JPH0511131B2 - - Google Patents

Info

Publication number
JPH0511131B2
JPH0511131B2 JP14243385A JP14243385A JPH0511131B2 JP H0511131 B2 JPH0511131 B2 JP H0511131B2 JP 14243385 A JP14243385 A JP 14243385A JP 14243385 A JP14243385 A JP 14243385A JP H0511131 B2 JPH0511131 B2 JP H0511131B2
Authority
JP
Japan
Prior art keywords
latex
paste
weight
properties
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14243385A
Other languages
Japanese (ja)
Other versions
JPS624726A (en
Inventor
Jusaku Suenaga
Shunichi Asaumi
Ikuo Akimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP14243385A priority Critical patent/JPS624726A/en
Publication of JPS624726A publication Critical patent/JPS624726A/en
Publication of JPH0511131B2 publication Critical patent/JPH0511131B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は優れた粉体特性とゾル物性を併せもつ
粒状ポリ塩化ビニルペーストレジンの製造方法に
関する。 〔従来の技術〕 ポリ塩化ビニルペーストレジン(以下、ペース
トPVCと略す)は通常、可塑剤中に分散したプ
ラスチゾルあるいはこれに有機溶媒を添加したオ
ルガノゾルの形で使用される。プラスチゾルある
いはオルガノゾル中に粗粒が存在する場合には、
沈降したり、また、コーテイング加工に際して、
すじ引きを生じ表面に傷を生ずる等の問題がある
ため、ペーストPVC粒子は可塑剤と混合した速
かに分散することが必須の条件である。このた
め、現在市販されているペーストPVCは平均粒
子径10μ以下の微粉末の形で提供される。その結
果、粉体流動性の不良、低嵩比重、微粉末の飛散
等多くの問題が生じている。粉体流動性の不良は
包装袋への充填あるいは取り出す際のトラブルの
原因となり、また、計量の自動化の妨げになつて
いる。 嵩比重が小さいことは容量の大きい包装袋が必
要なことと、貯蔵や輸送に要する費用を増大させ
る原因となる。また、微粉末の飛散は製品の損失
や安全衛生上の問題の原因となる。 〔発明が解決しようとする問題点〕 このような問題点を解決する方法として微粉末
状のペーストPVCを像粒することが挙げられる。
ペーストPVCの欠点である流動性、嵩比重、飛
散性等の粉体特性を造粒により改良するために
は、造粒されたペーストPVCの粒子径を大きく
し、粒子間の凝集力を大きくし外力により崩壊し
にくく密度の大きい粒子にすることが望ましい。
しかし、粒子径を大きくする程、また、粒子間の
凝集力を大きくする程可塑剤と混合したときの分
散性が低下し、ペースト加工に要求されるゾル物
性を満たすことが困難となる。このように粉体取
扱上要求される粉体特性とペースト加工に要求さ
れるゾル物性は相矛盾する性質であり両性質を併
せもつたペーストPVCを製造することは極めて
困難なことである。 今日、微粉末を造粒し粉体特性を改良すること
は数多くの粉体で行なわれている。しかし、現
在、造粒が行なわれている粉体は、医薬、農薬、
洗剤、触媒等でこれらは水に溶解して、あるい
は、そのままの形状で使用されており、微粉末に
戻して使用される例はほとんど知られていない。
ペーストPVCの造粒に関しては、得られた粒状
体は可塑剤と混合した際微粒子に速やかに分散す
ることが必要で従来の造粒方法をそのまま適用す
ることはできない。 造粒方法としては、転動造粒法、圧縮造粒法、
流動層造粒法、押出し造粒法などが知られてい
る。本発明者らはこれらの方法についても研究を
行なつたが粉体特性とゾル物性の両方を十分満足
できる造粒方法は見出せなかつた。また、いずれ
の方法でも造粒は可能ではあるが、ペースト
PVCの流動性の悪さに起因して供給あるいは系
内の均一化が困難で操作が容易でなかつた。 本発明者らは、すぐれた粉体特性とゾル物性を
併せもつ粒状ペーストPVCの製造方法を鋭意検
討した結果、以下の方法により目的を達成できる
ことを見出し本発明に到達した。 〔問題点を解決するための手段〕 即ち、本発明はポリ塩化ビニル系ペーストラテ
ツクスを噴霧乾燥する際、液状粘結剤を添加する
ことを特徴とする粒状化ポリ塩化ビニル系ペース
トレンジの製造方法にある。 本発明で使用されるペーストPVCラテツクス
は乳化重合、あるいはミクロ懸濁重合その他のペ
ーストPVCの製造に用いられる重合方法によつ
て製造されたものであればよく、塩化ビニルホモ
ポリマーあるいは塩化ビニルを主成分とする酢酸
ビニル等との共重合体のいずれでもよい。 噴霧乾燥はラテツクスを遠心回転噴霧機を使つ
て微粒化し、熱風との接触によつて瞬時に乾燥さ
せて粉体製品を得る乾燥方法である。粒状ペース
トPVCは噴霧乾燥法により粉砕工程を経ずに得
られる。噴霧乾燥の装置は加圧ノズル式、二流体
式、回転デイスク式のいずれでもよい。乾燥温度
は熱風入口温度で100℃から150℃が好ましい。熱
風出口温度は50℃から70℃が好ましい。乾燥温度
が高いとペーストPVCの粉体特性は優れたもの
が得られるが、ゾル化時の分散性が低下し、望ま
しくない。また、乾燥温度が低いと、乾燥室内が
露結し、十分な乾燥ができず、製品物性に悪影響
を及ぼし、望ましくない。 本発明において使用される液状粘結剤として
は、多価アルコール及び/又は多価アルコールの
エーテル化合物で具体例としてエチレングリコー
ル、プロピレングリコール等のグリコール、エチ
レングリコールジベンジルエーテル、エチレング
リコールジブチルエーテル、エチレングリコール
ジエチルエーテル、エチレングリコールジメチル
エーテル等のグリコールのジエーテル系化合物、
エチレングリコールモノベンジルエーテル、エチ
レングリコールモノn−ブチルエーテル、エチレ
ングリコールモノエチルエーテル、エチレングリ
コールモノメチルエーテル、酢酸ブチルセルソル
ブ等のグリコールのモノエーテル系化合物があげ
られる。 それらの液状粘結剤はペーストPVCラテツク
スの固形分100重量部に対し1〜5重量部単独で
あるいは二種類以上混合して用いられる。 液状粘結剤の量がペーストPVCラテツクスの
固形分100重量部に対して1重量部より少ない場
合、添加効果があらわれずゾル分散性が悪く、ま
た、5重量部より多い場合にはラテツクスに液状
粘結剤を添加するため、安定性が低下し、ゾル物
性にも悪影響を及ぼす。液状粘結剤はペースト
PVCラテツクスに直接添加して噴霧乾燥する方
法や、液状粘結剤を水媒体に微分酸した後、ペー
ストPVCラテツクスに添加する方法、ペースト
PVCラテツクスを噴霧乾燥する際、同時に液状
粘結剤を噴霧する方法等、添加方法には特に制限
はない。 〔発明の効果〕 このようにして乾燥したペーストPVCは平均
粒子径が約30μで粒度分布がシヤープとなり、粉
体特性とゾル物性の両方を満足するものが得られ
る。また、本発明における噴霧乾燥はラテツクス
の乾燥工程では一般的なものであり、しかも粉砕
工程を必要としないのでコストダウンの面でも有
用である。 〔実施例〕 本発明を以下に実施例によりさらに詳細に説明
するが本発明はこれらの実施例のみに限定される
ものではない。 発明の実施例に先立つて実施例、比較例中で使
用されているラテツクスの製造法を示す。 参考例 1 ラテツクスAの製造方法 ミクロ懸濁系での種材1の製造 下記のものを混合する。 塩化ビニル 40Kg 過酸化ラウロイル 0.6Kg ドデシルベンゼンスルホン酸ナトリウムの10重量
%水溶液塩化ビニル濃度を43重量%とするのに必
要な水 4Kg 混合物を均質化してミクロ懸濁液とし、次にこ
れを120のオートクレーブに入る。自然発生圧
下に52℃に加熱する。圧力が下がつたとき、重合
をやめ、未反応塩化ビニルをガス抜きする。ポリ
塩化ビニル濃度40重量%のラテツクスが得られ、
その粒子は0.4μmの平均粒径を有し、重合体に関
して1.5重量%の過酸化ラウロイルを含む。 乳化系での種材2の製造 下記のものを120オートクレーブに入る。 水 60.6Kg テトラデシルスルホン酸ナトリウムの10重量%水
溶液 2.6Kg アンモニア 0.053Kg 塩化ビニル 52Kg 混合物を自然発生圧下に52℃に加熱し、この温
度を操作中維持する。混合物が52℃になつたとき
すぐに0.035Kgの過硫酸カリウムを導入する。15
分後、テトラデシルスルホン酸ナトリウムの10%
水溶液4.75を0.5Kg/hrの速さで連続的に加え
る。52℃で9時間30分後、未反応塩化ビニルをガ
ス抜きする。得られたラテツクスは40.2重量%の
重合体濃度と0.12μmの平均粒径を有する。これ
ら粒子は開始剤を含まない。 重 合 次のものを120オートクレープに入る。 水 33.2Kg 5.7Kgのラテツクス1、即ち過酸化ラウロイル
34.5gを含むポリ塩化ビニル 2.3Kg 3.5Kgのラテツクス2、即ちポリ塩化ビニル1.4Kg ドデシルベンゼンスルホン酸ナトリウムの10重量
%水溶液 1.5Kg 塩化ビニル 55Kg 混合物を50回転/分でかきまぜ機により撹拌
し、52℃に加熱する。3時間後、ドデシルベンゼ
ンスルホン酸ナトリウムの10重量%水溶液2.5Kg
を加える。 18時間の反応後圧力降下が観察される。圧力が
2パールに落ちたとき、未反応塩化ビニルをガス
抜きする。重合体濃度54重量%、粘度38cpのラ
テツクスが得られる。得られたラテツクスの粒度
分布は、この重合体が平均粒径0.20μm及び0.98μ
mを有する粒子の二つの母集団から成り立つこと
を示した。ラテツクス2の粒子の大きさに増加が
認められたが、これらは開始剤を含まない。細粒
は重合体の29重量%を占める。 参考例 2 ラテツクスBの製造方法 撹拌手段を備えた120のオートクレーブに60
Kgの水、ミクロ懸濁重合によつて製造されかつ
33.3重量%の濃度を有する種材6Kg即ち、30gの
過酸化ラウロイルを含有し、かつ0.4μmの平均粒
径を有するポリ塩化ビニル2Kg、0.3Kgのドデシ
ルベンゼンスルホン酸ナトリウム、2.5gの硫酸
銅及び50Kgの塩化ビニルを導入した。混合物を自
然圧下で52℃で加熱し、そしてこの温度を反応中
維持した。 混合物が52℃に達するやいなや、アスコルビン
酸の4g/の水溶液の導入を始めた。酸を0.33
g/hrの速さで3時間、次に0.22g/hrで3時
間、そして反応が完了するまで0.1g/hrで添加
した。 9時間後に、反応の終結の特徴である圧力低下
を観察した。アスコルビン酸の導入を停止し、そ
して未反応の単量体を脱気した。42.2重量%の濃
度を有する、即ち使用の塩化ビニルの89.7重量%
の実際の変換率を有する重合体分散液111Kgを得
た。得られたラテツクスの平均粒径は1.1μmであ
つた。 実施例1、2、比較例1〜3 ペーストPVCラテツクスA(固形分濃度40%)
2に液状粘結剤としてエチレングリコールを第
1表に示した量添加し、撹拌しながら噴霧乾燥し
た。噴霧乾燥機は坂本技研製ラボ用スプレードラ
イヤーR2型を使用した。乾燥入口温度130℃、乾
燥出口温度60℃に設定した。得られた粒状ペース
トPVCの粉体特性とゾル物性を第1表に示す。
[Industrial Field of Application] The present invention relates to a method for producing a granular polyvinyl chloride paste resin having both excellent powder properties and sol properties. [Prior Art] Polyvinyl chloride paste resin (hereinafter abbreviated as paste PVC) is usually used in the form of a plastisol dispersed in a plasticizer or an organosol in which an organic solvent is added to the plastisol. If coarse particles are present in plastisol or organosol,
During settling or coating processing,
Since there are problems such as streaking and scratches on the surface, it is essential that the paste PVC particles be mixed with a plasticizer and dispersed quickly. For this reason, currently commercially available paste PVC is provided in the form of fine powder with an average particle size of 10 μm or less. As a result, many problems have arisen, such as poor powder fluidity, low bulk specific gravity, and scattering of fine powder. Poor powder fluidity causes trouble when filling or taking out packaging bags, and also hinders automation of weighing. A low bulk specific gravity requires packaging bags with a large capacity and increases costs for storage and transportation. Further, scattering of fine powder causes product loss and health and safety problems. [Problems to be Solved by the Invention] One way to solve these problems is to form fine powder paste PVC into particles.
In order to improve powder properties such as fluidity, bulk specific gravity, and scattering properties, which are disadvantages of paste PVC, by increasing the particle size of the granulated paste PVC and increasing the cohesive force between the particles. It is desirable to use particles that are difficult to disintegrate due to external force and have a high density.
However, the larger the particle size and the larger the cohesive force between particles, the lower the dispersibility when mixed with a plasticizer, making it difficult to satisfy the sol physical properties required for paste processing. As described above, the powder properties required for powder handling and the sol physical properties required for paste processing are contradictory properties, and it is extremely difficult to produce paste PVC that has both properties. Today, granulation of fine powders to improve powder properties is performed on many powders. However, the powder currently being granulated is used for pharmaceuticals, agricultural chemicals,
They are used in detergents, catalysts, etc., either dissolved in water or as they are, and there are almost no known examples of them being used after being reconstituted into fine powder.
Regarding granulation of paste PVC, the obtained granules must be quickly dispersed into fine particles when mixed with a plasticizer, and conventional granulation methods cannot be applied as is. Granulation methods include rolling granulation, compression granulation,
Fluidized bed granulation method, extrusion granulation method, etc. are known. The present inventors have also conducted research on these methods, but have not been able to find a granulation method that fully satisfies both powder properties and sol physical properties. In addition, although granulation is possible with either method, paste
Due to the poor fluidity of PVC, it was difficult to supply it or to make it uniform within the system, making it difficult to operate. The inventors of the present invention have intensively studied methods for producing granular paste PVC that has both excellent powder properties and sol properties, and as a result, they have discovered that the object can be achieved by the following method and have arrived at the present invention. [Means for Solving the Problems] That is, the present invention is directed to the production of a granulated polyvinyl chloride paste range, characterized in that a liquid binder is added when spray drying a polyvinyl chloride paste latex. It's in the method. The paste PVC latex used in the present invention may be manufactured by emulsion polymerization, microsuspension polymerization, or other polymerization method used for manufacturing paste PVC, and is mainly made of vinyl chloride homopolymer or vinyl chloride. Any copolymer with vinyl acetate or the like as a component may be used. Spray drying is a drying method in which latex is atomized using a centrifugal rotary atomizer and instantaneously dried by contact with hot air to obtain a powder product. Granular paste PVC is obtained by spray drying method without any grinding process. The spray drying apparatus may be a pressurized nozzle type, a two-fluid type, or a rotating disk type. The drying temperature is preferably 100°C to 150°C in terms of hot air inlet temperature. The hot air outlet temperature is preferably 50°C to 70°C. If the drying temperature is high, paste PVC can have excellent powder properties, but the dispersibility during solization will decrease, which is undesirable. In addition, if the drying temperature is low, dew condensation occurs in the drying chamber, and sufficient drying is not possible, which adversely affects the physical properties of the product, which is undesirable. The liquid binder used in the present invention includes polyhydric alcohols and/or ether compounds of polyhydric alcohols, such as glycols such as ethylene glycol and propylene glycol, ethylene glycol dibenzyl ether, ethylene glycol dibutyl ether, and ethylene glycol. Glycol diether compounds such as glycol diethyl ether and ethylene glycol dimethyl ether,
Examples include glycol monoether compounds such as ethylene glycol monobenzyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, and butyl acetate cellosolve. These liquid binders are used singly or in a mixture of 1 to 5 parts by weight per 100 parts by weight of the solid content of the paste PVC latex. If the amount of liquid binder is less than 1 part by weight per 100 parts by weight of the solid content of the paste PVC latex, the addition effect will not appear and the sol dispersibility will be poor; Addition of a binder reduces stability and adversely affects the physical properties of the sol. Liquid binder is paste
A method in which a liquid binder is added directly to PVC latex and spray-dried, a method in which a liquid binder is slightly acidified in an aqueous medium and then added to a paste PVC latex, a paste
There are no particular restrictions on the addition method, such as a method of spraying the liquid binder at the same time as spray drying the PVC latex. [Effects of the Invention] The paste PVC dried in this manner has an average particle diameter of about 30 μm, a sharp particle size distribution, and a product that satisfies both powder characteristics and sol physical properties can be obtained. Furthermore, the spray drying in the present invention is a common process for drying latex, and since it does not require a pulverization process, it is also useful in terms of cost reduction. [Examples] The present invention will be explained in more detail by Examples below, but the present invention is not limited to these Examples. Prior to the examples of the invention, the manufacturing method of latex used in the examples and comparative examples will be shown. Reference Example 1 Method for producing latex A Production of seed material 1 in micro suspension system Mix the following. Vinyl chloride 40Kg Lauroyl peroxide 0.6Kg 10% by weight aqueous solution of sodium dodecylbenzenesulfonate Water required to bring the vinyl chloride concentration to 43% by weight 4Kg The mixture was homogenized to a microsuspension, which was then dispersed into a microsuspension of 120% by weight. Enter the autoclave. Heat to 52°C under autogenous pressure. When the pressure drops, polymerization is stopped and unreacted vinyl chloride is degassed. A latex with a polyvinyl chloride concentration of 40% by weight was obtained,
The particles have an average particle size of 0.4 μm and contain 1.5% by weight of lauroyl peroxide with respect to the polymer. Production of seed material 2 using an emulsion system Place the following items into a 120 autoclave. Water 60.6 Kg 10% by weight aqueous solution of sodium tetradecyl sulfonate 2.6 Kg Ammonia 0.053 Kg Vinyl chloride 52 Kg The mixture is heated to 52° C. under autogenous pressure and this temperature is maintained during the operation. As soon as the mixture reaches 52° C., 0.035 Kg of potassium persulfate is introduced. 15
After min, 10% of sodium tetradecyl sulfonate
Add 4.75 of the aqueous solution continuously at a rate of 0.5 Kg/hr. After 9 hours and 30 minutes at 52°C, unreacted vinyl chloride is degassed. The resulting latex has a polymer concentration of 40.2% by weight and an average particle size of 0.12 μm. These particles do not contain initiator. Polymerization Put the following into a 120 autoclave. Water 33.2Kg 5.7Kg Latex 1 i.e. lauroyl peroxide
2.3 Kg of polyvinyl chloride containing 34.5 g 3.5 Kg of latex 2, i.e. 1.4 Kg of polyvinyl chloride 1.5 Kg of a 10% by weight aqueous solution of sodium dodecylbenzenesulfonate 55 Kg of vinyl chloride The mixture was stirred in a stirrer at 50 revolutions/min and 52 Heat to ℃. After 3 hours, 2.5 kg of 10% by weight aqueous solution of sodium dodecylbenzenesulfonate
Add. A pressure drop is observed after 18 hours of reaction. When the pressure drops to 2 pars, unreacted vinyl chloride is degassed. A latex with a polymer concentration of 54% by weight and a viscosity of 38 cp is obtained. The particle size distribution of the obtained latex shows that this polymer has an average particle size of 0.20μm and 0.98μm.
It was shown that it consists of two populations of particles with m. An increase in particle size was observed for Latex 2, which does not contain initiator. The granules account for 29% by weight of the polymer. Reference example 2 Manufacturing method for latex B
Kg of water, produced by micro suspension polymerization and
6 Kg of seed material with a concentration of 33.3% by weight, i.e. 2 Kg of polyvinyl chloride containing 30 g of lauroyl peroxide and having an average particle size of 0.4 μm, 0.3 Kg of sodium dodecylbenzenesulfonate, 2.5 g of copper sulfate and 50Kg of vinyl chloride was introduced. The mixture was heated at 52° C. under natural pressure and this temperature was maintained during the reaction. As soon as the mixture reached 52° C., the introduction of a 4 g/aqueous solution of ascorbic acid was started. acid 0.33
g/hr for 3 hours, then 0.22 g/hr for 3 hours, then 0.1 g/hr until the reaction was complete. After 9 hours, a pressure drop was observed, which is characteristic of the end of the reaction. The introduction of ascorbic acid was stopped and unreacted monomer was degassed. Having a concentration of 42.2% by weight, i.e. 89.7% by weight of the vinyl chloride used
111 Kg of polymer dispersion was obtained with an actual conversion of . The average particle size of the obtained latex was 1.1 μm. Examples 1 and 2, Comparative Examples 1 to 3 Paste PVC latex A (solid content concentration 40%)
2 was added with ethylene glycol as a liquid binder in the amount shown in Table 1, and spray-dried with stirring. The spray dryer used was a laboratory spray dryer model R2 manufactured by Sakamoto Giken. The drying inlet temperature was set at 130°C and the drying outlet temperature was set at 60°C. Table 1 shows the powder properties and sol properties of the obtained granular paste PVC.

【表】 エンレングリコール無添加の場合の値を市販の
製品と比較すると、粉体特性は著しく向上し汎用
塩ビ並の優れた流動性、粉体としての取扱い易さ
をもつ値となつているが、これは粉砕していない
ために1次粒子が凝集し、見かけ上粒径が大きく
なつていることが原因である。エチレングリコー
ル無添加の場合は可塑剤を添加し、ミキサーで練
つてもほぐれにくく分散性が悪い。これに対し、
エチレングリコールを添加し噴霧乾燥すると実施
例に示されるように粉体特性にも優れ、可塑剤中
の分散性も良好となつた。しかし、エチレングリ
コールの添加量が増えると逆にほぐれにくく、ゾ
ル物性は悪化した。 実施例3、4、比較例4〜7 液状粘結剤としてエチレングリコールのかわり
に第2表に示したものを使う以外は実施例2と同
様にして噴霧乾燥した。液状粘結剤の種類につい
ての結果を第2表に示す。
[Table] Comparing the values without the addition of enlene glycol with commercially available products, the powder properties have been significantly improved, with values that have excellent fluidity comparable to general-purpose PVC and ease of handling as a powder. However, this is because the primary particles agglomerate because they are not pulverized, resulting in an apparent increase in particle size. If ethylene glycol is not added, a plasticizer is added and it is difficult to loosen even when kneaded with a mixer and has poor dispersibility. In contrast,
When ethylene glycol was added and spray-dried, as shown in the examples, the powder properties were excellent and the dispersibility in the plasticizer was also good. However, as the amount of ethylene glycol added increased, it became difficult to loosen the sol, and the physical properties of the sol deteriorated. Examples 3 and 4, Comparative Examples 4 to 7 Spray drying was carried out in the same manner as in Example 2, except that the liquid binder shown in Table 2 was used instead of ethylene glycol. Table 2 shows the results regarding the type of liquid binder.

【表】 ペーストPVCの可塑剤として多用されている
DOP(ジ−2−エチルヘキシルフタル酸)やその
他流動パラフイン高級アルコールではゾル物性が
悪い。またポリビニルアルコールではゾル化しな
かつた。 実施例5〜7、比較例8 噴霧乾燥温度をかえた以外は、実施例2と同様
の方法で乾燥した。結果を第3表に示す。
[Table] Often used as a plasticizer for paste PVC
DOP (di-2-ethylhexylphthalic acid) and other liquid paraffin higher alcohols have poor sol properties. Moreover, it did not become a sol with polyvinyl alcohol. Examples 5 to 7, Comparative Example 8 Drying was performed in the same manner as in Example 2, except that the spray drying temperature was changed. The results are shown in Table 3.

【表】 乾燥温度は低い方が好ましく、高いと熱履歴を
受け易く、1次粒子間の融着がおこり、可塑剤を
加えてもほぐれにくく、分散性が悪い。これら実
施例より入口温度100〜150℃、出口温度50〜70℃
で乾燥したペーストPVCは優れた粉体特性とゾ
ル物性を示すことがわかる。これらの粒状化ペー
ストPVCは成形性及び成形品の物性も良好であ
つた。 実施例 8 ペーストPVCラテツクスとしてラテツクスA
のかわりにラテツクスBを用いた外は実施例2と
同様の方法で乾燥した。結果を第4表に示す。
[Table] The lower the drying temperature, the better; if the drying temperature is high, it will be susceptible to thermal history, fusion between primary particles will occur, it will be difficult to unravel even when a plasticizer is added, and the dispersibility will be poor. From these examples, the inlet temperature is 100 to 150℃, and the outlet temperature is 50 to 70℃.
It can be seen that the paste PVC dried at 100 mL exhibits excellent powder properties and sol physical properties. These granulated paste PVCs had good moldability and physical properties of molded products. Example 8 Latex A as paste PVC latex
Drying was carried out in the same manner as in Example 2 except that latex B was used instead. The results are shown in Table 4.

【表】 1シードから重合して得られたラテツクスBを
エチレングリコールを添加し、噴霧乾燥したが、
ラテツクスAと同様、粉体特性とゾル物性の優れ
た粒状化品が得られた。 以上の結果からペーストPVCラテツクスを噴
霧乾燥する際、液状粘結剤を添加することにより
1次粒子をゆるやかに凝集させ可塑剤中の分散性
を向上することが可能となつた。このことは、従
来微粉末で取扱いにくいペーストPVCを噴霧乾
燥法という通常の手段を用いて粒状化できるので
工業的に有益なことは明らかである。
[Table] Latex B obtained by polymerization from 1 seed was spray-dried with the addition of ethylene glycol.
Similar to Latex A, a granulated product with excellent powder properties and sol properties was obtained. From the above results, when spray drying paste PVC latex, by adding a liquid binder, it is possible to gently aggregate the primary particles and improve their dispersibility in the plasticizer. It is clear that this is industrially advantageous because paste PVC, which is conventionally a fine powder and difficult to handle, can be granulated using the usual means of spray drying.

Claims (1)

【特許請求の範囲】 1 ポリ塩化ビニル系ペーストラテツクスを噴霧
乾燥する際、グリコール及び/又はグリコールの
エーテル系化合物を添加することを特徴とする粒
状化ポリ塩化ビニル系ペーストレジンの製造方
法。 2 グリコール及び/又はグリコールのエーテル
系化合物をポリ塩化ビニル系ペーストラテツクス
の固形分100重量部に対して1〜5重量部添加す
る特許請求の範囲第1項に記載の製造方法。
[Scope of Claims] 1. A method for producing granulated polyvinyl chloride paste resin, which comprises adding glycol and/or an ether compound of glycol when spray-drying polyvinyl chloride paste latex. 2. The manufacturing method according to claim 1, wherein 1 to 5 parts by weight of glycol and/or a glycol ether compound is added to 100 parts by weight of the solid content of the polyvinyl chloride paste latex.
JP14243385A 1985-07-01 1985-07-01 Production of particulate polyvinyl chloride paste resin Granted JPS624726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14243385A JPS624726A (en) 1985-07-01 1985-07-01 Production of particulate polyvinyl chloride paste resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14243385A JPS624726A (en) 1985-07-01 1985-07-01 Production of particulate polyvinyl chloride paste resin

Publications (2)

Publication Number Publication Date
JPS624726A JPS624726A (en) 1987-01-10
JPH0511131B2 true JPH0511131B2 (en) 1993-02-12

Family

ID=15315195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14243385A Granted JPS624726A (en) 1985-07-01 1985-07-01 Production of particulate polyvinyl chloride paste resin

Country Status (1)

Country Link
JP (1) JPS624726A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715437U (en) * 1993-08-26 1995-03-14 株式会社村上開明堂 Outside-of-vehicle visibility device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68926380T2 (en) * 1988-11-14 1996-09-12 Kanegafuchi Chemical Ind Spherical vinyl chloride resin granules and process for their manufacture
JPH0655831B2 (en) * 1988-11-14 1994-07-27 鐘淵化学工業株式会社 Method for producing vinyl chloride resin for processing particulate paste

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715437U (en) * 1993-08-26 1995-03-14 株式会社村上開明堂 Outside-of-vehicle visibility device

Also Published As

Publication number Publication date
JPS624726A (en) 1987-01-10

Similar Documents

Publication Publication Date Title
US3432483A (en) Continuous process for preparing finely divided polymers
US4892910A (en) Polymer powders of low fines content and method for making the same by spray drying
US2538051A (en) Aqueous suspension polymerization in the presence of methyl hydroxypropyl cellulose as granulating agent
JPS6239181B2 (en)
JPH03273037A (en) Producing method for dry small spherical body and its droduct
JP2703686B2 (en) Process for producing improved dye granules
JPH0511131B2 (en)
CA1324453C (en) Spray dried emulsion polymer
JP5068184B2 (en) Use of silicon oxide compounds as free-flow agents in the production of solid vinyl acetate resins
JPH11241034A (en) Carbon black pellet and preparation thereof
GB2172006A (en) Excipient composition
US5554707A (en) Granular vinyl chloride resin and process for its preparation
JP3316243B2 (en) Highly dispersible granulated silica powder and method for producing the same
GB1590097A (en) Process for the manufacture of a powder based on a vinyl chloride polymer and suitable for the preparation of a plastisol
US5574086A (en) Granular vinyl chloride resin composition and process for its production
US3198773A (en) Large size vinyl chloride polymer particles from emulsion latex
US5028633A (en) Excipient for use in compression molding and process of preparation
JPS60210634A (en) Production of particulate polyvinyl chloride paste resin
JPS60120726A (en) Recovery of vinyl chloride resin
JPH0240086B2 (en) NETSUKASOSEIJUSHINOSEIZOHOHO
JP3203726B2 (en) Vinyl chloride resin for granular paste
JP3206067B2 (en) Method for producing granular resin
JP2687537B2 (en) Method for producing vinyl chloride resin
JP2940092B2 (en) Method for producing granular vinyl chloride resin
US1967222A (en) Granulation of finely divided materials

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees