JPH05113910A - Predicting device for software reliability - Google Patents

Predicting device for software reliability

Info

Publication number
JPH05113910A
JPH05113910A JP3275298A JP27529891A JPH05113910A JP H05113910 A JPH05113910 A JP H05113910A JP 3275298 A JP3275298 A JP 3275298A JP 27529891 A JP27529891 A JP 27529891A JP H05113910 A JPH05113910 A JP H05113910A
Authority
JP
Japan
Prior art keywords
test
result
software
data
file
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3275298A
Other languages
Japanese (ja)
Other versions
JP2745899B2 (en
Inventor
Yoshiyasu Sasage
佳保 捧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3275298A priority Critical patent/JP2745899B2/en
Publication of JPH05113910A publication Critical patent/JPH05113910A/en
Application granted granted Critical
Publication of JP2745899B2 publication Critical patent/JP2745899B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Debugging And Monitoring (AREA)
  • Stored Programmes (AREA)

Abstract

PURPOSE:To make clear the difference between the present test result and the target value and to acquire the test items that should be changed by providing a regression analysis predicting means which acquires the target output, a quality result file, and an item pointing means. CONSTITUTION:A parameter regression calculating means 12 calculates again the regressive parameter of a regression analysis predicting means 11. A test progress result file 13 integrates and stores the test results of software. A prediction control target control file 14 stores the predicted value and the target value and stores the correlation between the test result of another similar software and the characteristic of a relevant program into an another-software quality result file 15. Then the present result value is inputted and compared with the correlation data stored in the file 15. Then the present position is outputted and the test item decided by the combination of positions is pointed by a test item pointing means 16. Thus it is possible to make clear the difference between the result value and the target value that could not be made clear by the conventional estimated curve.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はソフトウェアのテストの
信頼性を検証し、結果を出力する装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for verifying the reliability of software tests and outputting the results.

【0002】[0002]

【従来の技術】ソフトウェアの完成後の品質を保証する
ために、出荷試験を行うのが一般的である。この段階で
のソフトウェアの最終段階での品質予測、いわゆる信頼
性予測に関しては、従来から各種の手法が提案されてい
る。このうち、それまでの実績デ−タを基に、統計的手
法としてゴンペルツとかロジスティック等が知られてい
て、達成予測値(レベル)、達成期間、予測曲線などを
得ている。図5は、こうした統計的手法を用いて実績試
験結果デ−タから予測曲線を得る装置の構成概念図と、
それによって得られる予測曲線の例を示した図である。
図5(a)は概念図で、図において、1は信頼性予測装
置、2は入力である試験実績デ−タ、3は出力結果の予
測デ−タである。図5(b)は出力例を示す図であり、
実績デ−タに基づく予測曲線が得られる。ここで使用さ
れるゴンペルツ計算式とその曲線について説明する。ゴ
ンペルツ曲線は式(1)の関係式で与えられる曲線であ
る。
2. Description of the Related Art In order to guarantee the quality of software after completion, a shipping test is generally performed. Various techniques have been conventionally proposed for quality prediction at the final stage of software at this stage, so-called reliability prediction. Of these, Gompertz, logistic, etc. are known as statistical methods based on the actual data until then, and the achievement predicted value (level), the achievement period, the prediction curve, etc. are obtained. FIG. 5 is a structural conceptual diagram of an apparatus for obtaining a prediction curve from actual test result data using such a statistical method,
It is the figure which showed the example of the prediction curve obtained by it.
FIG. 5A is a conceptual diagram. In the figure, 1 is a reliability prediction device, 2 is test result data which is an input, and 3 is prediction data of an output result. FIG. 5B is a diagram showing an output example,
A prediction curve based on actual data is obtained. The Gompertz formula and its curve used here will be described. The Gompertz curve is a curve given by the relational expression (1).

【0003】[0003]

【数1】 [Equation 1]

【0004】ここでYは発生件数、Kは収束件数、Xは
時間(期間)であり、A、Bは実績から推定されるパラ
メ−タである。このままではA、B等は求まらないの
で、対数をとる。 lnY=lnK+BX *lnA (2) さらにXで微分して次式(3)を得る。 (1/Y)*dy/dx=(lnA)*BX *(lnB) (3) 対数をとり、次式(4)を得る。 ln(1/Y*dy/dx)=ln(lnA*lnB)+X*lnB (4) ここで改めて左辺をYA 、右辺の係数をa、bとおく
と、次式(5)が得られる。 YA =a+bX (5) ここでdy/dxを、実績を入力する時間(期間)間隔
とその間の発生件数として、回帰分析用デ−タを入力
し、回帰分析してa、bを求める。これからA、Bが求
まり、時間の項、件数の推定総和からKが求まる。最後
にYを大きくしてXM である収束日が求まる。図5
(b)はこうして信頼性予測装置1で得られた曲線と実
績値を出力表示したものである。
Here, Y is the number of occurrences, K is the number of convergences, X is time (period), and A and B are parameters estimated from actual results. Since A, B, etc. cannot be obtained as they are, logarithms are taken. lnY = lnK + B X * lnA (2) Further differentiate by X to obtain the following expression (3). (1 / Y) * dy / dx = (lnA) * B X * (lnB) (3) The logarithm is taken to obtain the following expression (4). ln (1 / Y * dy / dx) = ln (lnA * lnB) + X * lnB (4) Here, if the left side is Y A and the right side coefficients are a and b, the following equation (5) is obtained. .. The Y A = a + bX (5 ) where dy / dx, as incidents of time (period) the interval between them to enter actual, regression analysis de - Enter the data, and regression analysis a, seek b. From this, A and B are obtained, and K is obtained from the time term and the estimated total number of cases. Finally, Y is increased to obtain the convergence date, which is X M. Figure 5
(B) is an output display of the curve and the actual value thus obtained by the reliability predicting apparatus 1.

【0005】[0005]

【発明が解決しようとする課題】従来の信頼性予測装置
は以上のように構成されているので、試験段階での品質
管理をする上で、次のような種々の課題があった。 (a)実績デ−タを基にした予測値であり、必ずしも所
定の期間内にできることを予測していない。 (b)所定の期間で所定の目標品質レベルを達成しよう
とした時、現在の実績値との差が判りにくい。さらに
は、 (c)現在の実績値と目標値との差を埋めるために、ど
の領域の試験項目をどう変更すればよいかが判らない。
Since the conventional reliability predicting apparatus is constructed as described above, there are the following various problems in quality control at the test stage. (A) It is a predicted value based on actual data, and it is not always predicted that it can be done within a predetermined period. (B) When trying to achieve a predetermined target quality level in a predetermined period, it is difficult to understand the difference from the current actual value. Further, (c) it is not possible to know which region of the test item should be changed and how to change the current actual value and the target value.

【0006】この発明は上記のような課題を解決するた
めになされたもので、目標値を入力して現在の実績値と
の差を明確に得られるようにすることを目的とする。ま
た他の試験結果と比較して、どの試験項目を変更すれば
よいかを得るソフトウェア信頼性予測装置を得ることを
目的とする。
The present invention has been made to solve the above problems, and an object thereof is to input a target value so that a difference from the current actual value can be clearly obtained. Another object of the present invention is to obtain a software reliability predicting apparatus that obtains which test item should be changed in comparison with other test results.

【0007】[0007]

【課題を解決するための手段】この発明に係わるソフト
ウェア信頼性予測装置は、実績デ−タを納めた試験進捗
実績ファイルと、実績デ−タまたは設定目標デ−タに基
づき回帰分析して結果を出力する回帰分析予測手段と、
設定目標デ−タにより回帰分析予測手段に使うパラメ−
タを再計算するパラメ−タ計算手段とを設けた。さらに
請求項2の発明では、他ソフトウェアの結果情報と試験
項目との相関を記憶する品質実績ファイルと、これら相
関デ−タとの比較をし、テスト項目の変更内容を出力す
る項目指示手段を設けた。
A software reliability predicting apparatus according to the present invention performs a regression analysis based on a test progress record file containing record data and record data or set target data. Regression analysis prediction means for outputting
Parameters used for regression analysis prediction means according to set target data
A parameter calculating means for recalculating the parameter is provided. Further, in the invention of claim 2, there is provided an item designating means for comparing the quality record file storing the correlation between the result information of the other software and the test item with the correlation data and outputting the change content of the test item. Provided.

【0008】[0008]

【作用】この発明におけるソフトウェア信頼性予測装置
は、パラメ−タ計算手段により回帰分析予測手段の設定
パラメ−タを変更して予測結果を出力する。また第2の
発明では、他のデ−タから相関をみて変更テスト項目を
指示する。
In the software reliability predicting apparatus of the present invention, the parameter calculating means changes the setting parameter of the regression analysis predicting means and outputs the prediction result. Further, in the second invention, the change test item is instructed by observing the correlation from other data.

【0009】[0009]

【実施例】【Example】

実施例1.図1は本発明の一実施例を示す構成ブロック
図である。図において、4は入力装置、5は表示出力装
置である。11は回帰分析予測手段、12は目標条件に
より回帰分析予測手段の回帰式のパラメ−タを再計算す
るパラメ−タ計算手段である。13はソフトウェアのテ
スト結果を積算記憶している試験進捗実績ファイル、1
4は予測値や、目標値を記憶している予測管理目標管理
ファイルである。15は類似の他ソフトウェアの試験結
果とそのプログラムの性質との相関関係を記憶している
他ソフトウェア品質実績ファイル、16は現在の実績値
を入力とし、他ソフトウェア品質実績ファイル15の相
関デ−タとを比較して現状位置を出力し、位置の組み合
わせで決まるテスト項目を指示する項目指示手段であ
る。図2は図1の構成の装置の動作フロ−を示す概略フ
ロ−図である。ちなみに左半分の点線で囲った部分が従
来の信頼性予測装置の概略フロ−図である。図3は図1
の構成の装置による出力である予測曲線の例を示す図で
ある。図において、点線表示の予測曲線が図5(b)の
予測曲線に対応する。
Example 1. FIG. 1 is a configuration block diagram showing an embodiment of the present invention. In the figure, 4 is an input device and 5 is a display output device. Reference numeral 11 is a regression analysis prediction means, and 12 is a parameter calculation means for recalculating the parameters of the regression equation of the regression analysis prediction means according to the target conditions. 13 is a test progress record file in which software test results are cumulatively stored, 1
Reference numeral 4 denotes a predictive management target management file that stores predicted values and target values. Reference numeral 15 is another software quality record file that stores the correlation between the test results of similar other software and the property of the program, and 16 is the input of the current record value, and the correlation data of the other software quality record file 15 is input. It is an item designating means that compares the current position and the current position and outputs a current position to designate a test item determined by a combination of the positions. FIG. 2 is a schematic flow chart showing an operation flow of the apparatus having the configuration of FIG. By the way, the part surrounded by the dotted line in the left half is a schematic flowchart of the conventional reliability predicting apparatus. FIG. 3 shows FIG.
It is a figure which shows the example of the prediction curve which is an output by the apparatus of the structure of. In the figure, the prediction curve indicated by the dotted line corresponds to the prediction curve in FIG.

【0010】図4は図2のフロ−のステップS7の動作
の内容を説明する図である。次に動作を説明する。現在
までの実績デ−タを入力し、予測曲線を得るところまで
は従来と同じなので説明を省略する。得られた結果では
目標とする収束日に遅れ、しかもその遅れがどの程度重
大であるかが判りにくい。目標期間と目標レベルを入力
し、パラメ−タを再計算させる。従来例で詳細を述べた
ゴンペルツの式で、新たな収束目標日X’と収束予測件
数K’を固定定数として回帰分析用デ−タを求める(ス
テップS1)。ステップS2で回帰分析をする。
FIG. 4 is a diagram for explaining the contents of the operation of step S7 of the flow of FIG. Next, the operation will be described. Since the actual data up to the present is input and the prediction curve is obtained, the description is omitted because it is the same as the conventional method. From the obtained results, it is difficult to understand how late the target convergence date is, and how serious the delay is. Input the target period and target level and recalculate the parameters. Using the Gompertz equation described in detail in the conventional example, the data for regression analysis is obtained using the new convergence target date X'and the predicted number of convergences K'as fixed constants (step S1). In step S2, regression analysis is performed.

【0011】ステップS3で分析結果から新しいパラメ
−タA’、B’が求まる。これは詳しくは次のように行
う。ゴンペルツの式から得られる(2)式を変形して次
式を得る。 lnK’−lnY’=−BX■lnA’ (6) この対数をとり、次式を得る。 ln(ln(K’/Y’))=X’lnB’+ln(−lnA’) (7) 条件からK’、X’が定められており、これから新しく
求まったパラメ−タで、回帰分析予測手段11はステッ
プS6で目標予測曲線を出力する。こうして図3の目標
曲線が得られる。従来の予測曲線ではできなかった現時
点での実績値と目標値との定量的な差異が明確に得られ
ることが判る。
In step S3, new parameters A'and B'are obtained from the analysis result. This is done in detail as follows. Equation (2) obtained from the Gompertz equation is modified to obtain the following equation. lnK'-lnY '=-B X 1 lnA' (6) Taking this logarithm, the following equation is obtained. ln (ln (K '/ Y')) = X'lnB '+ ln (-lnA') (7) K'and X'are determined from the conditions, and regression analysis prediction is made with the newly obtained parameters. The means 11 outputs the target prediction curve in step S6. In this way, the target curve of FIG. 3 is obtained. It can be seen that a quantitative difference between the actual value and the target value at the present time, which cannot be obtained by the conventional prediction curve, can be clearly obtained.

【0012】実施例2.上記の実施例ではパラメ−タを
再計算し、目標曲線を出力したが、これらのデ−タから
具体的な試験内容の変更を指示する例を説明する。図4
で他の類似のソフトウェアの試験結果とテストプログラ
ムとの相関デ−タを説明している。即ち、過去の幾つか
のデ−タで、例えば図4(a)は誤り率と試験密度との
関係を示しており、区分を例えば4つに分け、a1、a
2、a3、a4の区分に当てはまるプログラムは過去ど
んな性質であったかが記録されている。試験項目数が不
足であったとか、試験内容が不適切であったとか、試験
範囲が狭い等である。同様に、図4(b)では誤り密度
とヒット率の相関デ−タと区分b1、b2、b3、b4
のプログラムの性質が記録されている。また、ここでは
述べないが、誤り密度とヒット率の相関等、他の相関デ
−タと各区分毎のプログラムの性質を利用できる。
Example 2. In the above embodiment, the parameters were recalculated and the target curve was output. However, an example will be described in which a specific test content change is instructed from these data. Figure 4
Describes the correlation data between the test results of other similar software and the test program. That is, in some past data, for example, FIG. 4A shows the relationship between the error rate and the test density, and the classification is divided into, for example, four, a1 and a.
The nature of the program that fits into the categories of 2, a3, and a4 has been recorded in the past. The number of test items was insufficient, the content of the test was inappropriate, or the test range was narrow. Similarly, in FIG. 4B, the correlation data of the error density and the hit rate and the categories b1, b2, b3, b4.
The nature of the program is recorded. Although not described here, other correlation data such as the correlation between the error density and the hit rate and the characteristics of the program for each section can be used.

【0013】また図4(c)のように、プログラム数と
誤り率との関係のデ−タとその区分c1、c2、c3の
プログラムの性質を利用してもよい。さて、図2のフロ
−図で、ステップS7では図1の項目指示手段16は他
ソフトウェア品質実績ファイル15をみて、図4で例を
示したプログラムの性質を組み合わせて選択し、変更・
追加試験内容を出力する。
Further, as shown in FIG. 4 (c), the data of the relationship between the number of programs and the error rate and the characteristics of the programs of the sections c1, c2 and c3 may be used. Now, in the flow chart of FIG. 2, in step S7, the item designating means 16 of FIG. 1 looks at the other software quality result file 15, selects and combines and changes the characteristics of the program shown in FIG.
Output additional test details.

【0014】[0014]

【発明の効果】以上のようにこの発明によれば、ソフト
ウェア信頼性予測装置において、パラメ−タ計算手段
と、その計算結果により目標出力を得る回帰分析予測手
段を設けたので、現在のテスト実績と、目標値との差異
を明確にできる効果がある。また請求項2の発明によれ
ば、さらに他ソフトウェアの品質実績ファイルと、項目
指示手段を設けたので、さらに、変更が必要な試験項目
を得られる効果がある。
As described above, according to the present invention, in the software reliability predicting apparatus, the parameter calculating means and the regression analysis predicting means for obtaining the target output based on the calculation result are provided. And, there is an effect that the difference from the target value can be made clear. Further, according to the invention of claim 2, since the quality record file of other software and the item designating means are further provided, there is an effect that a test item which needs to be changed can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成ブロック図であ
る。
FIG. 1 is a configuration block diagram showing an embodiment of the present invention.

【図2】図1の装置の動作フロ−図である。FIG. 2 is an operation flow chart of the apparatus of FIG.

【図3】図1の装置による予測曲線の出力の例を示す図
である。
FIG. 3 is a diagram showing an example of output of a prediction curve by the device of FIG.

【図4】過去の類似の試験結果のデ−タの相関とプログ
ラムの性質の区分を示す図である。
FIG. 4 is a diagram showing a correlation between data of similar test results in the past and a classification of program properties.

【図5】従来の統計手法による予測曲線を得る信頼性予
測装置とその出力例を示す図である。
FIG. 5 is a diagram showing a reliability prediction device for obtaining a prediction curve by a conventional statistical method and an output example thereof.

【符号の説明】[Explanation of symbols]

11 回帰分析予測手段 12 パラメ−タ計算手段 13 試験進捗実績ファイル 14 予測管理目標管理ファイル 15 他ソフトウェア実績ファイル 16 項目指示手段 11 Regression Analysis Prediction Means 12 Parameter Calculation Means 13 Test Progress Actual File 14 Prediction Management Target Management File 15 Other Software Actual File 16 Item Instruction Means

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年3月4日[Submission date] March 4, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】実施例2.上記の実施例ではパラメ−タを
再計算し、目標曲線を出力したが、これらのデ−タから
具体的な試験内容の変更を指示する例を説明する。図4
で他の類似のソフトウェアの試験結果とテストプログラ
ムとの相関デ−タを説明している。即ち、過去の幾つか
のデ−タで、例えば図4(a)は誤り密度と試験密度と
の関係を示しており、区分を例えば4つに分け、a1、
a2、a3、a4の区分に当てはまるプログラムは過去
どんな性質であったかが記録されている。試験項目数が
不足であったとか、試験内容が不適切であったとか、試
験範囲が狭い等である。同様に、図4(b)では誤り密
度とヒット率の相関デ−タと区分b1、b2、b3、b
4のプログラムの性質が記録されている。また、ここで
は述べないが、試験密度とヒット率の相関等、他の相関
デ−タと各区分毎のプログラムの性質を利用できる。
Example 2. In the above embodiment, the parameters were recalculated and the target curve was output. However, an example will be described in which a specific test content change is instructed from these data. Figure 4
Describes the correlation data between the test results of other similar software and the test program. That is, in some past data, for example, FIG. 4A shows the relationship between the error density and the test density, and the classification is divided into, for example, four, a1,
The nature of the programs that have been applied to the categories of a2, a3, and a4 has been recorded. The number of test items was insufficient, the content of the test was inappropriate, or the test range was narrow. Similarly, in FIG. 4B, the correlation data of the error density and the hit rate and the categories b1, b2, b3, b
The properties of the four programs are recorded. Although not described here, other correlation data such as the correlation between the test density and the hit rate and the characteristics of the program for each section can be used.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】また図4(c)のように、個々のプログラ
と誤り率との関係のデ−タとその区分c1、c2、c
3のプログラムの性質を利用してもよい。さて、図2の
フロ−図で、ステップS7では図1の項目指示手段16
は他ソフトウェア品質実績ファイル15をみて、図4で
例を示したプログラムの性質を組み合わせて選択し、変
更・追加試験内容を出力する。
[0013] As in FIG. 4 (c), the individual programs
Data of the relationship between the frame and the error rate and their divisions c1, c2, c
The property of the program of 3 may be used. Now, in the flowchart of FIG. 2, in step S7, the item designating means 16 of FIG.
Sees the other software quality record file 15 and selects the combination of the properties of the program shown in FIG. 4 to output the contents of the change / additional test.

【手続補正3】[Procedure 3]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図4[Name of item to be corrected] Fig. 4

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図4】 [Figure 4]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ソフトウェアのテスト時の障害発生期
日、件数を記憶する試験進捗実績ファイルと、 設定パラメ−タの回帰式に基づき上記試験進捗実績ファ
イル中のデ−タにより回帰分析して、また設定値を切り
換えて後述のパラメ−タ計算手段の出力によっても、結
果を予測出力する回帰分析予測手段と、 目標条件を再入力すると、上記試験進捗実績ファイルの
デ−タより上記回帰式のパラメ−タを再計算するパラメ
−タ計算手段とを備えたソフトウェア信頼性予測装置。
1. A test progress result file that stores the date of failure occurrence and the number of cases at the time of software testing, and a regression analysis by the data in the test progress result file based on the regression equation of the setting parameter, and Even if the set value is switched and the output of the parameter calculation means described later is output, the regression analysis prediction means for predicting and outputting the result and the target condition are input again. A software reliability predicting device equipped with parameter calculation means for recalculating the data.
【請求項2】 ソフトウェアのテスト時の障害発生期
日、件数を記憶する試験進捗実績ファイルと、 設定パラメ−タの回帰式に基づき上記試験進捗実績ファ
イル中のデ−タにより回帰分析して、また設定値を切り
換えて後述のパラメ−タ計算手段の出力によっても、結
果を予測出力する回帰分析予測手段と、 目標条件を再入力すると、上記試験進捗実績ファイルの
デ−タより上記回帰式のパラメ−タを再計算するパラメ
−タ計算手段と、 他のソフトウェアテスト結果情報と試験項目との相関を
記憶する品質実績ファイルと、 上記品質実績ファイルの相関デ−タと上記パラメ−タ計
算手段の出力とより変更テスト内容を出力する項目指示
手段を備えたソフトウェア信頼性予測装置。
2. A test progress record file that stores the date of failure occurrence and the number of cases at the time of software testing, and a regression analysis by the data in the test progress record file based on the regression equation of the setting parameter, and Even if the set value is switched and the output of the parameter calculation means described later is output, the regression analysis prediction means for predicting and outputting the result and the target condition are input again. -Parameter calculation means for recalculating data, quality record file for storing the correlation between other software test result information and test item, correlation data of the quality record file and parameter calculation means A software reliability predicting apparatus having an item designating means for outputting an output and a change test content.
JP3275298A 1991-10-23 1991-10-23 Software reliability prediction device Expired - Lifetime JP2745899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3275298A JP2745899B2 (en) 1991-10-23 1991-10-23 Software reliability prediction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3275298A JP2745899B2 (en) 1991-10-23 1991-10-23 Software reliability prediction device

Publications (2)

Publication Number Publication Date
JPH05113910A true JPH05113910A (en) 1993-05-07
JP2745899B2 JP2745899B2 (en) 1998-04-28

Family

ID=17553485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3275298A Expired - Lifetime JP2745899B2 (en) 1991-10-23 1991-10-23 Software reliability prediction device

Country Status (1)

Country Link
JP (1) JP2745899B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130800A (en) * 2007-11-27 2009-06-11 Mitsubishi Electric Corp Network performance prediction system, network performance prediction method and program
US7873944B2 (en) 2006-02-22 2011-01-18 International Business Machines Corporation System and method for maintaining and testing a software application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63259738A (en) * 1987-04-17 1988-10-26 Hitachi Ltd Software quality evaluation system
JPH01228029A (en) * 1988-03-08 1989-09-12 Toshiba Corp Bugging control supporting device for computer software
JPH01305445A (en) * 1988-06-03 1989-12-08 Nec Corp System for deciding completion of software test

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63259738A (en) * 1987-04-17 1988-10-26 Hitachi Ltd Software quality evaluation system
JPH01228029A (en) * 1988-03-08 1989-09-12 Toshiba Corp Bugging control supporting device for computer software
JPH01305445A (en) * 1988-06-03 1989-12-08 Nec Corp System for deciding completion of software test

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7873944B2 (en) 2006-02-22 2011-01-18 International Business Machines Corporation System and method for maintaining and testing a software application
JP2009130800A (en) * 2007-11-27 2009-06-11 Mitsubishi Electric Corp Network performance prediction system, network performance prediction method and program

Also Published As

Publication number Publication date
JP2745899B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
US7020642B2 (en) System and method for pre-processing input data to a support vector machine
EP0680639B1 (en) Predictive networks and method with learned preprocessing parameters
US6243696B1 (en) Automated method for building a model
US20090292662A1 (en) Time-series data analyzing apparatus, time-series data analyzing method, and computer program product
JP3108660B2 (en) X-ray analysis method and apparatus
CN115308562A (en) Chip testing method and related equipment
CN109712716B (en) Disease influence factor determination method, system and computer equipment
JP2023052477A (en) Data processing method and data processing program
CN117275644B (en) Detection result mutual recognition method, system and storage medium based on deep learning
CN115131655B (en) Training method and device of target detection model and target detection method
CN108898504B (en) Intelligent training and improving method for mobile survey damage assessment system
JPH0515112B2 (en)
JPH05113910A (en) Predicting device for software reliability
JP3638310B2 (en) Case reasoning support device
CN111327630B (en) Attack detection and correction method based on holohedral symmetry polycythemic theory
CN112380273A (en) Data estimation method and device
CN116823063A (en) Effectiveness test method, device and equipment of data set quality evaluation model
JPH05216651A (en) Program quality evaluation system
CN114820618B (en) Defect detection model training method, device, equipment and storage medium
US20230366927A1 (en) Dice testing method
JPH09233700A (en) Method of evaluating reliability on estimation of day maximum demand power
Thyregod Bayesian single sampling plans for life-testing with truncation of the number of failures
JPH0793284A (en) Device and method for predicting characteristic value
CN116320611B (en) Audio and video synthesis method and system
Tong et al. Moving quantile regression

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 14