメート処理したZn−Ni系合
金めつき鋼板の上に、コロイダルシリカの4〜6
mμの粒度のものを用い、アクリル系樹脂とコロ
イダルシリカ(SiO2)の配合割合をかえた浴を
塗布し120℃に加熱し、焼付−乾燥後の皮膜が1μ
となるように塗布し、ED後の鮮映性と耐クレー
タリング性がどのように変化するかを示したもの
である。第5図、第6図は同じくクロム付着量が
75mg/m2となるようにクロメート処理したZn−
Ni系合金めつき鋼板の上に、コロイダルシリカ
の4〜6mμの粒度のものを用い、 アクリル系樹脂:コロイダルシリカ=100:20
(固形分重量比) となるように配合した水性液を乾燥後の膜厚が
1.0μとなるように塗布し、焼付−乾燥の温度をか
えた場合のED後の鮮映性と耐クレータリング性
がどのように変化するかを示したものである。 ここで鮮映性は市販のカチオンED塗料を用い、
220Vで膜厚が20μとなるように処理し、165℃に
焼付後市販の写像性測定器を用い2mmスリツトを
通過する反射率を測定し、◎、○、△、×、××の
5段階で評価した。◎が最良である。 ◎:反射率50%以上 ○: 〃 40〜50% △: 〃 30〜40% ×: 〃 20〜30% ××:〃 0〜20% また、耐クレータリング性は焼付後のED塗膜
のクレータリングの数を調べ◎、○、△、×、××
の5段階で評価したものであり、◎が最良であ
る。 ◎:クレータリング個数0個/dm2 ○: 〃 0〜1個/dm2 △: 〃 1〜10個/dm2 ×:クレータリング個数10〜50個/dm2 ××: 〃 50個/dm2以上 第1図から明らかなようにコロイダルシリカの
粒度によつてED塗装後の塗膜の鮮映性は変化し、
粒度が1mμ〜12mμで優れた鮮映性を示し、1
mμ以下あるいは12mμ以上になると鮮映性は低
下する傾向を示す。 第2図から明らかなようにコロイダルシリカの
粒度によつてED塗膜の耐クレータリング性は変
化し、粒度が1mμ〜12mμで優れた耐クレータ
リング性を示し、1mμ以下ではやや低下し、12
mμ以上になると急速に耐クレータリング性は低
下する傾向を示す。 第3図から明らかなようにコロイダルシリカの
添加量によつてED塗装後の塗膜の鮮映性は変化
し、添加量が5部〜100部(重量部)で優れた鮮
映性を示し、5部以下あるいは100部以上になる
と鮮映性は低下する傾向を示す。 第4図から明らかなようにコロイダルシリカの
添加量によつてED塗装後の塗膜の耐クレータリ
ング性は変化し、添加量が5部〜100部(重量部)
で優れた耐クレータリング性を示し、5部以下及
び100部以上になると急速に耐クレータリング性
は低下する傾向を示す。 第5図から明らかなように有機皮膜の加熱温度
によつてED塗装後の塗膜の鮮映性は変化し加熱
(焼付)温度が100〜150℃で優れた鮮映性を示し、
100℃以下では温度が低くなるにつれやや低下し、
150℃以上になると急激に鮮映性は悪くなる。 第6図から明らかなように有機皮膜の加熱(焼
付)温度によつてED塗装後の塗膜の耐クレータ
リング性は変化し、加熱温度が100〜150℃で優れ
た耐クレータリング性を示し、100℃以下では温
度が低くなるにつれやや低下し、150℃以上にな
ると急激に耐クレータリング性は悪くなる。 上記結果はコロイド(ゾル)としてコロイダル
シリカ(SiO2)を用いた結果を示したが、コロ
イダルシリカのかわりにCr2O3、Fe2O3、Fe3O4
MgO、ZrO2、SnO2、Al2O3、Sb2O5のコロイド
(ゾル)を用いてもまつたく同様な結果が得られ
た。また、上記コロイド(ゾル)の2種以上を含
有せしめても同様な結果が得られた。 また、上記結果は樹脂としてアクリル系樹脂を
用いた結果を示したが、使用する樹脂はエチレン
−アクリル酸共重合体樹脂、ポリアクリル酸及び
その共重合体樹脂、ポリメタクリル酸及びその共
重合体樹脂、ポリアクリル酸エステル及びその共
重合体樹脂、ポリメタクリル酸エステル及びその
共重合体樹脂の水系樹脂分散体をはじめ水系樹脂
であればいずれでもよく、いずれにおいてもコロ
イド(ゾル)の粒度及び添加量を規制し、かつ、
有機皮膜の加熱(焼付)温度を規制すれば形成さ
れた有機皮膜にED塗装するとED塗装後の鮮映
性、耐クレータリング性を大幅に改善でき、ほぼ
同様な結果が得られる。 上記結果はめつき鋼板のCr付着量が75mg/m2
の場合であるが、第7図にZn−Ni系合金めつき
鋼板の上にクロム付着量をかえ、アクリル系樹脂
100部(重量部)に4〜6mμのコロイダルシリ
カ30部(重量部)混合した水性液を1.0μ(固形分)
塗布し、120℃で焼付−乾燥した場合の皮膜の密
着性を示す。図から明らかなようにCr付着量が
10mg/m2以下あるいは150mg/m2以上では皮膜の
密着性がやや低下する傾向にある。 皮膜の密着性試験は上記塗布した試験片を30分
沸騰し、その後2mmゴバン目に皮膜をカツトしテ
ープ剥離し、剥離面積で評価した。 ◎:剥離面積0% ○: 〃 0〜1% △: 〃 1〜10% ×: 〃 10〜50% ××: 〃 50%以上 ここで樹脂に水系樹脂の焼付−乾燥温度は60〜
90℃前後であり、また溶剤タイプの有機樹脂の焼
付温度は一般に160〜220℃である。これに対し、
本発明では水系樹脂を用い、100〜150℃に加熱す
ることにより超微粒コロイド(ゾル)との相互作
用によつて樹脂が微細にキユアリングし、かつ、
皮膜の反応基が一様に分散することがわかつた。 微細にキユアリングした樹脂にED塗装すると
皮膜全体に均一に電流が流れED塗膜が析出する
初期段階で均一に、かつ、平坦に皮膜が形成され
ることがわかつた。その結果としてED塗装後の
鮮映性、耐クレータリング性が大幅に向上するこ
とがわかつた。 以上の結果から本発明ではめつき鋼板に水性液
を塗布し有機複合鋼板を製造するにあたり、10〜
150mg/m2のクロム付着量を有するめつき鋼板に
対して水系樹脂分散体の固形分100重量部に対し、
1mμ〜12mμの粒形を有するSiO2、Cr2O3
Fe2O3、Fe3O4、MgO、ZrO2、SnO2、Al2O3
Sb2O5のコロイド(ゾル)の1種または2種以上
を固形分で5〜100重量部含有させた水性液を塗
布し、100〜150℃で焼付−乾燥することを特徴と
する鋼板の表面処理法であり、形成された皮膜に
ED塗装した場合のED塗膜の鮮映性、耐クレータ
リング性を大幅に向上させることがでるものであ
る。 〔実施例〕 以下実施例について述べる。 実施例 1 めつき付着量が20g/m2のZn−Ni系合金めつ
き(Ni:11.5%)にCr付着量が65mg/m2となる
ようにクロメート処理し、エチレン−アクリル酸
共重合体樹脂に粒径が3〜4mμのコロイダルシ
リカを エチレン−アクリル酸共重合体樹脂:コロイダ
ルシリカ=100:20(重量部) となるように調整した水性液をその上に塗布し、
120℃で焼付乾燥して1.0g/m2となるように皮膜
を形成した。 実施例 2 めつき付着量が20g/m2のZn−Ni−Co系合金
めつき鋼板(Ni:12.5%、Co:0.6%)にCr付着
量が90mg/m2となるようにクロメート処理し、ポ
リアクリル酸樹脂に粒径が1〜2mμのCr2O3
ルを ポリアクリル酸樹脂:Cr2O3=100:40(重量
部) となるように調整した水性液をその上に塗布し、
145℃に焼付−乾燥して1.2g/m2となるように皮
膜を形成した。 実施例 3 めつき付着量が20g/m2のZn−Fe系合金めつ
き鋼板にCr付着量が60mg/m2となるようにクロ
メート処理し、ポリアクリル酸エステル共重合体
樹脂に粒径が7〜9mμのAl2O3ゾルを ポリアクリル酸エステル共重合体樹脂:Al2O3
ゾル=100:60(重量部) となるように調整した水性液をその上に塗布し、
110℃に焼付−乾燥して0.8g/m2となるように皮
膜を形成した。 実施例 4 めつき付着量が20g/m2のZn−Ni−Cr系合金
めつき鋼板(Ni:11.8%、Cr:1.0%)にCr付着
量が55mg/m2となるようにクロメート処理し、ポ
リメタクリル酸エステルに粒径が10〜12mμの
Fe3O4ゾルを ポリメタクリル酸エステル:Fe3O4=100:70
(重量部) となるように調整した水性液をその上に塗布し、
130℃に焼付−乾燥して1.2g/m2となるように皮
膜を形成した。 実施例 5 めつき付着量が20g/m2のZn−Mn系合金めつ
き鋼板(Mn:35%)にCr付着量が70mg/m2とな
るようにクロメート処理し、ポリメタクリル酸エ
ステル共重合体樹脂に粒径が8〜11mμのSnO2
ゾルを ポリメタクリル酸エステル共重合体樹脂:
SnO2ゾル=100:30(重量部) となるように調整した水性液をその上に塗布し、
乾燥して1.3g/m2となるように皮膜を形成した。 実施例 6 めつき付着量が20g/m2のZn−Mn−Cr系合金
めつき鋼板(Mn=20%、Cr=2%)にCr付着量
が55mg/m2となるようにクロメート処理し、ポリ
アクリル酸エステルに粒径が10〜12mμのSb2O5
ゾルを ポリアクリル酸エステル:Sb2O5ゾル=100:
50(重量部) となるように調整した水性液をその上に塗布し、
110℃に焼付−乾燥して0.9g/m2となるように皮
膜を形成した。 実施例 7 めつき付着量が20g/m2のZn−Ni系合金めつ
き鋼板(Ni:11.5%)にCr付着量が75mg/m2
なるようにクロメート処理し、エチレン−アクリ
ル酸共重合体樹脂に粒径が5〜7mμのコロイダ
ルシリカ(SiO2)と3〜4mμのCrO3コロイド
(ゾル)を エチレン−アクリル酸共重合体樹脂:SiO2
Cr2O3=100:20:10(重量部) となるように調整した水性液をその上に塗布し、
120℃で焼付−乾燥して1.2g/m2となるように皮
膜を形成した。 実施例 8 めつき付着量が20g/m2のZn−Ni−Co系合金
めつき鋼板(Ni:11.2%、Co:0.5%)にCr付着
量が70mg/m2となるようにクロメート処理し、ポ
リアクリル酸エステル共重合体樹脂に粒径が7〜
9mμのFe2O3コロイド(ゾル)5〜7mμの
ZrO2コロイド(ゾル)、3〜4mμのSb2O5のコ
ロイド(ゾル)を ポリアクリル酸エステル共重合体樹脂:
Fe2O3:ZrO2:Sb2O5=100:10:10:20(重量
部) となるように調整した水性液をその上に塗布し、
130℃で焼付−乾燥して1.1g/m2となるように皮
膜を形成した。 比較例 1 めつき付着量が20g/m2のZn−Ni系合金めつ
き(Ni:11.5%)鋼板を用い、市販の化成処理浴
を用いて化成処理した。 比較例 2 めつき付着量が20g/m2のZn−Ni系合金めつ
き鋼板(Ni:11.5%)にCr付着量が70mg/m2
なるようにクロメート処理した鋼板を用いた。 比較例 3 めつき付着量が20g/m2のZn−Ni系合金めつ
き鋼板(Ni:11.5%)にCr付着量が70mg/m2
なるようにクロメート処理し、その上にメラミン
樹脂を塗布し、120℃に焼付−乾燥して1.2g/m2
となるように皮膜を形成した。 比較例 4 めつき付着量が20g/m2のZn−Ni系合金めつ
き鋼板(Ni:11.5%)にCr付着量が70mg/m2
なるようにクロメート処理し、メラミン樹脂に粒
径が15mμのAl2O3ゾルを メラミン樹脂:Al2O3ゾル=100:30(重量部) となるように調整した水性液をその上に塗布し、
120℃に焼付−乾燥して1.1g/m2となるように皮
膜を形成した。 比較例 5 めつき付着量が20g/m2のZn−Ni系合金めつ
き鋼板(Ni:11.5%)にCr付着量が70mg/m2
なるようにクロメート処理し、ポリメタクリル酸
エステルに粒径が17mμのコロイダルシリカを ポリメタクリル酸エステル:コロイダルシリカ
=100:20(重量部) となるように調整した水性液をその上に塗布し、
80℃に焼付−乾燥して1.1g/m2となるように皮
膜を形成した。 実施例1、2、3、4、5、6、7、8ならび
に比較例1、2、3、4、5で得られた表面処理
鋼板について、各種試験を行なつた結果を第1表
に示す。 各種試験条件は次の通りである。 (a) ED塗装後の鮮映性 評価方法は第1図と同じである。 (b) ED塗装後の耐クレータリング性 評価方法は第2図と同じである。
[Industrial Application Field] The present invention relates to an organic composite steel sheet that has excellent corrosion resistance, weldability, workability, and excellent image clarity. That is, the present invention applies chromate treatment to various galvanized steel sheets, and then coats a special organic resin containing colloid (sol) with a specific fine particle size in a specific proportion. This is a method for manufacturing an organic composite steel sheet in which baking and drying are performed in a temperature range. [Prior Art] As is well known, electrogalvanized steel sheets, hot-dip galvanized steel sheets, and various alloy-plated steel sheets are widely used in automobiles, home appliances, building materials, and the like. Under these circumstances, in recent years, there has been an increasingly strong demand for surface-treated materials with particularly excellent corrosion resistance, and the demand for such steel sheets is likely to increase further in the future. For example, in the home appliance industry, there is a demand for a steel plate with excellent corrosion resistance that can be used bare and omit painting from the viewpoint of process and cost savings. In addition, recent environmental changes in the automobile industry include corrosion caused by rock salt, which is sprayed to prevent roads from freezing in winter in North America and Northern Europe, and corrosion caused by acid rain caused by the generation of SO 2 gas in industrial areas. Vehicle bodies are exposed to severe corrosive environments, and from a safety standpoint, there is a strong demand for surface-treated steel sheets with excellent corrosion resistance. In order to solve these problems, various studies have been made and many products have been developed. Until now, galvanizing has been carried out to improve the corrosion resistance of steel sheets. Galvanized steel sheets prevent corrosion of the steel sheet through the sacrificial anticorrosive action of zinc, and in order to obtain corrosion resistance, the amount of zinc deposited must be increased. For this reason, there are several problems such as an increase in the cost of the required amount of zinc and a decrease in workability, weldability, and productivity. Additionally, galvanized steel sheets generally have poor paint adhesion. As a method for improving the corrosion resistance of such galvanized steel sheets, various alloy-plated steel sheets have been developed. For example, these alloy-plated steel sheets include
Zn-Ni series, Zn-Ni-Co series, Zn-Ni-Cr series, Zn
-Fe system, Zn-Co system, Zn-Mn system, etc. can be mentioned. It is recognized that these alloy platings improve the corrosion resistance of bare steel sheets by about 3 to 5 times compared to ordinary galvanized steel sheets. However, the problem is that white rust or red rust is likely to occur if left outdoors for a long period of time or if water or salt water is sprayed on it. There is also a method of applying chromate treatment after plating to improve corrosion resistance, which is quite effective, but in high temperature, high humidity or salt-containing atmospheres,
White rust occurs after 150 hours. In order to further improve corrosion resistance, various resins are applied to the chromate-treated zinc-plated steel sheets.
So-called simple pre-coated steel sheets (hereinafter referred to as organic composite steel sheets) have been developed and some are commercially available. An example is listed below. JP-A No. 58-210190 JP-A No. 58-210192 A chromate treatment is applied to a zinc-based alloy single-layer plating or double-layer plating, and conductive substances (Zn,
A weldable painted steel plate coated with a resin paint containing (Al, Sn, Fe, Ni, Co, Cr, Mn) for the purpose of improving weldability, paint film adhesion, and corrosion resistance. JP-A-58- Publication No. 224174 A method for manufacturing a highly corrosion-resistant rust-preventing coated steel sheet, in which the surface of a zinc alloy-plated steel sheet is subjected to paint-type chromate treatment, and then treated with a composite organic silicate resin solution without washing with water, with the aim of improving corrosion resistance. JP-A-59-116397 A steel plate has a highly corrosion-resistant electroplated layer such as Ni-Zn or Fe-Zn as the first layer on both sides, and a thin electroplated layer such as Fe-Zn on one side as the second layer. The coating layer is made of a highly corrosion-resistant and rust-preventing steel plate that has a resin containing conductive pigments or a resin film with a thickness of 0.5 to 3.0μ on the other side, and the outer side has corrosion resistance and paint adhesion, and the inner side has spot weldability. , for the purpose of imparting workability Patent Publication No. 61-36587 Electrogalvanized steel sheet in which a chromate film is formed on the surface of the galvanized steel sheet, and then a special resin aqueous solution containing colloidal silica is applied and dried. A surface treatment method for plated steel sheets that improves fingerprint resistance, paint adhesion, hardness,
Aiming to improve corrosion resistance JP-A-60-149786 A treatment method that is the same as the above-mentioned JP-B No. 61-36587, but the base plating is limited to zinc-based alloy, and it is different from JP-A-61-36587. This is a surface treatment method using a different resin, which adds even more corrosion resistance and solvent resistance to the above. JP-A-61-167545 Chromate treatment is applied on the zinc-based alloy plating layer. Highly corrosion-resistant weldable coated steel plate coated with one or two of hard metal powder, hard carbonized powder, and zinc powder, for the purpose of improving corrosion resistance and weldability. All of these are called organic composite steel sheets, and they have improved properties. [Problems to be solved by the invention] However, ED coating (electrodeposition coating) on organic composite steel sheets
When applying the ED coating, the formed ED coating is greatly influenced by the underlying organic film, and generally the sharpness of the ED coating and
Cratering resistance is considerably inferior to that of ordinary chemically treated cold-rolled steel sheets or matted steel sheets. In contrast, the present invention provides an organic composite steel sheet with excellent image clarity and cratering resistance after ED. [Means for solving the problems] The present invention includes fine particles of SiO 2 in an aqueous resin dispersion.
Cr2O3 , Fe2O3 , Fe3O4 , MgO, ZrO2 , SnO2 ,
By containing one or more types of colloids (sols) of Al 2 O 3 and Sb 2 O 5 in a specific proportion, applying it to a chromate-coated steel plate and heating it to a specific temperature (baking-drying). This significantly improves the image clarity and cratering resistance of organic films after ED. The excellent characteristics of the present invention can only be obtained by adding a specific amount of fine colloid (sol) with a specific particle size or less to the aqueous resin dispersion, and heating the organic resin to a specific temperature when drying. As a result of detailed study, the present inventors found that the colloid (sol) must meet the following conditions. Particle size of colloid (sol): 1 mμ to 12 mμ Amount of colloid (sol) added: 5 to 100 parts (parts by weight) per 100 parts of coexisting resin A bath that satisfies the above conditions is applied onto the plated steel plate.
It was confirmed that by heating and baking at 100-150°C, it was possible to produce an organic composite steel sheet with extremely excellent image clarity and cratering resistance after ED. A method for significantly improving the post-ED image clarity and cratering resistance of the organic resin film of the present invention will be specifically explained. Figures 1 and 2 show acrylic resin: collodyl silica = 100:20 on a Zn-Ni alloy plated steel plate that has been chromate treated to give a chromium adhesion amount of 75mg/ m2 .
(solid content weight ratio), and collodyl silica (SiO 2 )
Apply an aqueous solution with different particle sizes and heat to 120℃.
This figure shows how the sharpness and cratering resistance change after ED when the coating is applied to a film thickness of 1 μm after drying. Figures 3 and 4 show that the amount of chromium deposited is 75mg/
A layer of colloidal silica 4 to 6
Using particles with a particle size of mμ, a bath with a different blending ratio of acrylic resin and colloidal silica (SiO 2 ) was applied, heated to 120℃, and the film after baking and drying was 1μ.
This figure shows how the image clarity and cratering resistance change after ED. Figures 5 and 6 also show the amount of chromium deposited.
Zn− chromated to 75mg/ m2
Using colloidal silica with a particle size of 4 to 6 mμ on a Ni-based alloy plated steel plate, acrylic resin: colloidal silica = 100:20
(solid content weight ratio) After drying the aqueous liquid, the film thickness is
This figure shows how the sharpness and cratering resistance after ED change when the coating is applied to a thickness of 1.0μ and the baking-drying temperature is changed. Here, the image clarity was determined using a commercially available cationic ED paint.
The film was treated at 220V to a film thickness of 20μ, and after baking at 165℃, the reflectance passing through a 2mm slit was measured using a commercially available image clarity measuring device. It was evaluated by ◎ is the best. ◎: Reflectance of 50% or more ○: 〃 40-50% △: 〃 30-40% ×: 〃 20-30% Check the number of cratering ◎, ○, △, ×, ××
It is evaluated on a five-point scale, with ◎ being the best. ◎: Number of crater rings: 0 pieces/dm 2 ○: 〃 0-1 pieces/dm 2 △: 〃 1-10 pieces/dm 2 ×: Number of crater rings: 10-50 pieces/dm 2 ××: 〃 50 pieces/dm 2 or more As is clear from Figure 1, the sharpness of the paint film after ED coating changes depending on the particle size of colloidal silica.
It shows excellent image clarity with a particle size of 1 mμ to 12 mμ, and
When it becomes less than mμ or more than 12 mμ, image clarity tends to decrease. As is clear from Figure 2, the cratering resistance of the ED coating changes depending on the particle size of the colloidal silica, with particle sizes of 1 mμ to 12 mμ showing excellent cratering resistance, and particles with a particle size of 1 mμ or less decreasing slightly.
When the value exceeds mμ, the cratering resistance tends to decrease rapidly. As is clear from Figure 3, the sharpness of the coating film after ED coating changes depending on the amount of colloidal silica added, and excellent sharpness is shown when the added amount is 5 parts to 100 parts (by weight). , when the number of copies is less than 5 or more than 100, the sharpness tends to decrease. As is clear from Figure 4, the cratering resistance of the paint film after ED coating changes depending on the amount of colloidal silica added, and the amount added ranges from 5 parts to 100 parts (parts by weight).
It shows excellent cratering resistance at 5 parts or less and at 100 parts or more, the cratering resistance tends to decrease rapidly. As is clear from Figure 5, the sharpness of the paint film after ED coating changes depending on the heating temperature of the organic film, and excellent sharpness is exhibited at a heating (baking) temperature of 100 to 150°C.
Below 100℃, it decreases slightly as the temperature decreases,
When the temperature exceeds 150°C, image sharpness deteriorates rapidly. As is clear from Figure 6, the cratering resistance of the paint film after ED coating changes depending on the heating (baking) temperature of the organic film, and it shows excellent cratering resistance at a heating temperature of 100 to 150°C. , below 100°C, the cratering resistance decreases slightly as the temperature decreases, and above 150°C, the cratering resistance suddenly deteriorates. The above results showed the results using colloidal silica (SiO 2 ) as the colloid (sol), but instead of colloidal silica, Cr 2 O 3 , Fe 2 O 3 , Fe 3 O 4 ,
Similar results were obtained using colloids (sols) of MgO, ZrO 2 , SnO 2 , Al 2 O 3 and Sb 2 O 5 . Similar results were also obtained when two or more of the above colloids (sols) were contained. In addition, although the above results showed the results using acrylic resin as the resin, the resins used were ethylene-acrylic acid copolymer resin, polyacrylic acid and its copolymer resin, polymethacrylic acid and its copolymer resin. Any water-based resin may be used, including water-based resin dispersions of resin, polyacrylic acid ester and its copolymer resin, polymethacrylic acid ester and its copolymer resin, and in either case, the particle size of the colloid (sol) and the addition regulate the amount, and
By regulating the heating (baking) temperature of the organic film and applying ED coating to the formed organic film, the image clarity and cratering resistance after ED coating can be greatly improved, and almost the same results can be obtained. The above results indicate that the amount of Cr deposited on the plated steel sheet is 75 mg/m 2
Figure 7 shows that the amount of chromium deposited on a Zn-Ni alloy-plated steel plate is changed and acrylic resin is applied.
1.0μ (solid content) of an aqueous solution prepared by mixing 100 parts (weight parts) with 30 parts (weight parts) of 4-6 mμ colloidal silica.
This shows the adhesion of the film when applied and baked and dried at 120°C. As is clear from the figure, the amount of Cr deposited is
If the amount is less than 10 mg/m 2 or more than 150 mg/m 2 , the adhesion of the film tends to decrease somewhat. To test the adhesion of the film, the coated test piece was boiled for 30 minutes, and then the film was cut into 2 mm squares, peeled off with tape, and evaluated by the peeled area. ◎: Peeling area 0% ○: 〃 0-1% △: 〃 1-10% ×: 〃 10-50%
The baking temperature of solvent-based organic resins is generally 160 to 220°C. In contrast,
In the present invention, a water-based resin is used, and by heating it to 100 to 150°C, the resin is finely cured by interaction with ultrafine colloid (sol), and
It was found that the reactive groups in the film were uniformly dispersed. It was found that when a finely cured resin is coated with ED, a current flows uniformly throughout the film, and a uniform and flat film is formed in the initial stage of ED coating deposition. As a result, it was found that the image clarity and cratering resistance after ED coating were significantly improved. Based on the above results, in the present invention, when manufacturing an organic composite steel sheet by applying an aqueous liquid to a plated steel sheet,
For 100 parts by weight of the solid content of the aqueous resin dispersion,
SiO 2 , Cr 2 O 3 having a particle size of 1 mμ to 12 mμ,
Fe 2 O 3 , Fe 3 O 4 , MgO, ZrO 2 , SnO 2 , Al 2 O 3 ,
A steel plate characterized in that it is coated with an aqueous solution containing 5 to 100 parts by weight of one or more colloids (sols) of Sb 2 O 5 as a solid content, and baked and dried at 100 to 150°C. It is a surface treatment method, and the formed film
This greatly improves the clarity and cratering resistance of ED coatings. [Example] Examples will be described below. Example 1 Zn-Ni alloy plating (Ni: 11.5%) with a plating amount of 20 g/m 2 was treated with chromate so that the Cr adhesion amount was 65 mg/m 2 , and ethylene-acrylic acid copolymer was applied. Colloidal silica with a particle size of 3 to 4 mμ is applied to the resin, and an aqueous solution prepared in a ratio of ethylene-acrylic acid copolymer resin: colloidal silica = 100:20 (parts by weight) is applied on top of the resin.
The film was baked and dried at 120°C to form a film having a density of 1.0 g/m 2 . Example 2 A Zn-Ni-Co alloy plated steel sheet (Ni: 12.5%, Co: 0.6%) with a plating weight of 20 g/m2 was chromate-treated so that the Cr coating weight was 90 mg/ m2 . , a Cr 2 O 3 sol with a particle size of 1 to 2 mμ was applied to a polyacrylic acid resin, and an aqueous solution adjusted so that the ratio of polyacrylic acid resin: Cr 2 O 3 = 100:40 (parts by weight) was applied thereon. ,
A film was formed by baking and drying at 145°C to give a weight of 1.2 g/m 2 . Example 3 A Zn-Fe alloy plated steel sheet with a plating weight of 20 g/m 2 was chromate-treated so that the Cr adhesion was 60 mg/m 2 , and a polyacrylate copolymer resin with a particle size of 7-9 mμ Al 2 O 3 sol Polyacrylic acid ester copolymer resin: Al 2 O 3
Apply an aqueous solution adjusted so that the sol = 100:60 (parts by weight) on top of it,
A film was formed by baking and drying at 110°C to a weight of 0.8 g/m 2 . Example 4 A Zn-Ni-Cr alloy coated steel sheet (Ni: 11.8%, Cr: 1.0%) with a plating weight of 20 g/ m2 was chromate treated so that the Cr coating weight was 55 mg/ m2 . , polymethacrylic acid ester with a particle size of 10 to 12 mμ
Fe 3 O 4 sol Polymethacrylic acid ester: Fe 3 O 4 = 100:70
(parts by weight) Apply an aqueous solution adjusted to
The film was baked and dried at 130°C to form a film having a weight of 1.2 g/m 2 . Example 5 A Zn-Mn alloy plated steel sheet (Mn: 35%) with a plating weight of 20 g/m 2 was treated with chromate so that the Cr adhesion was 70 mg/m 2 , and a polymethacrylic acid ester copolymer was applied. SnO 2 with a particle size of 8 to 11 mμ is added to the combined resin.
Sol Polymethacrylate copolymer resin:
An aqueous solution adjusted so that SnO 2 sol = 100:30 (parts by weight) is applied on top of it.
A film was formed to a dry weight of 1.3 g/m 2 . Example 6 A Zn-Mn-Cr alloy plated steel sheet (Mn = 20%, Cr = 2%) with a plating weight of 20 g/ m2 was chromate-treated so that the Cr coating weight was 55 mg/ m2 . , Sb 2 O 5 with a particle size of 10 to 12 mμ in polyacrylic ester
Sol Polyacrylic acid ester: Sb 2 O 5 sol = 100:
Apply an aqueous solution adjusted to 50 (parts by weight) on top of it,
A film was formed by baking and drying at 110°C to a weight of 0.9 g/m 2 . Example 7 A Zn-Ni alloy plated steel sheet (Ni: 11.5%) with a plating weight of 20 g/m 2 was chromate-treated so that the Cr coating weight was 75 mg/m 2 , and then treated with ethylene-acrylic acid copolymer. Colloidal silica (SiO 2 ) with a particle size of 5 to 7 mμ and CrO 3 colloid (sol) with a particle size of 3 to 4 mμ are added to the combined resin Ethylene-acrylic acid copolymer resin: SiO 2 :
Apply an aqueous solution adjusted to have a ratio of Cr 2 O 3 = 100:20:10 (parts by weight) on top of it,
The film was baked and dried at 120°C to form a film having a weight of 1.2 g/m 2 . Example 8 A Zn-Ni- Co alloy coated steel sheet (Ni: 11.2%, Co: 0.5%) with a plating weight of 20 g/m2 was chromate treated so that the Cr coating weight was 70 mg/ m2 . , polyacrylic acid ester copolymer resin has a particle size of 7~
9 mμ Fe 2 O 3 colloid (sol) 5-7 mμ
ZrO 2 colloid (sol), 3-4 mμ Sb 2 O 5 colloid (sol) Polyacrylic ester copolymer resin:
An aqueous solution adjusted so that Fe 2 O 3 : ZrO 2 : Sb 2 O 5 = 100:10:10:20 (parts by weight) is applied on top.
The film was baked and dried at 130°C to form a film having a weight of 1.1 g/m 2 . Comparative Example 1 A Zn-Ni alloy plated (Ni: 11.5%) steel plate with a coating weight of 20 g/m 2 was chemically treated using a commercially available chemical conversion bath. Comparative Example 2 A Zn-Ni alloy plated steel plate (Ni: 11.5%) with a plating weight of 20 g/m 2 was chromate-treated to have a Cr coating weight of 70 mg/m 2 . Comparative Example 3 A Zn-Ni alloy plated steel sheet (Ni: 11.5%) with a plating weight of 20 g/m 2 was chromate treated so that the Cr adhesion was 70 mg/m 2 , and then melamine resin was applied on top of it. Coat and bake at 120℃ - dry to 1.2g/m 2
A film was formed so that Comparative Example 4 A Zn-Ni alloy plated steel sheet (Ni: 11.5%) with a plating weight of 20 g/m 2 was chromate-treated so that the Cr adhesion was 70 mg/m 2 , and the particle size of the melamine resin was 15 mμ of Al 2 O 3 sol was coated with an aqueous solution adjusted so that the ratio of melamine resin: Al 2 O 3 sol = 100:30 (parts by weight) was applied.
A film was formed by baking and drying at 120°C to give a weight of 1.1 g/m 2 . Comparative Example 5 A Zn-Ni alloy plated steel sheet (Ni: 11.5%) with a plating weight of 20 g/m 2 was treated with chromate so that the Cr coating weight was 70 mg/m 2 , and a polymethacrylate ester was coated with grains. Colloidal silica with a diameter of 17 mμ was coated with an aqueous solution prepared in a ratio of polymethacrylate: colloidal silica = 100:20 (parts by weight), and
The film was baked and dried at 80°C to form a film having a weight of 1.1 g/m 2 . Table 1 shows the results of various tests conducted on the surface-treated steel sheets obtained in Examples 1, 2, 3, 4, 5, 6, 7, and 8 and Comparative Examples 1, 2, 3, 4, and 5. show. Various test conditions are as follows. (a) Image clarity after ED coating The evaluation method is the same as in Figure 1. (b) Cratering resistance after ED coating The evaluation method is the same as in Figure 2.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

従来、有機複合鋼板にED塗装をする際、形成
されたED塗膜は下地の有機皮膜の影響を大きく
受け、一般にED塗膜の鮮映性、耐クレータリン
グ性は通常の化成処理した冷延鋼板やめつき鋼板
と比べかなり劣る。 これに対し、本発明により得られれた表面処理
鋼板は形成された皮膜にED塗装した場合のED塗
膜の鮮映性、耐クレータリング性を大幅に向上さ
せることができるものである。 したがつて、さらにその上に塗装すると鮮映性
の大幅に優れた塗膜を得ることができ、自動車に
おける外板など著しく優れた外観を呈し、本発明
を適用することによりその経済的効果も極めて大
なるものである。
Conventionally, when applying ED coating to organic composite steel sheets, the formed ED coating is greatly affected by the underlying organic film, and generally the sharpness and cratering resistance of the ED coating are lower than those of ordinary chemically treated cold-rolled steel sheets. It is considerably inferior to steel plates and matted steel plates. In contrast, the surface-treated steel sheet obtained according to the present invention can significantly improve the image clarity and cratering resistance of the ED coating when the formed coating is applied with ED coating. Therefore, when coated on top of this, a coating film with significantly superior image clarity can be obtained, giving an extremely superior appearance to the outer panels of automobiles, and by applying the present invention, economical effects can also be achieved. It is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はクロム付着量が75mg/m2とな
るようにクロメート処理したZn−Ni系合金めつ
き鋼板の上に、 アクリル系樹脂:コロイダルシリカ=100:20
(固形分重量比) となるように固定し、コロイダルシリカ(SiO2
の粒度をかえた水性液を塗布し、120℃に加熱し、
乾燥後の皮膜が1μとなるように塗布し、ED後の
鮮映性と耐クレータリング性がどのように変化す
るかを示した図、第3図、第4図は同じくクロム
付着量が75mg/m2となるようにクロメート処理し
たZn−Ni系合金めつき鋼板の上に、コロイダル
シリカの4〜6mμの粒度のものを用い、アクリ
ル系樹脂とコロイダルシリカ(SiO2)の配合割
合をかえた浴を塗布し120℃に加熱し、焼付−乾
燥後の皮膜が1.0μとなるように塗布し、ED後の
鮮映性と耐クレータリング性がどのように変化す
るかを示した図、第5図、第6図は同じくクロム
付着量が75mg/m2となるようにクロメート処理し
たZn−Ni系合金めつき鋼板の上に、コロイダル
シリカの4〜6mμの粒度のものを用い、 アクリル系樹脂:コロイダルシリカ=100:20
(固形分重量比) となるように配合した水性液を乾燥後の膜厚が
1.0μとなるように塗布し、焼付−乾燥の温度をか
えた場合のED後の鮮映性と耐クレータリング性
がどのように変化するかを示した図、第7図は
Zn−Ni系合金めつき鋼板の上にクロム付着量を
かえ、アクリル系樹脂100部(重量部)に4〜6
mμのコロイダルシリカ30部(重量部)混合した
水性液を1.0μ(固形分)塗布し、120℃で焼付−乾
燥した場合の皮膜の密着性がどのように変化する
かを示した図である。
Figures 1 and 2 show acrylic resin: colloidal silica = 100:20 on a Zn-Ni alloy plated steel sheet that has been chromate treated to give a chromium adhesion amount of 75mg/ m2 .
(solid content weight ratio), and colloidal silica (SiO 2 )
Apply an aqueous solution with different particle sizes, heat to 120℃,
Figures 3 and 4 show how the sharpness and cratering resistance change after ED when the film is applied to a film thickness of 1μ after drying, and the amount of chromium deposited is 75mg. Colloidal silica with a particle size of 4 to 6 was used on a Zn-Ni alloy-plated steel sheet that had been chromate-treated so that the ratio of acrylic resin and colloidal silica (SiO 2 ) was varied. This figure shows how the sharpness and cratering resistance change after ED when the coating is coated with a hot bath and heated to 120℃ so that the film thickness after baking and drying is 1.0μ. Figures 5 and 6 show that colloidal silica with a grain size of 4 to 6 mμ is used on a Zn-Ni alloy plated steel sheet that has been chromate-treated so that the chromium adhesion amount is 75 mg/ m2 . System resin: Colloidal silica = 100:20
(solid content weight ratio) After drying the aqueous liquid, the film thickness is
Figure 7 shows how the sharpness and cratering resistance after ED change when the coating is applied to a thickness of 1.0μ and the baking-drying temperature is changed.
Varying the amount of chromium deposited on the Zn-Ni alloy plated steel plate, add 100 parts (by weight) of acrylic resin to 4 to 6
This is a diagram showing how the adhesion of the film changes when 1.0μ (solid content) of an aqueous solution mixed with 30 parts (parts by weight) of colloidal silica of mμ is applied and baked and dried at 120°C. .

Claims (1)

【特許請求の範囲】[Claims] 1 10〜150mg/m2のクロム付着量を有するクロ
メート被覆めつき鋼板に水系樹脂分散体の固形分
100重量部に対し、1mμ〜12mμの粒径を有す
るSiO2、Cr2O3、Fe2O3、Fe3O4、MgO、ZrO2
SnO2、Al2O3、Sb2O5のコロイド(ゾル)の1種
または2種以上を固形分で5〜100重量部含有さ
せた水性液を塗布し、100〜150℃で焼付−乾燥す
ることを特徴とする鮮映性及び耐クレータリング
性に優れた表面処理鋼板の製造法。
1. The solid content of the water-based resin dispersion is applied to a chromate-coated plated steel sheet with a chromium adhesion amount of 10 to 150 mg/ m2 .
SiO 2 , Cr 2 O 3 , Fe 2 O 3 , Fe 3 O 4 , MgO, ZrO 2 , having a particle size of 1 mμ to 12 mμ per 100 parts by weight;
Apply an aqueous solution containing 5 to 100 parts by weight of one or more colloids (sols) of SnO 2 , Al 2 O 3 , and Sb 2 O 5 as a solid content, and bake and dry at 100 to 150°C. A method for manufacturing a surface-treated steel sheet with excellent image clarity and cratering resistance.
JP28508987A 1987-11-11 1987-11-11 Preparation of surface treated steel plate excellent in sharpness and cratering resistance Granted JPH01127084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28508987A JPH01127084A (en) 1987-11-11 1987-11-11 Preparation of surface treated steel plate excellent in sharpness and cratering resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28508987A JPH01127084A (en) 1987-11-11 1987-11-11 Preparation of surface treated steel plate excellent in sharpness and cratering resistance

Publications (2)

Publication Number Publication Date
JPH01127084A JPH01127084A (en) 1989-05-19
JPH0511515B2 true JPH0511515B2 (en) 1993-02-15

Family

ID=17686992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28508987A Granted JPH01127084A (en) 1987-11-11 1987-11-11 Preparation of surface treated steel plate excellent in sharpness and cratering resistance

Country Status (1)

Country Link
JP (1) JPH01127084A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5897948A (en) * 1995-06-15 1999-04-27 Nippon Steel Corporation Surface-treated steel sheet with resin-based chemical treatment coating and process for its production
JP4516723B2 (en) * 2003-03-06 2010-08-04 マツダ株式会社 Cationic electrodeposition coating composition excellent in corrosion resistance of galvanized steel sheet and coated article

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392846A (en) * 1977-01-25 1978-08-15 Kansai Paint Co Ltd Surface treatment of metal
JPS541335A (en) * 1977-06-07 1979-01-08 Kansai Paint Co Ltd Surface treatment composition of metal
JPS58224174A (en) * 1982-06-23 1983-12-26 Nippon Kokan Kk <Nkk> Production of coated steel plate having high resistance to corrosion and rust
JPS5935683A (en) * 1982-08-20 1984-02-27 Nippon Steel Corp Composition for treating metallic surface
JPS5996291A (en) * 1982-11-24 1984-06-02 Kawasaki Steel Corp One-side zinc-plated steel sheet
JPS6050179A (en) * 1983-08-31 1985-03-19 Nippon Kokan Kk <Nkk> Production of steel plate coated with highly corrosion- resistant film on one side
JPS6050180A (en) * 1983-08-31 1985-03-19 Nippon Kokan Kk <Nkk> Corrosion-preventive steel sheet for cationic electrodeposition painting
JPS60149786A (en) * 1984-01-17 1985-08-07 Kawasaki Steel Corp Surface treatment of zinc alloy electroplated steel sheet having superior corrosion resistance
JPS62170340A (en) * 1986-01-24 1987-07-27 川崎製鉄株式会社 Organic coating steel plate having excellent baking hardenability
JPS63123472A (en) * 1986-11-12 1988-05-27 Nippon Steel Corp Surface treatment of steel plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473083A (en) * 1987-09-12 1989-03-17 Nippon Steel Corp Surface treatment of steel sheet

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5392846A (en) * 1977-01-25 1978-08-15 Kansai Paint Co Ltd Surface treatment of metal
JPS541335A (en) * 1977-06-07 1979-01-08 Kansai Paint Co Ltd Surface treatment composition of metal
JPS58224174A (en) * 1982-06-23 1983-12-26 Nippon Kokan Kk <Nkk> Production of coated steel plate having high resistance to corrosion and rust
JPS5935683A (en) * 1982-08-20 1984-02-27 Nippon Steel Corp Composition for treating metallic surface
JPS5996291A (en) * 1982-11-24 1984-06-02 Kawasaki Steel Corp One-side zinc-plated steel sheet
JPS6050179A (en) * 1983-08-31 1985-03-19 Nippon Kokan Kk <Nkk> Production of steel plate coated with highly corrosion- resistant film on one side
JPS6050180A (en) * 1983-08-31 1985-03-19 Nippon Kokan Kk <Nkk> Corrosion-preventive steel sheet for cationic electrodeposition painting
JPS60149786A (en) * 1984-01-17 1985-08-07 Kawasaki Steel Corp Surface treatment of zinc alloy electroplated steel sheet having superior corrosion resistance
JPS62170340A (en) * 1986-01-24 1987-07-27 川崎製鉄株式会社 Organic coating steel plate having excellent baking hardenability
JPS63123472A (en) * 1986-11-12 1988-05-27 Nippon Steel Corp Surface treatment of steel plate

Also Published As

Publication number Publication date
JPH01127084A (en) 1989-05-19

Similar Documents

Publication Publication Date Title
GB2091591A (en) Surface treated steel sheets for paint coating
KR910002492B1 (en) Highly corrosion-resistant multi-layer coated steel sheets
US4537837A (en) Corrosion resistant metal composite with metallic undercoat and chromium topcoat
US4500610A (en) Corrosion resistant substrate with metallic undercoat and chromium topcoat
US4497876A (en) Corrosion resistant metal composite with zinc and chromium coating
JP4873974B2 (en) Pre-coated metal plate and manufacturing method thereof
JP3293870B2 (en) Highly durable coated steel sheet having both scratch resistance and workability, and method for producing the same
JP2690629B2 (en) Organic composite coated steel sheet with excellent corrosion resistance and spot weldability
JPS63123472A (en) Surface treatment of steel plate
JPH0511515B2 (en)
CN113151745A (en) Acid and alkali corrosion resistant aluminum-zinc plated pre-coated plate and manufacturing method thereof
JP2005105290A (en) Resin-coated metal plate having excellent conductivity and being easy to work
JPH0366392B2 (en)
JP3090207B1 (en) Painted steel sheet with excellent corrosion resistance and low environmental load
JPH0234672B2 (en)
JP4477847B2 (en) Clear painted metal plate
JPH07246679A (en) Resin coated aluminum-containing metal composite material excellent in conductivity and production thereof
JP2002053808A (en) Rust-proofing coating and coated steel matter with high corrosion resistance
JP3503194B2 (en) Organic composite coated steel sheet
JPH11310749A (en) Water-based surface treating agent, surface-treated steel sheet, and its production
JP3260904B2 (en) Organic composite coated steel sheet with excellent cationic electrodeposition paintability and corrosion resistance
JP2002234108A (en) Stainless steel like coated metal panel
JP2753666B2 (en) Resin-coated steel sheet with excellent electrodeposition coating properties
JPH0456798A (en) Production of chromated galvanized steel sheet excellent in resistance to corrosion and fingerprinting, coating suitability and surface color tone
JPS59146844A (en) High-temperature resisting weldable coated steel plate

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees