JPH05112606A - Method for synthesizing acid-degradable polymer compound - Google Patents

Method for synthesizing acid-degradable polymer compound

Info

Publication number
JPH05112606A
JPH05112606A JP3273879A JP27387991A JPH05112606A JP H05112606 A JPH05112606 A JP H05112606A JP 3273879 A JP3273879 A JP 3273879A JP 27387991 A JP27387991 A JP 27387991A JP H05112606 A JPH05112606 A JP H05112606A
Authority
JP
Japan
Prior art keywords
compound
reaction
acid
alkali
pyridine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3273879A
Other languages
Japanese (ja)
Inventor
Shigeru Kubota
繁 久保田
Atsuko Sasahara
敦子 笹原
Teruhiko Kumada
輝彦 熊田
Sachiko Tanaka
祥子 田中
Hideo Horibe
英夫 堀辺
Yuji Hizuka
裕至 肥塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3273879A priority Critical patent/JPH05112606A/en
Publication of JPH05112606A publication Critical patent/JPH05112606A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain the subject compound useful as resists for producing semiconductor elements for forming micro-patterns of high accuracy in high purity by reacting an alkali-soluble polymer with a reagent capable of providing acid-degradable groups in the presence of a specific catalyst. CONSTITUTION:The objective compound is obtained by reacting (A) an alkali- soluble polymer compound (preferably a phenolic novolak resin, etc.) with (B) a reactional reagent (preferably a dialkyl carbonate compound such as di-t-butyl dicarbonate) for providing protecting groups degradable with acids in the presence of (C) a catalyst composed of a pyridine compound (e.g. 2- aminopyridine) in an amount of 0.05-10mol% based on the component (B). In the compound, 5-50% functional groups capable of providing the alkali solubility are protected with the acid-degradable protecting groups. Furthermore, the reaction is preferably carried out in an inert gas atmosphere such as argon at 0-100 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高精度の微細パターン
を形成するために使用する半導体素子製造用のレジスト
に用いる酸分解性高分子化合物を合成する方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for synthesizing an acid-decomposable polymer compound used as a resist for manufacturing a semiconductor device used for forming a highly precise fine pattern.

【0002】[0002]

【従来の技術】半導体素子等の微細加工のためのパター
ニングは、広く写真製版法により行われている。この
際、放射線等の活性光線に感光するレジストが利用さ
れ、従来この様な材料として、放射線の照射を受け分解
する材料や、あるいは放射線の照射を受け硬化する化合
物がレジストとして使用されてきた。しかしながら、こ
れらの化合物は、逐次型の反応だけが起こり、照射され
るエネルギーで反応するため、その効率は極めて低く、
その結果、大幅な感度向上は望めないのが実情である。
2. Description of the Related Art Patterning for fine processing of semiconductor elements and the like is widely performed by photolithography. At this time, a resist that is sensitive to actinic rays such as radiation is used, and conventionally, as such a material, a material that decomposes upon irradiation with radiation or a compound that cures upon irradiation with radiation has been used as a resist. However, since these compounds only undergo a sequential reaction and react with irradiation energy, their efficiency is extremely low,
As a result, the reality is that significant improvement in sensitivity cannot be expected.

【0003】近年、この様な問題点を解決するため、化
学増幅機構の考えに基づくレジストが検討されている。
これは、光の照射を受けて発生する酸を触媒として、反
応を光以外に熱的に促進させる手法である。この手法で
は、光の照射量は触媒量の酸を発生させるだけで済むこ
とになり、極めて高感度化が達成できる。
In recent years, in order to solve such problems, a resist based on the idea of a chemical amplification mechanism has been studied.
This is a method of thermally accelerating a reaction other than light by using an acid generated upon irradiation of light as a catalyst. In this method, the irradiation amount of light only needs to generate a catalytic amount of acid, and extremely high sensitivity can be achieved.

【0004】これらの手法においては、酸により容易に
分解する官能基を有する化合物が使用されており、例え
ば特公平2−27660にはポリ(P−ブトキシカルボ
ニルオキシスチレン)が、短波長フォトレジスト材料
(上野巧ら、有機エレクトロニクス材料研究会編、ぶん
しん出版、1988年、P.66〜68)にはブトキシ
カルボニルフェノール化合物が有用な化合物として検討
されている。
In these methods, a compound having a functional group which is easily decomposed by an acid is used. For example, in Japanese Patent Publication No. 27660/1990, poly (P-butoxycarbonyloxystyrene) is a short wavelength photoresist material. (Takumi Ueno et al., Organic Electronics Materials Study Group, Bunshin Publishing, 1988, P. 66-68), butoxycarbonylphenol compounds are examined as useful compounds.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、これら
の化合物は酸により容易に分解するため、アルカリ金属
を含んだ塩基性化合物を用いる条件下で合成されること
から、合成物中にカリウム、ナトリウムなどのイオン性
不純物が残存する欠点がある。レジスト中にこれらの金
属が存在する場合には、半導体素子の特性を損なうなど
の問題があり、他方これらを取り除くためには複雑なプ
ロセスが必要となり、その結果大幅なコスト上昇となる
などの問題が避けられなかった。本発明は、触媒反応を
利用した合成手法を導入することにより、上記問題を解
決する合成する手法を提供することにある。
However, since these compounds are easily decomposed by an acid, they are synthesized under the condition that a basic compound containing an alkali metal is used. There is a drawback that the ionic impurities of remain. When these metals are present in the resist, there are problems such as impairing the characteristics of the semiconductor element, and on the other hand, in order to remove them, a complicated process is required, resulting in a significant cost increase. Was unavoidable. The present invention is to provide a synthetic method that solves the above problems by introducing a synthetic method utilizing a catalytic reaction.

【0006】[0006]

【課題を解決するための手段】本発明は、アルカリ可溶
性を与える官能基の5〜50%が酸により分解される保
護基で保護されているアルカリ可溶性の高分子化合物
を、アルカリ可溶性の高分子と、酸により分解される保
護基を与える反応試薬との反応で合成するにあたり、酸
により分解される保護基を与える反応試薬に対して、0.
05〜10モル%のピリジン化合物が存在する条件下で
反応させるようにしたものである。
The present invention provides an alkali-soluble polymer compound in which 5 to 50% of the functional group that imparts alkali-solubility is protected by a protecting group that is decomposed by an acid. And a reaction reagent which gives a protecting group which is decomposed by an acid, in the synthesis by a reaction with a reaction reagent which gives a protecting group which is decomposed by an acid.
The reaction is carried out under the condition in which 05 to 10 mol% of the pyridine compound is present.

【0007】本発明で使用される触媒としては、ピリジ
ン化合物であれば略例外なしに何でも使用することがで
きるが、ピリジン環の窒素原子を活性させる置換基を有
する化合物が特に有用な触媒として使用することができ
る。
As the catalyst used in the present invention, any compound can be used without any exception as long as it is a pyridine compound, but a compound having a substituent that activates the nitrogen atom of the pyridine ring is used as a particularly useful catalyst. can do.

【0008】そのような化合物としては、具体的には、
例えば、2−アミノピリジン、4−アミノピリジン、
2,4−ジアミノピリジン、2−(N,N−ジメチルア
ミノ)ピリジン、4−(N,N−ジメチルアミノ)ピリ
ジン、2,4−ジ(N,N−ジメチルアミノ)ピリジ
ン、2−(N,N−ジエチルアミノ)ピリジン、4−
(N,N−ジエチルアミノ)ピリジン、2,4−ジ
(N,N−ジエチルアミノ)ピリジン、2,4,6−ト
リ(N,N−ジメチルアミノ)ピリジン、2,4,6−
トリ(N,N−ジエチルアミノ)ピリジン、2−メトキ
シピリジン、4−メトキシピリジン、2,4−ジメトキ
シピリジン、2,4,6−トリメトキシピリジン等を挙
げることができ、その他、ピリジン、アルキル基置換ピ
リジン、フェニル基置換ピリジン等も使用することがで
きる。
Specific examples of such a compound include:
For example, 2-aminopyridine, 4-aminopyridine,
2,4-diaminopyridine, 2- (N, N-dimethylamino) pyridine, 4- (N, N-dimethylamino) pyridine, 2,4-di (N, N-dimethylamino) pyridine, 2- (N , N-diethylamino) pyridine, 4-
(N, N-diethylamino) pyridine, 2,4-di (N, N-diethylamino) pyridine, 2,4,6-tri (N, N-dimethylamino) pyridine, 2,4,6-
Examples thereof include tri (N, N-diethylamino) pyridine, 2-methoxypyridine, 4-methoxypyridine, 2,4-dimethoxypyridine, and 2,4,6-trimethoxypyridine. In addition, pyridine and alkyl group substitution Pyridine, phenyl group-substituted pyridine and the like can also be used.

【0009】本発明で反応させるアルカリ可溶性の高分
子化合物は、ドライエッチング耐性に優れた構造を有す
ることが好ましく、この目的にかなう材料として、例え
ば、フェノールノボラック樹脂、クレゾールノボラック
樹脂、ナフトールノボラック樹脂などのフェノール・ホ
ルムアルデヒド系樹脂や、ポリビニルフェノール樹脂も
しくはビニルフェノールとアクリル系またはスチレン系
モノマーの共重合体、などをあげることができる。
The alkali-soluble polymer compound to be reacted in the present invention preferably has a structure excellent in dry etching resistance, and examples of materials which meet this purpose include phenol novolac resin, cresol novolac resin and naphthol novolac resin. Examples thereof include a phenol / formaldehyde resin, a polyvinylphenol resin, or a copolymer of vinylphenol and an acrylic or styrene monomer.

【0010】これらの高分子化合物においては、アルカ
リ可溶性の高分子化合物のアルカリ可溶性を与える官能
基の5〜50%の範囲内を酸により分解させる保護基で
保護したもの、さらに、これらの平均分子量は実用的見
地から2000から50000ぐらいのものが望まし
い。
In these polymer compounds, the functional group which gives alkali solubility of the alkali-soluble polymer compound is protected by an acid-decomposable protective group in an amount of 5 to 50%, and the average molecular weight thereof is further reduced. From a practical point of view, it is desirable that the number is about 2,000 to 50,000.

【0011】また、酸により分解される保護基を与える
反応試薬としては、ジアルキルジカルボネート化合物が
良く、例えば、ジt−ブチルジカルボネート、ジt−ア
ミルジカボネート、ジ(1,1,1(トリエチル)メチ
ル)ジカルボネート等を挙げることができる。
A dialkyldicarbonate compound is preferable as a reaction reagent for providing a protective group which is decomposed by an acid, and examples thereof include di-t-butyl dicarbonate, di-t-amyl dicarbonate and di (1,1,1 ( Examples thereof include triethyl) methyl) dicarbonate.

【0012】本発明においては、前記ピリジン化合物
を、酸により分解される保護基を与える反応試薬に対し
て0.05〜10モル%の量を添加する条件下で、不活性
ガス気流下、0〜100℃の温度で反応させることがで
きる。0.05モル%以下では触媒の効果が現れず、ま
た、10モル%以上の場合は反応性は優れるが、最終製
品に触媒が残存する割合が多くなり、レジストに用いた
場合に、該レジスト特性を損なう恐れが生じる。さら
に、反応温度が0℃以下の場合は、反応速度が低く反応
に要する時間が長くなり、他方100℃以上の場合は、
反応物が反応と同時に分解し生成収率が低下する。ま
た、反応の副生成物を抑えるためにアルゴン、窒素など
の不活性ガス雰囲気で反応させるのが好ましい。
In the present invention, the pyridine compound is added in an amount of 0.05 to 10 mol% with respect to the reaction reagent which gives a protective group which is decomposed by an acid, under an inert gas stream under conditions of 0 to 10 mol%. The reaction can be performed at a temperature of -100 ° C. If it is less than 0.05 mol%, the effect of the catalyst does not appear. If it is more than 10 mol%, the reactivity is excellent, but the ratio of the catalyst remaining in the final product is large, and when it is used as a resist, There is a risk of impairing the characteristics. Further, when the reaction temperature is 0 ° C or lower, the reaction rate is low and the time required for the reaction is long, while when it is 100 ° C or higher,
The reaction product is decomposed at the same time as the reaction and the production yield is reduced. Further, in order to suppress the by-products of the reaction, it is preferable to carry out the reaction in an atmosphere of an inert gas such as argon or nitrogen.

【0013】本発明の実施は通常反応溶媒を用いて行
う。用いる溶媒は、前記成分の反応を妨げないものであ
れば、略例外なしに何でも使用することができる。例え
ば、具体的にはベンゼン、トルエン、キシレン、ジエチ
ルエーテル、テトラヒドロフラン、ジオキサン、アセト
ン、メチルエチルケトン、シクロペンタノン、シクロヘ
キサノン、セロソルブアセテート、ジメチルグライム、
ジメチルジグライム、酢酸イソアミルなどを使用するこ
とができる。本発明の方法により合成した高分子化合物
は、例えば、半導体素子、プリント配線板、など微細な
パターニングを必要とする微細加工用レジスト用の有用
な材料として使用できる。
The practice of this invention is typically carried out using a reaction solvent. Any solvent can be used without any exception as long as it does not interfere with the reaction of the above components. For example, specifically, benzene, toluene, xylene, diethyl ether, tetrahydrofuran, dioxane, acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, cellosolve acetate, dimethyl glyme,
Dimethyl diglyme, isoamyl acetate, etc. can be used. The polymer compound synthesized by the method of the present invention can be used as a useful material for a resist for microfabrication, which requires fine patterning such as a semiconductor device and a printed wiring board.

【0014】[0014]

【作用】本発明においては、従来用いられていたアルカ
リ金属含有塩基性化合物を用いる代わりに、ピリジン化
合物が反応触媒に使用され、アルカリ可溶性の高分子
と、酸により分解される保護基を与える反応試薬との反
応が速やかに進行する。しかも、上記ピリジン化合物
は、有機系の化合物であり、触媒として使用する前に蒸
留、再結晶、昇華等の通常知られた精製法で高純度化さ
せておけば、反応系にアルカリ金属等のイオン性不純物
が混入することはなく、高純度で目的の高分子化合物が
合成できる。また、反応触媒として使用するため、複雑
な反応プロセスも必要でなく、低コストで目的の化合物
を合成することができる。
In the present invention, a pyridine compound is used as a reaction catalyst instead of a conventionally used basic compound containing an alkali metal, and a reaction that gives an alkali-soluble polymer and a protecting group that is decomposed by an acid The reaction with the reagent proceeds rapidly. Moreover, the above pyridine compound is an organic compound, and if it is highly purified by a commonly known purification method such as distillation, recrystallization, sublimation or the like before it is used as a catalyst, the reaction system is free from alkali metal and the like. The desired high molecular compound can be synthesized with high purity without mixing ionic impurities. Further, since it is used as a reaction catalyst, a complicated reaction process is not required, and the target compound can be synthesized at low cost.

【0015】[0015]

【実施例】以下に、本発明を具体的な例を挙げて説明す
るが、高分子化合物だけでなく、ビスフェノールAやビ
スフェノールF、トリスフェノール化合物などのような
比較的低分子量の化合物の反応にも適用できることは言
うまでもなく、これら実施例だけに限定されるものでは
ない。
EXAMPLES The present invention will be described below with reference to specific examples. However, it can be applied to the reaction of not only polymer compounds but also relatively low molecular weight compounds such as bisphenol A, bisphenol F, and trisphenol compounds. Needless to say, the present invention is not limited to these examples.

【0016】実施例1 ポリp−ビニルフェノール(Mw=8000 、Na、Kの
含有量はそれぞれ2.0ppm 、0.3ppm)24g(0.2モ
ル)をテトラヒドロフラン300mLに溶解し、窒素気流
下で30℃で均一に攪拌した。ついで、0.244g(0.
002モル)の4−(N,N−ジメチルアミノ)ピリジ
ンを加え、さらに13.0g( 0.06モル)のジt−ブチ
ルジカルボネートを温度が上昇しない速度で滴下した。
更に30℃で4時間攪拌した後、蒸留水に反応物を投入
しポリマーを再沈澱させ、得られたポリマーを十分水洗
をして、室温・減圧条件で20時間乾燥を行った。
Example 1 24 g (0.2 mol) of poly-p-vinylphenol (Mw = 8000, contents of Na and K were 2.0 ppm and 0.3 ppm, respectively) was dissolved in 300 mL of tetrahydrofuran, and the solution was placed under a nitrogen stream. The mixture was stirred uniformly at 30 ° C. Then 0.244 g (0.
(002 mol) of 4- (N, N-dimethylamino) pyridine was added, and 13.0 g (0.06 mol) of di-t-butyl dicarbonate was added dropwise at such a rate that the temperature did not rise.
After further stirring at 30 ° C. for 4 hours, the reaction product was added to distilled water to reprecipitate the polymer, and the obtained polymer was thoroughly washed with water and dried at room temperature and reduced pressure for 20 hours.

【0017】得られたポリマーの赤外吸収スペクトル測
定の結果、1760cm-1にブトキシカルボニル基に基づ
く吸収が認められ、また、核磁気共鳴装置での測定から
ほぼ定量的に反応が進行していることが確認された。原
子吸光スペクトル法で金属不純物量の測定を行い、Na
として0.7ppm、Kとして0.1ppm の値が得られた。こ
の値は半導体用レジストの材料として使用するのに十分
良好な値であった。
As a result of measuring the infrared absorption spectrum of the obtained polymer, an absorption based on a butoxycarbonyl group was recognized at 1760 cm -1 , and the reaction proceeded almost quantitatively from the measurement by a nuclear magnetic resonance apparatus. It was confirmed. The amount of metallic impurities was measured by atomic absorption spectroscopy, and Na
Of 0.7 ppm and K of 0.1 ppm were obtained. This value was sufficiently good for use as a material for a semiconductor resist.

【0018】比較例1 ポリp−ビニルフェノール(Mw=8000 、Na、Kの
含有量はそれぞれ2.0ppm 、0.3ppm)24g(0.2モ
ル)をテトラヒドロフラン300mLに溶解し窒素気流下
で攪拌した。ついで、7.8g(0.06モル)のカリウム
t−ブトキサイドを加え、10分後、13.08g(0.0
6モル)のジt−ブチルジカルボネートを滴下した。4
時間室温で攪拌した後、蒸留水に投入し、その後、十分
水洗をして反応物を回収した。得られたポリマーを十分
水洗し、室温・減圧条件で20時間乾燥を行った。
Comparative Example 1 24 g (0.2 mol) of poly-p-vinylphenol (Mw = 8000, Na and K contents were 2.0 ppm and 0.3 ppm, respectively) was dissolved in 300 mL of tetrahydrofuran and stirred under a nitrogen stream. did. Then, 7.8 g (0.06 mol) of potassium t-butoxide was added, and 10 minutes later, 13.08 g (0.0
(6 mol) di-t-butyl dicarbonate was added dropwise. Four
After stirring at room temperature for a period of time, the reaction product was poured into distilled water and then thoroughly washed with water to recover the reaction product. The obtained polymer was thoroughly washed with water and dried at room temperature under reduced pressure for 20 hours.

【0019】得られたポリマーの赤外吸収スペクトル測
定の結果、1760cm-1にブトキシカルボニル基に基づ
く吸収が認められ、また、核磁気共鳴装置での測定から
実施例1と同様、ほぼ定量的に反応が進行していること
が確認された。しかしながら、原子吸光スペクトル法で
金属不純物量の測定を行なったところ、Naとして7pp
m 、Kとして100ppm の値を示し、この値は半導体用
レジストの材料として使用するのには高すぎ、本合成法
はレジスト材料合成法として不適当であった。
As a result of measuring the infrared absorption spectrum of the obtained polymer, an absorption based on a butoxycarbonyl group was recognized at 1760 cm −1 , and the measurement by a nuclear magnetic resonance apparatus showed almost quantitative analysis as in Example 1. It was confirmed that the reaction was proceeding. However, when the amount of metallic impurities was measured by the atomic absorption spectrometry, it was found to be 7 pp as Na.
The m and K values were 100 ppm, which were too high for use as a material for a resist for semiconductors, and this synthesis method was unsuitable as a resist material synthesis method.

【0020】実施例 2〜11 表1に示すピリジン化合物、反応溶媒、及び反応条件に
より、又同表1の反応試薬とポリビニルフェノール(分
子量、金属含有量は実施例1と同じ)から各種の高分子
化合物を合成した。得られた高分子化合物に関して実施
例1と同様の操作で反応を確認し、さらに、実施例1と
同じ手法を用いて純度を測定した結果金属不純物濃度は
実施例1とほぼ同等のレベルであることを確認した(N
aとして0.3〜0.8ppm 、Kとして0.05〜0.2ppm
)。
Examples 2 to 11 Depending on the pyridine compound shown in Table 1, the reaction solvent and the reaction conditions, and from the reaction reagents shown in Table 1 and polyvinylphenol (the molecular weight and the metal content are the same as those in Example 1), various types of compounds were obtained. A molecular compound was synthesized. The reaction of the obtained polymer compound was confirmed by the same operation as in Example 1, and the purity was measured by the same method as in Example 1. As a result, the concentration of metal impurities was almost the same level as in Example 1. I confirmed that (N
a as 0.3 to 0.8 ppm and K as 0.05 to 0.2 ppm
).

【0021】[0021]

【表1】 [Table 1]

【0022】実施例 12〜15 表2に示すピリジン化合物、反応溶媒、及び反応条件に
より、又表2の反応試薬とノボラック樹脂(分子量、金
属含有量は実施例1と同じ)から各種の高分子化合物を
合成した。得られた高分子化合物に関して実施例1と同
様の操作で反応を確認し、さらに、実施例1と同じ手法
を用いて純度を測定した結果金属不純物濃度は実施例1
とほぼ同等のレベルであることを確認した(Naとして0.
5〜0.9ppm 、Kとして0.1〜0.3ppm )。
Examples 12 to 15 Depending on the pyridine compound shown in Table 2, the reaction solvent, and the reaction conditions, and from the reaction reagents shown in Table 2 and the novolac resin (the molecular weight and the metal content are the same as those in Example 1), various polymers were prepared. The compound was synthesized. The reaction of the obtained polymer compound was confirmed by the same operation as in Example 1, and the purity was measured by the same method as in Example 1. As a result, the metal impurity concentration was found to be in Example 1.
It was confirmed that the level was almost the same as (0 for Na.
5 to 0.9 ppm, and K as 0.1 to 0.3 ppm).

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【発明の効果】本発明の酸分解性高分子化合物の合成方
法によれば、事実上アルカリ金属を含まないか、又はそ
れを著しく低い含量に抑えた有機系化合物を反応触媒と
して用いるため、極めて高い純度の上述した酸分解性高
分子化合物を合成し得る。従ってかかる酸分解性高分子
化合物を利用することから、上記問題を解決するパター
ン形成材料の合成を可能とし極めて有用である。
According to the method for synthesizing an acid-decomposable polymer compound of the present invention, since an organic compound containing virtually no alkali metal or containing an alkali metal in an extremely low content is used as a reaction catalyst, The above-described acid-decomposable polymer compound having high purity can be synthesized. Therefore, the use of such an acid-decomposable polymer compound makes it possible to synthesize a pattern forming material that solves the above problems, which is extremely useful.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 祥子 兵庫県尼崎市塚口本町8丁目1番1号 三 菱電機株式会社材料デバイス研究所内 (72)発明者 堀辺 英夫 兵庫県尼崎市塚口本町8丁目1番1号 三 菱電機株式会社材料デバイス研究所内 (72)発明者 肥塚 裕至 兵庫県尼崎市塚口本町8丁目1番1号 三 菱電機株式会社材料デバイス研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shoko Tanaka 8-1-1 Tsukaguchi Honcho, Amagasaki City, Hyogo Prefecture Sanryu Electric Co., Ltd. Material and Device Research Laboratory (72) Hideo Horibe 8 Tsukaguchi Honcho, Amagasaki City, Hyogo Prefecture Materials 1-1, Sanryo Electric Co., Ltd. (72) Inventor Hiroshi Kozuka 8-1-1 1-1 Tsukaguchihonmachi, Amagasaki-shi, Hyogo Sanryo Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体素子製造用レジストに用いるアル
カリ可溶性を与える官能基の5〜50%が酸により分解
される保護基で保護されているアルカリ可溶性の高分子
化合物を、アルカリ可溶性の高分子と、酸により分解さ
れる保護基を与える反応試薬との反応で合成するにあた
り、前記酸により分解される保護基を与える反応試薬に
対して、0.05〜10モル%のピリジン化合物が存在す
る条件下で反応させることを特徴とする酸分解性高分子
化合物の合成方法。
1. An alkali-soluble polymer compound in which 5 to 50% of an alkali-soluble functional group used for a resist for manufacturing a semiconductor device is protected by a protecting group which is decomposed by an acid is referred to as an alkali-soluble polymer. In the case of synthesizing by reaction with a reaction reagent that gives a protecting group that is decomposed by an acid, 0.05 to 10 mol% of a pyridine compound is present relative to the reaction reagent that gives a protecting group that is decomposed by an acid. A method for synthesizing an acid-decomposable polymer compound, which comprises reacting under the conditions of:
JP3273879A 1991-10-22 1991-10-22 Method for synthesizing acid-degradable polymer compound Pending JPH05112606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3273879A JPH05112606A (en) 1991-10-22 1991-10-22 Method for synthesizing acid-degradable polymer compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3273879A JPH05112606A (en) 1991-10-22 1991-10-22 Method for synthesizing acid-degradable polymer compound

Publications (1)

Publication Number Publication Date
JPH05112606A true JPH05112606A (en) 1993-05-07

Family

ID=17533848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3273879A Pending JPH05112606A (en) 1991-10-22 1991-10-22 Method for synthesizing acid-degradable polymer compound

Country Status (1)

Country Link
JP (1) JPH05112606A (en)

Similar Documents

Publication Publication Date Title
AU604932B2 (en) Radiation-sensitive mixture for photosensitive coating materials
KR100212928B1 (en) Chemically amplified positive resist composition
WO2005097725A1 (en) Calixresorcinarene compounds, photoresist base materials, and compositions thereof
JPS62115440A (en) Photoresist composition and t-substituted organo methyl vinyl aryl ether material
US5143784A (en) Soluble calixarene derivative and films thereof
WO2002036533A1 (en) Monomers having electron-withdrawing groups and processes for preparing the same
Kudo et al. A novel noria (water-wheel-like cyclic oligomer) derivative as a chemically amplified electron-beam resist material
EP0542523A1 (en) Positive resist material
JPH01100179A (en) Organic metal-containing compound
JPH05112606A (en) Method for synthesizing acid-degradable polymer compound
JP5540461B2 (en) Novel polymer and coupling agent for anionic polymerization
JPH05232704A (en) Positive type resist material
EP0410250B1 (en) Novel sulfonium salts and their use
KR100190012B1 (en) Method of manufacturing base resin for chemically amplified resist
KR100286621B1 (en) Tertiary butyl 4,4-bis (4'-hydroxyphenyl) pentanoate derivative and positive resist material containing the same
US5624788A (en) Organic silicon compound, resist thermal polymerization composition and photopolymerization composition
Guliev et al. Synthesis and properties of epoxy-containing poly (cyclopropylstyrenes)
Kudo et al. Synthesis and Property of Tellurium-Containing Molecular Resist Materials for Extreme Ultraviolet Lithography System
JP3312349B2 (en) Polymer compound having vinylidene group quantitatively at terminal, method for producing the same, and resist material using the polymer compound
JPS62209528A (en) Novel resist material
KR0137421B1 (en) N-(tert-butyloxycarbonyl)maleimide
US4083725A (en) Photosensitive composition
Shimizu et al. Chemical mechanisms in photoresist systems: I. photochemical cleavage of a bisazide system
JPH05232705A (en) Positive type resist material
JPS58152891A (en) Novel ethynylenepolysilane compound and its preparation