JPH0511266B2 - - Google Patents

Info

Publication number
JPH0511266B2
JPH0511266B2 JP59201827A JP20182784A JPH0511266B2 JP H0511266 B2 JPH0511266 B2 JP H0511266B2 JP 59201827 A JP59201827 A JP 59201827A JP 20182784 A JP20182784 A JP 20182784A JP H0511266 B2 JPH0511266 B2 JP H0511266B2
Authority
JP
Japan
Prior art keywords
fluorescence
amino acid
nanoseconds
dimethylamino
fluorescein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59201827A
Other languages
Japanese (ja)
Other versions
JPS61233371A (en
Inventor
Ritsu Sasagawa
Tadanori Sugimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP20182784A priority Critical patent/JPS61233371A/en
Publication of JPS61233371A publication Critical patent/JPS61233371A/en
Publication of JPH0511266B2 publication Critical patent/JPH0511266B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Description

【発明の詳細な説明】 本発明はたん白質、ペプチドの4−(N,N−
ジメチルアミノ)−1−ナフチルイソチオシアネ
ート(DNTC)あるいはフルオレセインイソチ
オシアネート(FITC)を用いたエドマン分解反
応で生じるアミノ酸のイソチオシアネート誘導
体、すなわちチオヒダントインの高感度測定によ
るアミノ酸配列分析法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to protein, peptide 4-(N,N-
This invention relates to an amino acid sequence analysis method using highly sensitive measurement of thiohydantoin, an isothiocyanate derivative of an amino acid produced in the Edman degradation reaction using dimethylamino)-1-naphthyl isothiocyanate (DNTC) or fluorescein isothiocyanate (FITC).

アミノ酸配列分析法において現在、最も多く使
用されている方法はフエニルイソチオシアネート
(PITC)をエドマン分解試薬として用い、生成
したフエニルチオヒダントインアミノ酸(PTH
アミノ酸)を紫外吸収検出器を検出器とする高速
液体クロマトグラフイーで分離、同定するもので
ある。しかし、この方法ではPTHアミノ酸の吸
収極大における分子吸光係数が小さいため(ε=
約16000:269nm)感度が充分でなく、ピコモル
以下の微量たん白質、ペプチドのアミノ酸配列分
析への適用は困難である。最近では感度の向上の
ために、発螢光エドマン試薬としてDNTCや
FITCが使用されるようになつた。DNTCや
FITCをもちいたエドマン分解反応で生じるアミ
ノ酸のイソチオシアネート誘導体は発螢光物質で
あり、PTHアミノ酸に比較すると高感度に測定
できる。
Currently, the most commonly used method for amino acid sequence analysis uses phenyl isothiocyanate (PITC) as an Edman degradation reagent to generate phenylthiohydantoin amino acids (PTH
Amino acids) are separated and identified using high-performance liquid chromatography using an ultraviolet absorption detector. However, in this method, the molecular extinction coefficient at the maximum absorption of PTH amino acids is small (ε=
(approximately 16,000:269 nm) is not sensitive enough, making it difficult to apply to amino acid sequence analysis of trace amounts of proteins and peptides of picomole or less. Recently, in order to improve sensitivity, DNTC and other fluorescent Edman reagents have been used.
FITC has come into use. DNTC and
The isothiocyanate derivatives of amino acids produced by the Edman degradation reaction using FITC are fluorescent substances and can be measured with high sensitivity compared to PTH amino acids.

しかし、近年遺伝子工学や生物化学ではさらに
高感度のアミノ酸配列分析法が要求されている。
However, in recent years, even more sensitive amino acid sequence analysis methods have been required in genetic engineering and biochemistry.

従つて、本発明者らは高感度のアミノ酸配列分
析法を鋭意検討した結果、高速液体クロマトグラ
フイーの溶離液の螢光測定においては、一般の螢
光検出法におけるバツクグラウンド要因であるレ
イリ散乱、ラマン散乱、セル壁での散乱、溶媒の
不純物によるバツクグラウンド螢光が光パルス照
射後ナノ秒以下で減衰してしまうのに対し、
DNTCあるいはFITCを用いたエドマン分解反応
で生じるアミノ酸のイソチオシアネート誘導体の
螢光は、光パルス照射後、2〜10ナノ秒まで延び
ていることを見出した。
Therefore, as a result of intensive research into highly sensitive amino acid sequence analysis methods, the present inventors found that in the fluorescence measurement of eluents in high-performance liquid chromatography, Rayleigh scattering, which is a background factor in general fluorescence detection methods, has been found. , background fluorescence due to Raman scattering, cell wall scattering, and solvent impurities attenuates within nanoseconds after irradiation with a light pulse.
We found that the fluorescence of isothiocyanate derivatives of amino acids produced in the Edman degradation reaction using DNTC or FITC extends for 2 to 10 nanoseconds after irradiation with a light pulse.

従つて、フローセルに光パルス照射後、2〜10
ナノ秒以上遅れて螢光を測定すればバツクグラウ
ンド螢光を除去できることになり、高感度のアミ
ノ酸配列の分析が可能となるものである。
Therefore, after irradiating the flow cell with a light pulse, 2 to 10
By measuring fluorescence with a delay of nanoseconds or more, background fluorescence can be removed, making it possible to analyze amino acid sequences with high sensitivity.

さらに、この場合FITCあるいはDNTCを用い
たエドマン分解反応で生じるアミノ酸のイソチオ
シアネート誘導体の螢光信号はある程度減少する
が、螢光検出器の励起光源(光パルス)として光
強度の大きいパルスレーザーを使用すると、一般
に、螢光検出法においては単に光源強度を大きく
し、発生する螢光強度を強くしても感度は余り向
上しないことが多いにもかかわらず充分に強い螢
光信号が得られ、かつバツクグラウンド要因も除
去することができることを見い出した。
Furthermore, in this case, although the fluorescence signal of the isothiocyanate derivative of the amino acid produced by the Edman degradation reaction using FITC or DNTC is reduced to some extent, a pulsed laser with high light intensity is used as the excitation light source (light pulse) of the fluorescence detector. In general, in the fluorescence detection method, a sufficiently strong fluorescence signal can be obtained even though the sensitivity often does not improve much even if the intensity of the generated fluorescence is increased simply by increasing the light source intensity. It has been found that background factors can also be removed.

すなわち、本発明はDNTCあるいはFITCを用
いてエドマン分解反応で生じるアミノ酸のイソチ
オシアネート誘導体をパルスレーザを光源とする
時間分解螢光法で測定する高感度のアミノ酸配列
分析法を提供することにある。
That is, the present invention provides a highly sensitive amino acid sequence analysis method that uses DNTC or FITC to measure isothiocyanate derivatives of amino acids produced in the Edman degradation reaction by time-resolved fluorescence spectroscopy using a pulsed laser as a light source.

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明に用いる装置は主要部が送液ポンプ、分
カウム、フローセルから構成されている液体クロ
マトグラフ部および主腰部が光源、フローセル、
分光部、電気回路部、演算回路から構成されてい
る。
The main part of the apparatus used in the present invention is a liquid chromatograph part consisting of a liquid pump, a liquid pump, a flow cell, and a main part consisting of a light source, a flow cell, and a liquid chromatograph part.
It consists of a spectroscopic section, an electric circuit section, and an arithmetic circuit.

第1図に基ずいて、試料(DNTCあるいは
FITCを用いたエドマン分解反応で生じるアミノ
酸の(イソチオシアネート誘導体)を分析する液
体クロマトグラフイの実施例を説明する。
Based on Figure 1, the sample (DNTC or
An example of liquid chromatography for analyzing amino acids (isothiocyanate derivatives) produced by Edman degradation reaction using FITC will be described.

第1図において、試料は2つの溶離液貯槽1,
2に貯えられた溶離液はグラジエント溶離装置3
により、次第にその組成比を、変えながら溶離液
送液ポンプ5により分離カラム6に導入される溶
離液中に試料導入装置4により注入され、分離カ
ラム6にて各成分に分離された後さらにフローセ
ル7に導かれ検出される。
In Figure 1, the sample is placed in two eluent reservoirs 1, 1,
The eluent stored in 2 is transferred to gradient elution device 3.
The sample introduction device 4 injects the eluent into the separation column 6 by the eluent feed pump 5 while gradually changing its composition ratio, and the sample is separated into each component by the separation column 6, and then further transferred to the flow cell. 7 and detected.

一般に、試料の成分の数が多い場合、単一の溶
離液で分離するよりも次第に溶離液組成を変化さ
せるグラジエント溶離のほうが分析時間が短縮で
きるため好ましい。
Generally, when a sample has a large number of components, gradient elution, in which the composition of the eluent is gradually changed, is preferable to separation using a single eluent because the analysis time can be reduced.

検出方法は、第2図に基ずいて説明する。第2
図において、4−(N,N−ジメチルアミノ)−1
−ナフチルヒダントインの分析の場合は窒素レー
ザー8、フルオレセインイソチオヒダントインの
場合は窒素レーザー8をボンビング源とする色素
レーザ9を光源として使用する。レーザ光の1部
はビームスプリツタ10で取り出され、ピンフオ
トダイオド11で検出し、遅延回路15で遅延
後、サンプルホールド回路17のトリガ信号とし
用い、また、ピンフオトダイオド11で検出した
信号の1部はピークホールド回路16によりホー
ルドし螢光強度補正用の参照信号とし用いる。レ
ーザー光の大部分はビームスプリツタ10を通過
し、フローセル7に集光され、分離カラム10に
て分離された各成分に照射される。フローセル7
から発生した螢光はレーザー光に対して直角方向
で集光され、さらに分光器12で分光した後、マ
イクロチヤンネルプレート内蔵型高速光電子増倍
管13で検出する。その信号はプリアンプ14で
増幅され、遅延回路15で設定された遅延時間で
サンプルホールドされ、演算回路18で参照信号
によりレーザー光の光量変化を補償後、記録計1
9で記録される。
The detection method will be explained based on FIG. Second
In the figure, 4-(N,N-dimethylamino)-1
- In the case of analysis of naphthylhydantoin, a nitrogen laser 8 is used as a light source, and in the case of fluorescein isothiohydantoin, a dye laser 9 whose bombing source is a nitrogen laser 8 is used as a light source. A portion of the laser beam is taken out by the beam splitter 10, detected by the pin photo diode 11, delayed by the delay circuit 15, used as a trigger signal for the sample and hold circuit 17, and also detected by the pin photo diode 11. A portion of the signal is held by a peak hold circuit 16 and used as a reference signal for fluorescence intensity correction. Most of the laser light passes through the beam splitter 10, is focused on the flow cell 7, and is irradiated onto each component separated by the separation column 10. flow cell 7
The fluorescent light generated from the laser beam is focused in a direction perpendicular to the laser beam, further separated into spectra by a spectrometer 12, and then detected by a high-speed photomultiplier tube 13 with a built-in microchannel plate. The signal is amplified by the preamplifier 14, sampled and held at a delay time set by the delay circuit 15, and after compensating for changes in the amount of laser light using a reference signal in the arithmetic circuit 18, the signal is sent to the recorder 1.
Recorded at 9.

以下、実施例に基づいて、本発明を詳細に説明
する。
Hereinafter, the present invention will be explained in detail based on Examples.

実施例 1 第3図、第4図にそれぞれ0ナノ秒、5ナノ秒
の遅延時間を設定して測定した10フエムトモルの
フルオレセインチオヒダントインのクロマトグラ
ムを示す。溶離液は0.1Mリン酸緩衝液(PH7.0)
を用い5%から50%までのアセトニトリルによる
リニアグラジエント溶離法を用い、使用したカラ
ムはTSKgel ODS 120T(東洋曹達工業(株)製)、
流速は1ml/minで測定した。螢光測定は515nm
の螢光強度を測定した。遅延時間が0ナノ秒の場
合、ベースラインの雑音が大きいが、遅延時間を
5ナノ秒とすると散乱光および短寿命の螢光が除
去されるため、明瞭なクロマトグラムが得られ
る。
Example 1 Figures 3 and 4 show chromatograms of 10 femtomoles of fluorescein thiohydantoin measured with delay times of 0 nanoseconds and 5 nanoseconds, respectively. Eluent is 0.1M phosphate buffer (PH7.0)
The columns used were TSKgel ODS 120T (manufactured by Toyo Soda Kogyo Co., Ltd.),
The flow rate was measured at 1 ml/min. Fluorescence measurement is 515nm
The fluorescence intensity was measured. When the delay time is 0 nanoseconds, the baseline noise is large, but when the delay time is 5 nanoseconds, scattered light and short-lived fluorescent light are removed, so a clear chromatogram can be obtained.

実施例 2 第5図、第6図にそれぞれ0ナノ秒、10ナノ秒
の遅延時間を設定して測定した20フエムトモルの
4−(N,N−ジメチルアミノ)−1−ナフチルチ
オヒダントインのクロマトグラムを示す。分離条
件は第3図の条件と同様である。螢光測定は、窒
素レーザ光(337nm)で励起し450nmの螢光強度
を測定している。フルオレセインチオヒダントイ
ンの場合と同様、遅延時間10ナノ秒のクロマトグ
ラムでは短寿命の雑音螢光が除去され、大きな信
号/雑音比が得られる。
Example 2 Chromatograms of 20 femtomoles of 4-(N,N-dimethylamino)-1-naphthylthiohydantoin measured with delay times of 0 nanoseconds and 10 nanoseconds shown in FIGS. 5 and 6, respectively. shows. The separation conditions are similar to those shown in FIG. Fluorescence measurement is performed by exciting with nitrogen laser light (337 nm) and measuring the fluorescence intensity at 450 nm. As with fluorescein thiohydantoin, a 10 ns delay time chromatogram eliminates short-lived noise fluorescence and provides a large signal-to-noise ratio.

以上述べたようにパルスレーザを光源とする時
間分解螢光器を用いた高速液体クロマトグラフイ
がフルオレセインチオヒダントインや4−(N,
N−ヂメチルアミノ)−1−ナフチルチオヒダン
トインを分析する高感度アミノ酸配列分析法に有
効であることが明らかである。
As mentioned above, high-performance liquid chromatography using a time-resolved fluorescence device using a pulsed laser as a light source is effective for fluorescein thiohydantoin, 4-(N,
It is clear that this method is effective for highly sensitive amino acid sequence analysis for analyzing N-dimethylamino)-1-naphthylthiohydantoin.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明に用いる装置の液
体クロマトグラフ部および螢光検出部の模式図。
第3図、第4図はフルオレセインチオヒダントイ
ン(10フエムトモルのアミノ酸)の螢光遅延時間
0ナノ秒、5ナノ秒で検出したクロマトグラム、
第5図、第6図は4−(N,N−ヂメチルアミノ)
−1−ナフチルチオヒダントイン(20フエムトモ
ノのアミノ酸)の螢光遅延時間0ナノ秒、10ナノ
秒で検出したクロマトグラムである。 1,2……溶離液貯槽、3……グラジエント溶
離装置、4……試料導入装置、5……送液ポン
プ、6……分離カラム、7……フローセル、8…
…窒素レーザ、9……色素レーザ、10……ビー
ムスプリツタ、11……ピンホトダイオド、12
……分光器、13……高速光電子増倍管、14…
…プリアンプ、15……遅延回路、16……ピー
クホールド回路、17……サンプルホールド回
路、18……演算回路、19……記録計、21…
…アスパラギン酸、22……グルタミン酸、23
……アスパラギン、24……セリン、25……カ
ルボキシメチルシステイン、26……グリシン、
27……グルタミン、28……ヒスチジン、29
……アルギニン、30……アラニン、31……セ
リンの分解物、32……チロシン、33……スレ
オニン、34……ブロリン、35……メチオニ
ン、36……バリン、37……トリブトフアン、
38……フエニルアラニン、39……イソロイシ
ン、40……ロイシン、41……リジン。
FIGS. 1 and 2 are schematic diagrams of a liquid chromatograph section and a fluorescence detection section of the apparatus used in the present invention.
Figures 3 and 4 are chromatograms of fluorescein thiohydantoin (10 femtomoles of amino acid) detected at fluorescence delay times of 0 and 5 nanoseconds.
Figures 5 and 6 show 4-(N,N-dimethylamino)
This is a chromatogram of -1-naphthylthiohydantoin (20 femtomonoamino acids) detected at fluorescence delay times of 0 nanoseconds and 10 nanoseconds. 1, 2... Eluent storage tank, 3... Gradient elution device, 4... Sample introduction device, 5... Liquid feed pump, 6... Separation column, 7... Flow cell, 8...
...Nitrogen laser, 9...Dye laser, 10...Beam splitter, 11...Pin photodiode, 12
...Spectrometer, 13...High-speed photomultiplier tube, 14...
... Preamplifier, 15 ... Delay circuit, 16 ... Peak hold circuit, 17 ... Sample hold circuit, 18 ... Arithmetic circuit, 19 ... Recorder, 21 ...
...Aspartic acid, 22...Glutamic acid, 23
... Asparagine, 24 ... Serine, 25 ... Carboxymethylcysteine, 26 ... Glycine,
27...Glutamine, 28...Histidine, 29
... Arginine, 30 ... Alanine, 31 ... Degradation product of serine, 32 ... Tyrosine, 33 ... Threonine, 34 ... Broline, 35 ... Methionine, 36 ... Valine, 37 ... Tributophan,
38...Phenylalanine, 39...Isoleucine, 40...Leucine, 41...Lysine.

Claims (1)

【特許請求の範囲】[Claims] 1 4−(N,N−ジメチルアミノ)−1−ナフチ
ルイソチオシアネートあるいはフルオレセインイ
ソチオシアネートを用いたエドマン分解反応で生
じる4−(N,N−ジメチルアミノ)−1−ナフチ
ルチオヒダントインあるいはフルオレセインチオ
ヒダントインを液体クロマトグラフイで分離し、
パルスレーザを光源とする時間分解螢光検出法で
検出することを特徴とするアミノ酸配列分析法。
1 4-(N,N-dimethylamino)-1-naphthylthiohydantoin or fluorescein thiohydantoin produced in the Edman decomposition reaction using 4-(N,N-dimethylamino)-1-naphthylisothiocyanate or fluorescein isothiocyanate. Separated by liquid chromatography,
An amino acid sequence analysis method characterized by detection using a time-resolved fluorescence detection method using a pulsed laser as a light source.
JP20182784A 1984-09-28 1984-09-28 Analysis of amino acid sequence Granted JPS61233371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20182784A JPS61233371A (en) 1984-09-28 1984-09-28 Analysis of amino acid sequence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20182784A JPS61233371A (en) 1984-09-28 1984-09-28 Analysis of amino acid sequence

Publications (2)

Publication Number Publication Date
JPS61233371A JPS61233371A (en) 1986-10-17
JPH0511266B2 true JPH0511266B2 (en) 1993-02-15

Family

ID=16447550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20182784A Granted JPS61233371A (en) 1984-09-28 1984-09-28 Analysis of amino acid sequence

Country Status (1)

Country Link
JP (1) JPS61233371A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837726A (en) * 1987-06-19 1989-06-06 Applied Biosystems, Inc. Quantitation of chromatographic information
JP2725731B2 (en) * 1991-02-28 1998-03-11 株式会社島津製作所 Quenching method for excess fluorescent reagent
WO1994002854A1 (en) * 1992-07-27 1994-02-03 Seiko Instruments Inc. Method for high-sensitivity detection of amino acid derivative

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847239A (en) * 1981-09-14 1983-03-18 Nisshin Denki Seisakusho:Kk Liquid chromatograph apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5847239A (en) * 1981-09-14 1983-03-18 Nisshin Denki Seisakusho:Kk Liquid chromatograph apparatus

Also Published As

Publication number Publication date
JPS61233371A (en) 1986-10-17

Similar Documents

Publication Publication Date Title
Roach et al. Determination of amino acids at subfemtomole levels by high-performance liquid chromatography with laser-induced fluorescence detection
Swaile et al. Laser-based fluorimetric detection schemes for the analysis of proteins by capillary zone electrophoresis
Duggan et al. A spectrophotofluorometric study of compounds of biological interest
US9620348B2 (en) Integrated electrospray ionization emitter and detection cell for parallel measurements by fluorescence and mass spectrometry
JPH0154668B2 (en)
Li et al. Resonant two-photon ionization spectroscopic analysis of thin-layer chromatography using pulsed laser desorption/volatilization into supersonic jet expansions
JPH0511266B2 (en)
Ogunkunle et al. Small molecules released from islets of Langerhans determined by liquid chromatography–mass spectrometry
Van Den Beld et al. Laser-induced fluorescence detection in liquid chromatography after preliminary derivatization of carboxylic acid and primary amino groups
Murray et al. HPLC laser fluorometric determination of amines in beer
Remy et al. Real sample analysis by ETA-LEAFS with background correction: application to gold determination in river water
Vrábel et al. Sensitive detection and separation of fluorescent derivatives using capillary electrophoresis with laser-induced fluorescence detection with 532 nm Nd: YAG laser
Rahavendran et al. Solid-state diode laser-induced fluorescence detection in high-performance liquid chromatography
Berglund et al. A critical evaluation of a multielement ETAAS system using line sources and a transversely heated graphite atomizer with Zeeman effect background correction
White Recent developments in detection techniques for high-performance liquid chromatography. Part II. Other detectors. A review
Martin et al. The free-falling drop detector--a nover fluorescence detector for high-performance liquid chromatography.
Gocan et al. Compound identification in thin-layer chromatography using spectrometric methods
Ishibashi et al. Three-dimensional high-performance liquid chromatography based on time-resolved laser fluorimetry
Assenza Detection Systems
Drees et al. Analytical techniques
Somsen et al. Analyte-deposition-based detection in column liquid chromatography: concept and examples
JPH071265B2 (en) Method for analyzing optical isomer having amino group
Zhao et al. Solid-phase immunoassay detection of peptides from complex matrices without a separation
JPH0511265B2 (en)
Kawasaki et al. Thermal lens spectrophotometry using a tunable infrared laser generated by a stimulated Raman effect