JPH05111627A - Method for mixing fine fragments - Google Patents

Method for mixing fine fragments

Info

Publication number
JPH05111627A
JPH05111627A JP11235391A JP11235391A JPH05111627A JP H05111627 A JPH05111627 A JP H05111627A JP 11235391 A JP11235391 A JP 11235391A JP 11235391 A JP11235391 A JP 11235391A JP H05111627 A JPH05111627 A JP H05111627A
Authority
JP
Japan
Prior art keywords
mixing
mixed
fine particles
mixing chamber
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11235391A
Other languages
Japanese (ja)
Inventor
Mikio Murachi
幹夫 村知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP11235391A priority Critical patent/JPH05111627A/en
Publication of JPH05111627A publication Critical patent/JPH05111627A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently mix fine fragments without causing problems of crushing, etc. CONSTITUTION:Fine fragments 30 to be mixed are agitated together with a supercritical fluid dispersion medium by a propeller 32 in a mixing chamber 12. After agitation completed, a stop valve is opened, causing the supercritical fluid only to be discharged from the mixing chamber 12 through a filter 34 and a conduit 38.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粉末、ウイスカ、繊維
の如き微細片の混合方法に係る。
FIELD OF THE INVENTION The present invention relates to a method for mixing fine particles such as powders, whiskers and fibers.

【0002】[0002]

【従来の技術】例えばセラミックや金属の焼結に於て
は、焼結品の均質性を向上させるためには、原料粉末、
即ちセラミック粉末又は金属粉末と粉末状の焼結助剤と
をできるだけ均一に混合する必要があることから、従来
より一般に、原料粉末と水やアルコールの如き液体の分
散媒体とを混合し、その混合物をボールミル、サンドミ
ル、その他の撹拌装置により撹拌する湿式混合が行われ
ている。
2. Description of the Related Art For example, in the case of sintering ceramics or metals, in order to improve the homogeneity of the sintered product, raw material powder,
That is, since it is necessary to mix the ceramic powder or the metal powder and the powdery sintering aid as uniformly as possible, conventionally, generally, the raw material powder and the liquid dispersion medium such as water or alcohol are mixed, and the mixture thereof is used. Is wet-mixed by stirring with a ball mill, a sand mill, or other stirring devices.

【0003】[0003]

【発明が解決しようとする課題】しかし水やアルコール
の如き液体の分散媒体は粘性が高く表面張力が大きいた
め、凝集力の高い微細な原料粉末を均一に混合すること
は困難であり、混合に長時間を要する。また均一な混合
を達成するためには原料粉末と分散媒体との混合物を長
時間に亘り撹拌しなければならず、長時間の混合を行う
と粉末が破砕され易く、そのため所望の粉末特性が得ら
れなくなったり不純物が混入することがある。かかる問
題は互いに混合されるべき粉末の大きさが異なる場合に
顕著であり、また粉末よりもウイスカや繊維の場合に顕
著である。
However, since a liquid dispersion medium such as water or alcohol has a high viscosity and a large surface tension, it is difficult to uniformly mix fine raw material powders having a high cohesive force. It takes a long time. Further, in order to achieve uniform mixing, the mixture of the raw material powder and the dispersion medium must be stirred for a long time, and if the mixing is carried out for a long time, the powder is easily crushed, and thus desired powder characteristics are obtained. It may not be possible or impurities may be mixed. Such problems are more prominent when the powders to be mixed have different sizes, and are more prominent in the case of whiskers and fibers than powders.

【0004】本発明は、従来の粉末の混合方法に於ける
上述の如き問題に鑑み、破砕等の問題を生じることなく
構成物質が異なる異種の微細片又は形態や大きさが異な
る同種の微細片を能率よく混合することができるよう改
善された微細片の混合方法を提供することを目的として
いる。
In view of the above-mentioned problems in the conventional powder mixing method, the present invention provides fine particles of different kinds having different constituent substances or fine particles of the same kind having different shapes and sizes without causing problems such as crushing. It is an object of the present invention to provide an improved method for mixing fine particles so that they can be mixed efficiently.

【0005】[0005]

【課題を解決するための手段】上述の如き目的は、本発
明によれば、混合されるべき微細片を分散媒体としての
超臨界流体と共に撹拌する微細片の混合方法によって達
成される。
According to the present invention, the above-mentioned objects are achieved by a method of mixing fine particles in which fine particles to be mixed are stirred together with a supercritical fluid as a dispersion medium.

【0006】[0006]

【作用】超臨界流体は水やアルコールの如き液体に比し
て粘性及び表面張力が低いので、混合されるべき微細片
に濡れ易く、個々の微細片相互間の引力よりも微細片と
超臨界流体との間の引力の方が大きくなる。従って分散
媒体として超臨界流体を使用することにより微細片の分
散性が向上し、これにより微細片を短時間のうちに均一
に混合することが可能になる。
[Function] Since the supercritical fluid has lower viscosity and surface tension than liquids such as water and alcohol, it easily wets the fine particles to be mixed, and the supercritical fluid and the supercritical fluid are more attractive than the attractive force between the individual fine particles. The attractive force with the fluid is greater. Therefore, by using the supercritical fluid as the dispersion medium, the dispersibility of the fine pieces is improved, which makes it possible to uniformly mix the fine pieces in a short time.

【0007】[0007]

【課題を解決するための手段の補足説明】一般にセラミ
ック粉末や金属粉末の如き微細片の表面には水分等が付
着しており、本発明の方法に従って混合された微細片が
成形され焼結される場合には、微細片を混合するに先立
って微細片の表面に付着する水分等を除去することが好
ましい。
[Supplementary Explanation of Means for Solving the Problem] Generally, water or the like is attached to the surface of fine particles such as ceramic powder or metal powder, and mixed fine particles are molded and sintered according to the method of the present invention. In such a case, it is preferable to remove water and the like attached to the surface of the fine pieces before mixing the fine pieces.

【0008】従って本発明の方法の一つの実施例によれ
ば、微細片を混合する前に微細片を加熱することによ
り、又は微細片を減圧雰囲気におくことにより、又はそ
れらの両方により微細片の表面に付着する水分等が除去
される。
Thus, according to one embodiment of the method of the present invention, the fine pieces are heated by heating the fine pieces prior to mixing the fine pieces, or by subjecting the fine pieces to a reduced pressure atmosphere, or both. Water and the like adhering to the surface of is removed.

【0009】[0009]

【実施例】以下に添付の図を参照しつつ、本発明を実施
例について詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the accompanying drawings.

【0010】図1は本発明による微細片の混合方法の実
施に使用されるに適した混合装置の一つの実施例を示す
概略構成図である。
FIG. 1 is a schematic diagram showing one embodiment of a mixing apparatus suitable for use in carrying out the method for mixing fine particles according to the present invention.

【0011】図1に於て、10は内部に混合室12を有
する混合槽を示している。混合室12は導管14により
切換え弁16に接続されている。切換え弁16は導管1
4を導管18に接続する第一の位置と導管20に接続す
る第二の位置とに切替わるようになっている。導管18
には内部に高圧のCO2 を貯容するボンベ22が接続さ
れおり、導管20には真空ポンプ24が接続されてい
る。
In FIG. 1, reference numeral 10 denotes a mixing tank having a mixing chamber 12 inside. The mixing chamber 12 is connected by a conduit 14 to a switching valve 16. The switching valve 16 is the conduit 1
4 is switched between a first position connecting the conduit 18 and a second position connecting the conduit 20. Conduit 18
A cylinder 22 for storing high-pressure CO 2 is connected to the inside thereof, and a vacuum pump 24 is connected to the conduit 20.

【0012】混合室12内の空間はヒータ26により所
定の温度に加熱されるようになっており、混合室12内
の温度及び圧力はそれぞれ図には示されていない温度計
及び圧力計28により測定されるようになっている。ま
た混合室20内には該混合室内に装入された混合される
べき微細片30を撹拌するプロペラ32が設けられてお
り、該プロペラは図には示されていない駆動装置により
回転駆動されるようになっている。
The space inside the mixing chamber 12 is heated to a predetermined temperature by a heater 26, and the temperature and pressure inside the mixing chamber 12 are controlled by a thermometer and a pressure gauge 28, which are not shown in the drawing, respectively. It is supposed to be measured. Further, inside the mixing chamber 20, there is provided a propeller 32 for stirring the fine pieces 30 to be mixed, which are loaded into the mixing chamber, and the propeller is rotatably driven by a driving device (not shown). It is like this.

【0013】混合槽10の下端には途中にフィルタ34
及び開閉弁36を有する気体排出導管38が接続されて
いる。フィルタ34は実質的に気体の通過のみを許し、
これにより開閉弁36が開弁されると混合室12内の超
臨界流体がそのまま又は通常の気体として導管38を経
て大気中へ流出するようになっている。
A filter 34 is provided at the lower end of the mixing tank 10 midway.
And a gas discharge conduit 38 having an on-off valve 36 is connected. The filter 34 substantially only allows the passage of gas,
As a result, when the opening / closing valve 36 is opened, the supercritical fluid in the mixing chamber 12 flows out into the atmosphere as it is or as a normal gas through the conduit 38.

【0014】上述の如く形成された混合装置を用いて本
発明に従って窒化ケイ素粉末と酸化イットリウム粉末と
アルミナ粉末とを混合した。
Silicon nitride powder, yttrium oxide powder, and alumina powder were mixed according to the present invention using the mixing apparatus formed as described above.

【0015】まず10kgの窒化ケイ素粉末(平均粒径
0.5μm 、比表面積10m2 /g)と、500gの酸
化イットリウム粉末(平均粒径0.1μm 、比表面積1
5m2 /g)と、500gのアルミナ粉末(平均粒径
0.1μm 、比表面積18m2 /g)とよりなる原料粉
末30を混合槽10の混合室12(容積15リットル)
内へ装入した。
First, 10 kg of silicon nitride powder (average particle size 0.5 μm, specific surface area 10 m 2 / g) and 500 g of yttrium oxide powder (average particle size 0.1 μm, specific surface area 1
5 m 2 / g) and 500 g of alumina powder (average particle size 0.1 μm, specific surface area 18 m 2 / g) as raw material powder 30 in the mixing chamber 12 of the mixing tank 10 (volume: 15 liters).
Charged inside.

【0016】次いで開閉弁36を閉弁した状態にて切換
え弁16を第二の位置に切替えて導管14を導管20に
接続し、真空ポンプ24により混合室12内を10-2
orrに減圧すると共に混合室20内をヒータ26によ
って200℃に1時間加熱し、これにより原料粉末表面
の付着物を蒸発させて除去した。
Next, the switching valve 16 is switched to the second position with the on-off valve 36 closed, the conduit 14 is connected to the conduit 20, and the inside of the mixing chamber 12 is 10 -2 t by the vacuum pump 24.
The pressure in the mixing chamber 20 was reduced to orr, and the inside of the mixing chamber 20 was heated to 200 ° C. for 1 hour by the heater 26, whereby the deposits on the surface of the raw material powder were evaporated and removed.

【0017】次いでヒータ26による混合室20内の加
熱温度をCO2 の臨界温度である31.1℃以上の50
℃に設定し、切換え弁16を第一の位置に切替えて導管
14を導管18に接続し、しかる後ボンベ22の図には
示されていない開閉弁を開弁することによりCO2 を混
合室20内へ供給し、開閉弁の開弁量の調節により混合
室内のCO2 の圧力をその臨界圧力である73atm以
上の90atmまで増圧しCO2 を超臨界状態にした。
Next, the heating temperature in the mixing chamber 20 by the heater 26 is 50 ° C. which is 31.1 ° C. or higher which is the critical temperature of CO 2.
℃ set to connect conduit 14 to conduit 18 switches the switching valve 16 in the first position, the mixing chamber of CO 2 by opening the on-off valve which is not shown in the figure thereafter bomb 22 Then, the pressure of CO 2 in the mixing chamber was increased to 73 atm, which is the critical pressure thereof, to 90 atm by adjusting the opening amount of the on-off valve to bring CO 2 into a supercritical state.

【0018】次いでCO2 の超臨界状態を維持したまま
プロペラ32を200rpmにて3時間回転させ、原料
粉末30を超臨界状態のCO2 と共に撹拌混合した。次
いでボンベ22の開閉弁を閉弁し、開閉弁36を開弁す
ることにより混合室12内の超臨界状態のCO2 を導管
38及びフィルタ34を経て大気中へ流出させた。尚使
用されたフィルタは目開き寸法0.2μm の多孔質のセ
ラミックフィルタであった。
Next, while maintaining the supercritical state of CO 2, the propeller 32 was rotated at 200 rpm for 3 hours to stir and mix the raw material powder 30 with CO 2 in the supercritical state. Next, the on-off valve of the cylinder 22 was closed, and the on-off valve 36 was opened to allow CO 2 in the supercritical state in the mixing chamber 12 to flow into the atmosphere through the conduit 38 and the filter 34. The filter used was a porous ceramic filter having an opening size of 0.2 μm.

【0019】次いで上述の如く混合処理された原料粉末
30を混合槽10より取り出し、原料粉末を面圧200
kg/cm2 にてプレス成形することにより5×4×50mm
のテストピースを形成し、EPMAにてY2 3 の分散
状態を調査した。このY−Lα像を図2に示す。図2に
於て、白色の部分がY2 3 である(後述の図3に於て
も同じ)。
Next, the raw material powder 30 mixed as described above is taken out from the mixing tank 10, and the raw material powder is subjected to a surface pressure of 200.
5 × 4 × 50mm by press molding at kg / cm 2
The test piece of No. 2 was formed and the state of dispersion of Y 2 O 3 was investigated by EPMA. This Y-Lα image is shown in FIG. In FIG. 2, the white portion is Y 2 O 3 (same in FIG. 3 described later).

【0020】[0020]

【比較例】上述の実施例の場合と同一の原料粉末を混合
槽10内に装入し、しかる後40kgのエチルアルコール
を装入し、それらをプロペラ32により50時間撹拌混
合した。次いでかくして混合処理された原料粉末を混合
槽10より取り出し、原料粉末よりアルコールを乾燥に
よって除去し、原料粉末を面圧200kg/cm2 にてプレ
ス成形することにより5×4×50mmのテストピースを
形成し、EPMAにてY2 3 の分散状態を調査した。
このY−Lα像を図3に示す。
Comparative Example The same raw material powder as in the above-mentioned example was charged into the mixing tank 10, 40 kg of ethyl alcohol was then charged, and they were stirred and mixed by the propeller 32 for 50 hours. Then, the raw material powder thus mixed and processed is taken out from the mixing tank 10, alcohol is removed from the raw material powder by drying, and the raw material powder is press-molded at a surface pressure of 200 kg / cm 2 to obtain a 5 × 4 × 50 mm test piece. After being formed, the state of dispersion of Y 2 O 3 was investigated by EPMA.
This Y-Lα image is shown in FIG.

【0021】図2及び図3の比較より、実施例の方法に
よれば比較例の方法に比して原料粉末を遥かに均一に混
合することができることが解る。
From the comparison of FIG. 2 and FIG. 3, it can be seen that the raw material powder can be much more uniformly mixed by the method of the embodiment than by the method of the comparative example.

【0022】[0022]

【抗折試験】上述の実施例及び比較例に於て形成された
テストピースを3000kg/cm2 の圧力にてCIP(静
水圧プレス)し、9.5atmのN2 雰囲気中にて17
50℃に4時間加熱する焼成を行った。次いでかくして
焼成されたテストピースよりJIS規格R1601に基
きそれぞれ40本の抗折試験片を形成し、各試験片につ
いて4点曲げ抗折試験を行った。この試験の結果を下記
の表1に示す。
[Folding Test] The test pieces formed in the above-mentioned Examples and Comparative Examples were subjected to CIP (hydrostatic pressure press) at a pressure of 3000 kg / cm 2 , and were subjected to 17 in an atmosphere of N 2 of 9.5 atm.
Firing was performed by heating to 50 ° C. for 4 hours. Then, 40 pieces of bending test pieces were formed from the thus fired test pieces based on JIS standard R1601, and a 4-point bending bending test was performed on each test piece. The results of this test are shown in Table 1 below.

【0023】[0023]

【表1】 実施例 比較例 平均強度(MPa) 1090 870 ワイブル係数 15 9 最低強度(MPa) 910 652 最高強度(MPa) 1290 1236Table 1 Examples Comparative Examples Average strength (MPa) 1090 870 Weibull coefficient 159 Minimum strength (MPa) 910 652 Maximum strength (MPa) 1290 1236

【0024】表1より、抗折試験の結果からも実施例の
方法によれば比較例の方法に比して原料粉末を遥かに均
一に混合することができることが解る。
From Table 1, it can be seen from the results of the bending test that the raw material powder can be much more uniformly mixed according to the method of the example as compared with the method of the comparative example.

【0025】以上に於ては本発明を特定の実施例につい
て詳細に説明したが、本発明はかかる実施例に限定され
るものではなく、本発明の範囲内にて他の種々の実施例
が可能であることは当業者にとって明らかであろう。例
えば混合されるべき微細片は上述の実施例の如く粉末に
限定されるものではなく、ウイスカや短繊維の如き他の
形態のものであってもよい。
Although the present invention has been described above in detail with reference to specific embodiments, the present invention is not limited to such embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art that it is possible. For example, the fine particles to be mixed are not limited to powders as in the above-mentioned embodiment, but may be other forms such as whiskers and short fibers.

【0026】[0026]

【発明の効果】以上の説明より明らかである如く、超臨
界流体は水やアルコールの如き液体に比して粘性及び表
面張力が低く、混合されるべき微細片に濡れ易いので、
分散媒体として超臨界流体が使用される本発明の方法に
よれば、微細片の分散性が向上し、これにより従来の方
法の場合に比して微細片を短時間のうちに均一に混合す
ることができ、微細片を長時間撹拌することによる微細
片の破砕や不純物の混入等を回避することができる。
As is apparent from the above description, the supercritical fluid has lower viscosity and surface tension than liquids such as water and alcohol, and easily wets fine particles to be mixed.
According to the method of the present invention in which a supercritical fluid is used as a dispersion medium, the dispersibility of fine particles is improved, which allows the fine particles to be uniformly mixed in a short time as compared with the conventional method. Therefore, it is possible to avoid crushing of the fine pieces and mixing of impurities due to stirring the fine pieces for a long time.

【0027】また超臨界流体は液体に比して蒸発潜熱が
小さく、断熱膨張により容易に通常の気体になるので、
分散媒体として液体が使用される場合に比して混合され
た微細片より分散媒体を容易に且能率よく除去すること
ができる。
Further, since the supercritical fluid has a smaller latent heat of vaporization than a liquid and easily becomes an ordinary gas by adiabatic expansion,
As compared with the case where a liquid is used as the dispersion medium, the dispersion medium can be easily and efficiently removed from the mixed fine particles.

【0028】また一般に超臨界流体は微細片に対し化学
的影響を及ぼすことがないので、セラミックや金属の如
き任意の物質よりなる微細片を混合することができる。
また温度及び圧力の制御によって超臨界流体の特性を容
易に変化させることができるので、微細片の混合の条件
を容易に制御することができる。また超臨界流体を構成
する物質は例えばCO2 、空気、N2 の如き物質であっ
てよく、これらは無害且安価であると共に比較的低い温
度及び圧力にて超臨界状態になるので、超臨界流体を使
用することによるコストアップも少なくて済む。
In general, since the supercritical fluid has no chemical effect on the fine particles, it is possible to mix fine particles made of any substance such as ceramics and metals.
Further, since the characteristics of the supercritical fluid can be easily changed by controlling the temperature and the pressure, it is possible to easily control the mixing condition of the fine pieces. Further, the substance constituting the supercritical fluid may be a substance such as CO 2 , air and N 2 , which are harmless and inexpensive and enter a supercritical state at a relatively low temperature and pressure. The cost increase due to the use of fluid can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による微細片の混合方法の実施に使用さ
れるに適した混合装置の一つの実施例を示す概略構成図
である。
FIG. 1 is a schematic configuration diagram showing one embodiment of a mixing apparatus suitable for use in carrying out a method for mixing fine particles according to the present invention.

【図2】図1に示された混合装置を用いて本発明の方法
に従って混合され成形された粉末成形体のY−Lα像を
2000倍にて示す写真である。
2 is a photograph showing a Y-Lα image of a powder compact molded and mixed according to the method of the present invention using the mixing apparatus shown in FIG. 1 at a magnification of 2000. FIG.

【図3】比較例としての従来の方法に従って混合され成
形された粉末成形体のY−Lα像を2000倍にて示す
写真である。
FIG. 3 is a photograph showing a Y-Lα image of a powder compact molded and mixed according to a conventional method as a comparative example at a magnification of 2000 times.

【符号の説明】[Explanation of symbols]

10…混合槽ボンベ 12…混合室 22…ボンベ 24…真空ポンプ 26…ヒータ 30…原料粉末 32…プロペラ 34…フィルタ 36…開閉弁 10 ... Mixing tank cylinder 12 ... Mixing chamber 22 ... Cylinder 24 ... Vacuum pump 26 ... Heater 30 ... Raw powder 32 ... Propeller 34 ... Filter 36 ... Open / close valve

Claims (1)

【特許請求の範囲】[Claims] 混合されるべき微細片を分散媒体としての超臨界流体と
共に撹拌する微細片の混合方法。
A method of mixing fine particles in which fine particles to be mixed are stirred together with a supercritical fluid as a dispersion medium.
JP11235391A 1991-04-17 1991-04-17 Method for mixing fine fragments Pending JPH05111627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11235391A JPH05111627A (en) 1991-04-17 1991-04-17 Method for mixing fine fragments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11235391A JPH05111627A (en) 1991-04-17 1991-04-17 Method for mixing fine fragments

Publications (1)

Publication Number Publication Date
JPH05111627A true JPH05111627A (en) 1993-05-07

Family

ID=14584574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11235391A Pending JPH05111627A (en) 1991-04-17 1991-04-17 Method for mixing fine fragments

Country Status (1)

Country Link
JP (1) JPH05111627A (en)

Similar Documents

Publication Publication Date Title
US4912078A (en) Method and structure for forming magnesia alumina spinels
Boberski et al. High‐performance Silicon nitride materials
JPH05111627A (en) Method for mixing fine fragments
EP0531043B1 (en) Method of forming shaped body from fine particles
CN107129301A (en) A kind of PLZT/ alumina composite ceramics material and preparation method thereof
TW320626B (en)
Young et al. Densification and microstructure development in the reaction sintering process of yttrium iron garnet
EP0783921B1 (en) Method of and apparatus for performing continuous hydrothermal synthesis
Kolar Chemical research needed to improve high-temperature processing of advanced ceramic materials (Technical report)
田畑周平 et al. Liquid phase sintering and mechanical properties of SiC with rare-earth oxide
US4571086A (en) Mixing of ceramic powders
Takebe et al. Fabrication of zirconia-nickel functionally gradient materials by slip casting and pressureless-sintering
Freedman et al. Improved consolidation of silicon carbide
US6422262B1 (en) Discharge device for raw materials and fuels
Arrasmith et al. Incipient flocculation molding: a new ceramic forming technique
JPH04294102A (en) Method for molding fine pieces
JPH042648A (en) Production of ceramics
JPH03504959A (en) Ultra-tough monolithic silicon nitride
JPH0596524A (en) Slurry preparing device
JPH0523612A (en) Method for screening fine fragments
Takahashi et al. Piezoelectric properties of nanostructure-controlled lead-perovskite-based ceramics
JP2003257594A (en) Manufacturing method of ceramic heater
JPH04368809A (en) Molding method for very fine pieces
Xu et al. Influence of Y2O3 particle size on the microstructure and corrosion behaviour of porous Si3N4 ceramics
Maschio et al. Thermodilatometric behaviour of pure and doped ZrTiO 4-SnO 2