JPH0511379B2 - - Google Patents

Info

Publication number
JPH0511379B2
JPH0511379B2 JP3557085A JP3557085A JPH0511379B2 JP H0511379 B2 JPH0511379 B2 JP H0511379B2 JP 3557085 A JP3557085 A JP 3557085A JP 3557085 A JP3557085 A JP 3557085A JP H0511379 B2 JPH0511379 B2 JP H0511379B2
Authority
JP
Japan
Prior art keywords
contact
circuit
series
parallel
electromagnetic relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3557085A
Other languages
Japanese (ja)
Other versions
JPS61195533A (en
Inventor
Tatsuo Ogawa
Hideya Kondo
Yoichi Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP3557085A priority Critical patent/JPS61195533A/en
Publication of JPS61195533A publication Critical patent/JPS61195533A/en
Publication of JPH0511379B2 publication Critical patent/JPH0511379B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Relay Circuits (AREA)

Description

【発明の詳細な説明】 [技術分野] 本発明は、いわゆるリモコン操作回路に用いら
れる電磁継電器の接点保護回路に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a contact protection circuit for an electromagnetic relay used in a so-called remote control operation circuit.

[背景技術] 交流電源と電流方向識別手段を備えた有極電磁
継電器と、これを動作させるためのスイツチング
回路(操作スイツチ)で構成される2線式リモコ
ン操作回路において、1台のスイツチング回路で
複数個の有極電磁継電器を駆動させる場合、その
電磁継電器を並列接続することによつてその機能
を構成するが、従来の電磁継電器でその回路を構
成すると、それぞれの有極電磁石がもつ電流切替
接点の動作速度(応答速度)のバラツキによつて
ループ回路が構成され、応答速度が最も遅い電磁
継電器の切替接点に大きなアーク放電現象が生じ
て接点の損傷を著しく促進させ、且つ過大のノイ
ズを発生し、他の半導体機器及び半導体で構成し
たスイツチング回路を有する操作スイツチの誤点
弧を発生させる原因ともなるものである。以下、
この点について詳述する。
[Background Art] In a two-wire remote control operation circuit consisting of a polarized electromagnetic relay equipped with an AC power supply and current direction identification means, and a switching circuit (operation switch) for operating the relay, one switching circuit can operate the relay. When driving multiple polarized electromagnetic relays, the function is configured by connecting the electromagnetic relays in parallel. However, when the circuit is configured with conventional electromagnetic relays, the current switching of each polarized electromagnet is difficult. A loop circuit is formed due to variations in the operating speed (response speed) of the contacts, and a large arc discharge phenomenon occurs at the switching contact of the electromagnetic relay, which has the slowest response speed, significantly accelerating damage to the contact and causing excessive noise. This can also cause erroneous firing of other semiconductor devices and operating switches having switching circuits made of semiconductors. below,
This point will be explained in detail.

第2図は従来のリモコン操作回路を示すもので
あり、まず、このリモコン操作回路について説明
する。有極電磁継電器1は、1巻線型ラツチング
リレーの励磁コイルLと、このコイルLが励磁さ
れることにより切替わる2つの切替接点S1,S2
と、同じく励磁コイルLの励磁により負荷を開閉
する主接点Sと、励磁コイルLに流れる電流の方
向を決める2つのダイオードD1,D2等から構成
されている。励磁コイルLはそれに流れる電流の
方向が切替わることによつて励磁されて接点S,
S1,S2を開閉駆動するものである。2つの接点
S1,S2は一方が閉成されていると他方は開成して
いるように構成され、この両接点S1,S2はいわゆ
るMBB接点構成としてある。つまり、接点S1
開離は接点S2が閉路した後に行なわれるものであ
る。接点S1はダイオードD1と直列に接続され、
また、接点S2はダイオードD2と直列に接続され、
両ダイオードD1,D2は互いに方向となるように
接続構成している。そして、両直列回路は並列に
接続され、この並列回路と上記励磁コイルLとを
直列に接続している。尚、接点S1が閉成している
ときに主接点Sはオフとなるようにしている。ま
た、操作スイツチ2は、操作用のプツシユ式の押
釦スイツチSW、抵抗R1〜R3、サイリスタSCR1
SCR2、コンデンサC、表示用の発光ダイオード
LED1,LED2等で構成されている。この操作スイ
ツチ2と電磁継電器1とは直列に接続されて、交
流電源ACに並列に接続している。
FIG. 2 shows a conventional remote control operation circuit, and first, this remote control operation circuit will be explained. The polarized electromagnetic relay 1 includes an excitation coil L of a single-winding latching relay, and two switching contacts S 1 and S 2 that are switched when the coil L is excited.
, a main contact S that opens and closes the load by the excitation of the excitation coil L, and two diodes D 1 and D 2 that determine the direction of the current flowing through the excitation coil L. The exciting coil L is excited by switching the direction of the current flowing through it, and contacts S,
It drives S 1 and S 2 to open and close. two contacts
S 1 and S 2 are configured such that one is closed and the other is open, and both contacts S 1 and S 2 have a so-called MBB contact configuration. In other words, the opening and closing of the contact S1 is performed after the contact S2 is closed. Contact S 1 is connected in series with diode D 1 ,
Also, contact S 2 is connected in series with diode D 2 ,
Both diodes D 1 and D 2 are connected in such a way that they are in the same direction as each other. Both series circuits are connected in parallel, and this parallel circuit and the excitation coil L are connected in series. Note that the main contact S is turned off when the contact S1 is closed. Further, the operation switch 2 includes a push-button switch SW for operation, resistors R 1 to R 3 , a thyristor SCR 1 ,
SCR 2 , capacitor C, light emitting diode for display
It consists of LED 1 , LED 2, etc. The operation switch 2 and the electromagnetic relay 1 are connected in series and connected in parallel to an alternating current power source AC.

次に、上記のように構成されているリモコン操
作回路の動作について説明する。第2図の状態に
おいて、電磁継電器1の接点S1が閉成しているこ
とで、ダイオードD1により交流電源ACの正の半
波のときに、交流電源ACからダイオードD1、接
点S1、励磁コイルL、押釦スイツチSWの端子c
−a間、抵抗R1、コンデンサCを介して電流が
流れ、この電流によつてコンデンサCを充電す
る。また、抵抗R2、発光ダイオードLED1を介し
てサイリスタSCR1のゲートに電流を供給し、発
光ダイオードLED1を点灯させて負荷がオフして
いることを表示するとともに、サイリスタSCR1
を点弧可能な状態にしている。ただし、抵抗R1
及びR2は高抵抗のため、電磁継電器1の励磁コ
イルLを駆動させるだけの励磁電流には至つてい
ない。ここで、操作スイツチ2の押釦スイツチ
SWを押すと、その接点により端子c−b間が閉
路となり、点弧可能な状態にあるサイリスタ
SCR1によつて瞬時に電磁継電器1の励磁コイル
Lに矢印の方向の半波電流が流れ、その電流に
よつて電磁継電器1は瞬時に反転動作し、主接点
Sを閉路(オン)させて負荷をオン駆動する。ま
た、同時に接点S1が開離し、接点S2が閉成し、矢
印方向の電流を遮断する。一方、操作スイツチ
2側のサイリスタSCR1はコンデンサCの放電完
了に伴い、ゲート電流がカツトされ、押釦スイツ
チSWを押し続けていてもサイリスタSCR1は一
定時間後オフになる。また、サイリスタSCR2
矢印方向の電流に対して極性が逆方向となつて
おり、電流は流れず、その状態で安定する。
Next, the operation of the remote control operation circuit configured as described above will be explained. In the state shown in Fig. 2, since the contact S 1 of the electromagnetic relay 1 is closed, the diode D 1 connects the diode D 1 and the contact S 1 from the AC power supply AC during the positive half wave of the AC power supply AC. , excitation coil L, push button switch SW terminal c
-a, a current flows through the resistor R 1 and the capacitor C, and the capacitor C is charged by this current. In addition, current is supplied to the gate of thyristor SCR 1 through resistor R 2 and light emitting diode LED 1 to light up light emitting diode LED 1 to indicate that the load is off, and also to turn on thyristor SCR 1.
is in a state where it can be ignited. However, the resistance R 1
and R 2 have a high resistance, so the excitation current is not sufficient to drive the excitation coil L of the electromagnetic relay 1. Here, press the push button switch of operation switch 2.
When SW is pressed, the contact closes the circuit between terminals c and b, and the thyristor is ready to fire.
A half-wave current in the direction of the arrow instantly flows through the excitation coil L of the electromagnetic relay 1 due to the SCR 1 , and the current causes the electromagnetic relay 1 to perform an instantaneous reverse operation, closing the main contact S (turning on). Drive the load on. At the same time, contact S 1 opens and closes, and contact S 2 closes, cutting off the current in the direction of the arrow. On the other hand, the gate current of the thyristor SCR 1 on the operation switch 2 side is cut off as the discharge of the capacitor C is completed, and even if the push button switch SW is kept pressed, the thyristor SCR 1 is turned off after a certain period of time. Further, the polarity of the thyristor SCR 2 is opposite to the current direction of the arrow, so that no current flows and the thyristor SCR 2 is stabilized in that state.

その後、操作スイツチ2の押釦スイツチSWを
解除することにより、交流電源ACの負の半波に
よつてコンデンサCは、抵抗R1、押釦スイツチ
SWの端子a−c間、励磁コイルL、接点S2、ダ
イオードD2を介して流れる電流により上記とは
逆極性に充電される。そして、そのコンデンサC
の充電に伴い、トランジスタTr1のエミツタから
ベースに電流が流れ、トランジスタTr1をオンさ
せ、そのコレクタ電流によつてサイリスタSCR2
のゲート電流を供給し、点弧可能な状態で待機し
ている。また、トランジスタTr1ベース電流によ
り発光ダイオードLED2が点灯し、負荷がオンし
ていることを表示している。ここで、操作スイツ
チ2の押釦スイツチSWをオンする(端子c−a
間が開離し、端子c−b間が閉路となる)と、コ
ンデンサCの放電完了まで、トランジスタTr1
オンを保持し、且つサイリスタSCR2も点弧状態
で保持される。
Thereafter, by releasing the push button switch SW of the operation switch 2, the negative half wave of the alternating current power supply AC causes the capacitor C to change to the resistance R 1 and push button switch SW.
The current flowing between the terminals a and c of the SW, the exciting coil L, the contact S 2 , and the diode D 2 charges the battery to a polarity opposite to that described above. And that capacitor C
As the transistor Tr 1 is charged, a current flows from the emitter to the base of the transistor Tr 1, turning on the transistor Tr 1 , and the collector current turns on the thyristor SCR 2.
The gate current is supplied and the ignition is ready. Furthermore, the light emitting diode LED 2 lights up due to the base current of the transistor Tr 1 , indicating that the load is on. Now, turn on the push button switch SW of the operation switch 2 (terminal c-a
The transistor Tr 1 is kept on and the thyristor SCR 2 is also kept in the firing state until the capacitor C is completely discharged.

その間に交流電源ACの負の半波でサイリスタ
SCR2のアノードを介して矢印の方向に励磁コ
イルLに電流を流し、その励磁電流によつて瞬時
に電磁継電器1の反転動作を行なわせて主接点S
を開離させ、且つ接点S2が開成され、接点S1が閉
路し、矢印方向の電流を遮断させることで、電
磁継電器1の動作が完了する。その後、操作スイ
ツチ2の押釦スイツチSWを解除し、端子c−a
間が閉路になると、初期状態に戻り、交流電源
ACの正の半波でコンデンサCを矢印の方向の
電流で充電させ、操作スイツチ2の押釦スイツチ
SWの操作によつて上述の動作を繰り返して電磁
継電器1のオン、オフ動作を行なわしめるもので
ある。
In the meantime, the thyristor is connected to the negative half-wave of the alternating current power supply AC.
A current is applied to the excitation coil L in the direction of the arrow through the anode of the SCR 2 , and the excitation current instantaneously reverses the electromagnetic relay 1 to connect the main contact S.
The operation of the electromagnetic relay 1 is completed by opening and opening the contacts S2 , and closing the contacts S1 to interrupt the current in the direction of the arrow. After that, release the push button switch SW of operation switch 2, and
When the circuit becomes closed, it returns to the initial state and the AC power
Charge the capacitor C with the current in the direction of the arrow using the positive half wave of AC, and press the push button switch of operation switch 2.
By operating the SW, the above-described operations are repeated to turn the electromagnetic relay 1 on and off.

しかし、ここで複数個の電磁継電器1を並列に
接続し、同時駆動する場合には次のような問題が
発生する。第3図は2つの電磁継電器1,1′を
並列に接続した場合を示し、ここで、両電磁継電
器1,1′はオフ状態で、接点S1及びS1′が閉路
し、交流電源ACの正の半波によつて矢印の方
向に電流を流し、操作スイツチ2内のコンデンサ
Cを充電せしめ、押釦スイツチSWの操作によつ
て電磁継電器1,1′がオン動作することは前述
したが、同時に複数個の電磁継電器を並列に動作
させる場合、接点S1,S1′の動作が完全に同時性
をもつことはなく、接点S1またはS1′のどちらか
が先に切替わることになる。
However, when a plurality of electromagnetic relays 1 are connected in parallel and driven simultaneously, the following problem occurs. Figure 3 shows the case where two electromagnetic relays 1, 1' are connected in parallel, where both electromagnetic relays 1, 1' are in the OFF state, contacts S 1 and S 1 ' are closed, and the AC power supply AC As mentioned above, the positive half-wave of the current flows in the direction of the arrow to charge the capacitor C in the operating switch 2, and the electromagnetic relays 1 and 1' are turned on by operating the push button switch SW. , when operating multiple electromagnetic relays in parallel at the same time, the operations of contacts S 1 and S 1 ′ will not be completely simultaneous, and either contact S 1 or S 1 ′ will switch first. become.

今、第3図において、電磁継電器1′の接点
S1′が先に動作したと仮定した場合、接点S2′が閉
路になつたのちに、電磁継電器1の接点S1が開離
することになり、第4図に示すようなループ回路
(矢印)が構成されることになる。この第4図
において、電磁継電器1の接点S1が開離すると同
時にコイルLに励磁されたエネルギーが逆起電圧
となつて接点S1間に印加されることになる。従つ
て、接点S1の開離に伴つて過大のアーク放電が発
生し、接点S1を著しく損傷させ、且つそのアーク
エネルギーがノイズとして半導体式操作スイツチ
2の誤トリガを誘発して、電磁継電器1の誤動作
につながつたり、他の半導体使用機器等の誤動作
を誘発する原因ともなるものであつた。
Now, in Fig. 3, the contacts of electromagnetic relay 1'
Assuming that S 1 ' operates first, the contact S 1 of the electromagnetic relay 1 will open after the contact S 2 ' closes, creating a loop circuit as shown in Figure 4 ( arrow) will be constructed. In FIG. 4, when the contact S1 of the electromagnetic relay 1 opens, the energy excited in the coil L becomes a back electromotive voltage and is applied between the contacts S1 . Therefore, as the contact S1 opens, an excessive arc discharge occurs, significantly damaging the contact S1 , and the arc energy generates noise that induces false triggering of the semiconductor operation switch 2, causing the electromagnetic relay to fail. This leads to the malfunction of the semiconductor device 1 and also causes the malfunction of other devices using semiconductors.

[発明の効果] 本発明は上述の点に鑑みて提供したものであつ
て、1台の操作スイツチで複数個の電磁継電器を
同時に並列駆動できることを目的とした電磁継電
器の接点保護回路を提供するものである。
[Effects of the Invention] The present invention has been provided in view of the above-mentioned points, and provides a contact protection circuit for electromagnetic relays whose purpose is to simultaneously drive a plurality of electromagnetic relays in parallel with one operation switch. It is something.

[発明の開示] 以下、本発明の実施例を図面により説明する。
第1図は本発明の具体回路図を示すものであり、
全体の構成及び動作は従来例と同様であり、異な
るところについて説明する。すなわち、電磁継電
器1,1′のダイオードD1,D1′と接点S1,S1′と
の接続点と、ダイオードD2,D2′と接点S2,S2′と
の接続点との間に、コンデンサC0,C0′と抵抗
R0,R0′との直列回路を接続し、さらにコンデン
サC0,C0′に放電用抵抗Rc,Rc′を並列に接続し
たものである。
[Disclosure of the Invention] Examples of the present invention will be described below with reference to the drawings.
FIG. 1 shows a specific circuit diagram of the present invention,
The overall configuration and operation are the same as those of the conventional example, and only the differences will be explained. That is, the connection point between the diodes D 1 , D 1 ′ and the contacts S 1 , S 1 ′ of the electromagnetic relays 1, 1′, and the connection point between the diodes D 2 , D 2 ′ and the contacts S 2 , S 2 ′. between capacitors C 0 , C 0 ′ and resistors
A series circuit with R 0 and R 0 ' is connected, and discharge resistors Rc and Rc' are connected in parallel to the capacitors C 0 and C 0 '.

次に、第1図において操作スイツチ2の操作に
よつて電磁継電器1′が他方の電磁継電器1より
速く動作した場合を例にとつて説明する。すなわ
ち、電磁継電器1′の接点S1′が開離し、接点
S2′が閉路し、その状態で矢印で示す閉ループ
が構成される。また接点S1,S1′及び接点S2
S2′は上述のようにMBB接点構成としているた
め、接点S1,S1′の開離は接点S2,S2′が閉路した
後に行なわれる。そして、閉ループによる電流
(コンデンサC0、抵抗R0、接点S2を介して流れる
電流を含む)は第1図の矢印の如く流れてコイ
ルLにエネルギーが蓄積され、接点S1の開離時に
おいてはコイルLの逆起電力はコンデンサC0
抵抗R0、接点S2を介して吸収され、接点S1の開
離時に逆起電力が接点S1間にかかることもなく、
そのため、アーク放電も微弱となり、何等支障な
く複数個の電磁継電器1を1台の操作スイツチ2
によつて同時に並列駆動できるものである。ま
た、コンデンサC0に吸収された電荷は抵抗Rcに
て放電される。尚、上述の説明は動作時の一例を
あげたものであり、電磁継電器1,1′の動作速
度が反転しても、多数個の電磁継電器を並列に接
続した場合もオフからオン動作、オンからオフ動
作にかかわらず、その効果はいずれの場合も同等
である。
Next, an example will be described in which the electromagnetic relay 1' operates faster than the other electromagnetic relay 1 by operating the operation switch 2 in FIG. 1. In other words, the contact S 1 ' of the electromagnetic relay 1' opens, and the contact
S 2 ' is closed, and in this state a closed loop is formed as shown by the arrow. In addition, contacts S 1 , S 1 ′ and contacts S 2 ,
Since S 2 ' has the MBB contact configuration as described above, the contacts S 1 and S 1 ' are opened after the contacts S 2 and S 2 ' are closed. Then, the current due to the closed loop (including the current flowing through the capacitor C 0 , the resistor R 0 , and the contact S 2 ) flows as shown by the arrow in Figure 1, and energy is accumulated in the coil L, and when the contact S 1 is opened, In the case, the back electromotive force of the coil L is the capacitor C 0 ,
It is absorbed through the resistance R 0 and the contact S 2 , and no back electromotive force is applied between the contacts S 1 when the contact S 1 is opened.
Therefore, the arc discharge becomes weak, and multiple electromagnetic relays 1 can be connected to one operation switch 2 without any problem.
can be driven simultaneously in parallel. Furthermore, the charge absorbed by the capacitor C 0 is discharged by the resistor Rc. The above explanation is an example of the operation, and even if the operating speeds of the electromagnetic relays 1 and 1' are reversed, even if many electromagnetic relays are connected in parallel, the operation will change from off to on. The effect is the same in both cases, regardless of whether it is turned off or not.

[発明の効果] 本発明の上述のように、電流の流れる方向を異
ならしめることにより励磁される1巻線型ラツチ
ングリレーの励磁コイルと、この励磁コイルの励
磁により駆動されて開閉し互いに反対側に切替わ
る2つの切替接点と、この両切替接点と夫々直列
に逆方向に接続され上記励磁コイルに流れる電流
の方向を決めるダイオードと、励磁コイルの励磁
により負荷を開閉する主接点とを設け、一方のダ
イオード及び切替接点を直列に接続した第1の直
列回路と、他方のダイオード及び切替接点を直列
に接続した第2の直列回路とを並列に接続して並
列回路を形成し、この並列回路と上記励磁コイル
とを直列に接続した電磁継電器を形成し、交流電
源からの電流を複数個並列に接続された上記電磁
継電器のどちらかのダイオードと切替接点との直
列回路を介して励磁コイルに流す操作スイツチを
形成し、この操作スイツチの操作により主接点を
介して負荷をオンオフ制御するようにしたリモコ
ン操作回路であつて、上記電磁継電器の第1の直
列回路のダイオードと切替接点との接続点と、第
2の直列回路のダイオードと切替接点との接続点
との間にコンデンサと抵抗との直列回路を接続
し、上記コンデンサに放電抵抗を並列に接続した
ものであるから、複数個の電磁継電器を並列に接
続して同時駆動する場合に、接点切替時における
各電磁継電器の動作速度(応答速度)のバラツキ
により各電磁継電器間で接点を介しての閉ループ
が形成されて、接点開離時における励磁コイルの
逆起電力が接点間に印加されても、この逆起電力
は抵抗とコンデンサとによつて吸収されるもので
あり、従つて、接点開離間に発生するアークが非
常に微弱となり接点の高寿命化を図ることができ
る効果を奏し、また、アーク放電がなく、発生ノ
イズがきわめて少なく、他の半導体機器への影響
をほとんどなくすことができる効果を奏するもの
である。さらに、電磁継電器1台につき、単に抵
抗とコンデンサとで構成できるため、安価な供給
することができ、従つて、1台の操作スイツチで
複数個の電磁継電器を同時に並列駆動できる効果
を奏するものである。
[Effects of the Invention] As described above, the excitation coil of the single-winding latching relay is excited by changing the direction of current flow, and the excitation coil is driven by the excitation of the excitation coil to open and close on opposite sides. two switching contacts, diodes connected in series with these switching contacts in opposite directions to determine the direction of the current flowing through the excitation coil, and a main contact that opens and closes the load by excitation of the excitation coil, A first series circuit in which one diode and a switching contact are connected in series, and a second series circuit in which the other diode and a switching contact are connected in series are connected in parallel to form a parallel circuit, and this parallel circuit and the above-mentioned excitation coil are connected in series to form an electromagnetic relay, and current from an AC power source is passed through a series circuit of one of the diodes of the above-mentioned electromagnetic relay connected in parallel and a switching contact to the excitation coil. A remote control operation circuit forming an operation switch for controlling the current flow and controlling a load on and off via a main contact by operation of the operation switch, the connection between the diode of the first series circuit of the electromagnetic relay and the switching contact. A series circuit of a capacitor and a resistor is connected between the point and the connection point of the diode of the second series circuit and the switching contact, and a discharge resistor is connected in parallel to the above capacitor. When electromagnetic relays are connected in parallel and driven simultaneously, a closed loop is formed between each electromagnetic relay through the contacts due to variations in the operating speed (response speed) of each electromagnetic relay when switching contacts, and the contacts open. Even if the back electromotive force of the excitation coil is applied between the contacts, this back electromotive force is absorbed by the resistor and capacitor, and therefore the arc generated between the contacts is very weak. This has the effect of prolonging the life of the contact, and also has the effect of eliminating arc discharge, generating extremely little noise, and virtually eliminating any influence on other semiconductor devices. Furthermore, since each electromagnetic relay can be constructed simply from a resistor and a capacitor, it can be supplied at low cost, and it is therefore possible to simultaneously drive multiple electromagnetic relays in parallel with one operation switch. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の具体回路図、第2図
は従来例の基本となるリモコン操作回路の具体回
路図、第3図は同上の電磁継電器を複数個並列接
続した場合の具体回路図、第4図は同上の説明図
である。 1は電磁継電器、2は操作スイツチ、C0はコ
ンデンサ、R0,Rcは抵抗、Lは励磁コイル、S
は主接点、D1,D1′,D2,D2′はダイオード、S1
S1′,S2,S2′は接点を示す。
Fig. 1 is a specific circuit diagram of an embodiment of the present invention, Fig. 2 is a specific circuit diagram of a basic remote control operation circuit of a conventional example, and Fig. 3 is a specific circuit diagram when a plurality of the same electromagnetic relays are connected in parallel. FIG. 4 is an explanatory diagram of the same as above. 1 is an electromagnetic relay, 2 is an operating switch, C 0 is a capacitor, R 0 and Rc are resistors, L is an exciting coil, S
is the main contact, D 1 , D 1 ′, D 2 , D 2 ′ are diodes, S 1 ,
S 1 ′, S 2 , and S 2 ′ indicate contact points.

Claims (1)

【特許請求の範囲】[Claims] 1 電流の流れる方向を異ならしめることにより
励磁される1巻線型ラツチングリレーの励磁コイ
ルと、この励磁コイルの励磁により駆動されて開
閉し互いに反対側に切替わる2つの切替接点と、
この両切替接点と夫々直列に逆方向に接続され上
記励磁コイルに流れる電流の方向を決めるダイオ
ードと、励磁コイルの励磁により負荷を開閉する
主接点とを設け、一方のダイオード及び切替接点
を直列に接続した第1の直列回路と、他方のダイ
オード及び切替接点を直列に接続した第2の直列
回路とを並列に接続して並列回路を形成し、この
並列回路と上記励磁コイルとを直列に接続した電
磁継電器を形成し、交流電源からの電流を複数個
並列に接続された上記電磁継電器のどちらかのダ
イオードと切替接点との直列回路を介して励磁コ
イルに流す操作スイツチを形成し、この操作スイ
ツチの操作により主接点を介して負荷をオンオフ
制御するようにしたリモコン操作回路であつて、
上記電磁継電器の第1の直列回路のダイオードと
切替接点との接続点と、第2の直列回路のダイオ
ードと切替接点との接続点との間にコンデンサと
抵抗との直列回路を接続し、上記コンデンサに放
電抵抗を並列に接続して成ることを特徴とする電
磁継電器の接点保護回路。
1. An excitation coil of a single-winding latching relay that is excited by changing the direction of current flow, and two switching contacts that are driven by the excitation of the excitation coil to open and close and switch to opposite sides,
A diode is connected in series with both switching contacts in opposite directions to determine the direction of the current flowing through the excitation coil, and a main contact is provided that opens and closes the load by excitation of the excitation coil, and one diode and the switching contact are connected in series. The connected first series circuit and a second series circuit in which the other diode and the switching contact are connected in series are connected in parallel to form a parallel circuit, and this parallel circuit and the excitation coil are connected in series. form an electromagnetic relay, and form an operation switch that allows current from an AC power supply to flow through a series circuit of one of the diodes of the electromagnetic relay connected in parallel and a switching contact to an exciting coil, and this operation A remote control operation circuit that turns on and off a load via a main contact by operating a switch,
A series circuit of a capacitor and a resistor is connected between the connection point between the diode and the switching contact in the first series circuit of the electromagnetic relay and the connection point between the diode and the switching contact in the second series circuit, and A contact protection circuit for an electromagnetic relay characterized by connecting a discharge resistor in parallel to a capacitor.
JP3557085A 1985-02-25 1985-02-25 Contact protection circuit for electromagnetic relay Granted JPS61195533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3557085A JPS61195533A (en) 1985-02-25 1985-02-25 Contact protection circuit for electromagnetic relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3557085A JPS61195533A (en) 1985-02-25 1985-02-25 Contact protection circuit for electromagnetic relay

Publications (2)

Publication Number Publication Date
JPS61195533A JPS61195533A (en) 1986-08-29
JPH0511379B2 true JPH0511379B2 (en) 1993-02-15

Family

ID=12445413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3557085A Granted JPS61195533A (en) 1985-02-25 1985-02-25 Contact protection circuit for electromagnetic relay

Country Status (1)

Country Link
JP (1) JPS61195533A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4618394B2 (en) * 2000-03-31 2011-01-26 アイシン精機株式会社 Motor control device

Also Published As

Publication number Publication date
JPS61195533A (en) 1986-08-29

Similar Documents

Publication Publication Date Title
US5790354A (en) Hybrid power switching device
US4193385A (en) Engine stopping device
JPS59181004A (en) Driving circuit for coil of electromagnet device
JPH0511379B2 (en)
JPS61195532A (en) Contact protection circuit for electromagnetic relay
JPS61195534A (en) Contact protection circuit for electromagnetic relay
US4425535A (en) Erroneous start preventing device for battery-powered vehicle
JP2641344B2 (en) Remote control relay operation circuit
JPS6040738B2 (en) switching circuit
SU1344717A1 (en) Device or controlling cargo-carrying electric magnet
JP2696168B2 (en) AC 2-wire non-contact switch
JPS6321740Y2 (en)
SU758284A1 (en) Switching device
JP3198592B2 (en) Remote control relay controller
JP2560886B2 (en) Remote control device drive circuit
SU741341A1 (en) Output device for quick-action relay protection
SU578023A3 (en) Device for arc-safe switching of low-power ac circuits
JPH0629804A (en) Zero cross switching relay
JPH087461Y2 (en) Load control circuit
JP2592094B2 (en) Remote control type control unit
SU1198718A1 (en) Control device for induction motor
SU811391A1 (en) Device for protecting three-phase electric motor from incomplete phase mode
JP3196299B2 (en) Remote control relay controller
SU1141470A1 (en) Device for energizing electromagnetic actuating mechanism
KR100367818B1 (en) Load Switching System

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term