JPH05111147A - Deterioration monitor for zinc oxide type arrestor - Google Patents

Deterioration monitor for zinc oxide type arrestor

Info

Publication number
JPH05111147A
JPH05111147A JP3266620A JP26662091A JPH05111147A JP H05111147 A JPH05111147 A JP H05111147A JP 3266620 A JP3266620 A JP 3266620A JP 26662091 A JP26662091 A JP 26662091A JP H05111147 A JPH05111147 A JP H05111147A
Authority
JP
Japan
Prior art keywords
zinc oxide
deterioration
current
arrester
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3266620A
Other languages
Japanese (ja)
Inventor
Masahiro Azuma
正弘 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3266620A priority Critical patent/JPH05111147A/en
Publication of JPH05111147A publication Critical patent/JPH05111147A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To judge the deterioration accurately and simplify the constitution of an electric path more by employing time series data for each charge quantity signal having specified period and providing a deterioration judging part, which performs the judgment based on time series data and deterioration judgment criteria. CONSTITUTION:A current transformer 4 detects the current signal proportionate to the leak current flowing to the grounding conductor 3 of a zinc oxide type arrestor 2 and sends it to a deterioration judging part 30. An amplifier 31 amplifiers this current signal, and a rectifying circuit 32 rectifies it into a half wave, and then an integrator 33 temporally integrates it, and it performs a specified time of temporal integration and a specified time of pause and detects the charge quantity signals cycled on this. Three cycles of each charge quantity signal is observed plural times in a specified period, and it is stored in a memory 34 as temporal series data. The deterioration judgment criteria of a zinc oxide type arrestor is also stored in the memory 34, and CPU 35 performs the judgment of the deterioration based on the time series data and the deterioration judgment criteria at the end of a specified time or any time during it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は電力系統に適用する酸
化亜鉛形避雷器の劣化監視装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deterioration monitor for a zinc oxide type arrester applied to a power system.

【0002】[0002]

【従来の技術】図6は例えば、特開平2−129881号公報
に開示された従来の酸化亜鉛形避雷器の劣化監視装置を
示す電路線図、図7は酸化亜鉛形避雷器を非線形抵抗と
静電容量の並列電路で表わした等価電路図である。図6
と図7において、1は三相送電線路の一相分の送電線
路、2は送電線路1に接続した酸化亜鉛形避雷器、2aは
酸化亜鉛形避雷器2に固有の等価的な非線形抵抗、2bは
酸化亜鉛形避雷器2に固有の等価的な静電容量、3は酸
化亜鉛形避雷器2を接地する接地線、4は接地線3に電
磁結合して漏れ電流を検出し、それに比例した電流信号
を出力する変流器、5は送電線路1の対地電圧を分圧し
てそれに比例した電圧信号を検出するコンデンサ形変成
器、10は酸化亜鉛形避雷器2の劣化を判定する劣化判定
部、11はコンデンサ形変成器5で検出した電圧信号によ
り静電容量2bに流れる容量分電流を演算して容量分電流
信号を出力するほか、そのときの電圧信号と対地電圧ゼ
ロ点通過時のタイミング信号も出力する電圧演算部、12
は変流器4からの電流信号と電圧演算部11からの容量分
電流信号ならびにタイミング信号により非線形抵抗2aを
流れる抵抗分電流を演算し、抵抗分電流信号を出力する
電流演算部、13は電圧演算部11からの電圧信号と電流演
算部12からの抵抗分電流信号をそれぞれアナログ量から
ディジタル量に変換するA/D変換器、14は常規の対地
電圧より高い所定の対地電圧に対応した抵抗分電流信号
を基準電流信号として記憶するメモリ、15はCPUであ
って、抵抗分電流信号とメモリ14の基準電流信号とを比
較し、抵抗分電流信号が大きければ、酸化亜鉛形避雷器
2に劣化ありと判定して、そのときの抵抗分電流信号と
電圧信号をインターフェース16へ出力し、抵抗分電流信
号が小さければ、劣化なしと判定して全く出力しない。
21は抵抗分電流信号と電圧信号により抵抗分電流と対地
電圧を印字出力するプリンタである。
2. Description of the Related Art FIG. 6 is a circuit diagram showing a conventional deterioration monitoring device for a zinc oxide type arrester disclosed in Japanese Patent Laid-Open No. 129881/1990, and FIG. 7 shows a zinc oxide type arrester with a non-linear resistance and electrostatic discharge. It is the equivalent circuit diagram represented by the parallel circuit of capacity. Figure 6
7 and FIG. 7, 1 is a transmission line for one phase of a three-phase transmission line, 2 is a zinc oxide type arrester connected to the transmission line 1, 2a is an equivalent non-linear resistance specific to the zinc oxide type arrester 2, 2b Is an equivalent capacitance specific to the zinc oxide type arrester 2, 3 is a ground wire for grounding the zinc oxide type arrester 2, 4 is electromagnetically coupled to the ground line 3 to detect a leakage current, and a current signal proportional thereto , 5 is a capacitor-type transformer that divides the ground voltage of the transmission line 1 and detects a voltage signal proportional thereto, 10 is a deterioration determination unit that determines the deterioration of the zinc oxide surge arrester 2, and 11 is In addition to calculating the capacitance current flowing in the capacitance 2b by the voltage signal detected by the capacitor type transformer 5 and outputting the capacitance current signal, it also outputs the voltage signal at that time and the timing signal when the zero point of the ground voltage passes. Voltage calculator, 12
Is a current calculation unit that calculates a resistance current flowing through the non-linear resistance 2a based on the current signal from the current transformer 4, the capacitance current signal from the voltage calculation unit 11 and the timing signal, and outputs a resistance current signal. An A / D converter that converts the voltage signal from the arithmetic unit 11 and the resistance-divided current signal from the electric current arithmetic unit 12 from an analog amount to a digital amount, respectively, and 14 is a resistor corresponding to a predetermined ground voltage higher than the normal ground voltage. A memory for storing the divided current signal as a reference current signal, 15 is a CPU, which compares the resistance divided current signal with the reference current signal of the memory 14. If the resistance divided current signal is large, the zinc oxide type arrester 2 is deteriorated. It is determined that there is, and the resistance component current signal and voltage signal at that time are output to the interface 16. If the resistance component current signal is small, it is determined that there is no deterioration and no output is performed.
Reference numeral 21 is a printer that prints out the resistance current and the ground voltage by using the resistance current signal and the voltage signal.

【0003】また、図8は酸化亜鉛形避雷器2の正常状
態における抵抗分電流(点線)、容量分電流(鎖線)と
対地電圧(破線)の各波形を示す波形説明図、図9は酸
化亜鉛形避雷器2の非線形抵抗2aを流れる抵抗分電流と
対地電圧の関係を示す特性曲線図であり、実線部分は酸
化亜鉛形避雷器2の正常状態に、また、破線部分はその
劣化状態に対応する。
Further, FIG. 8 is a waveform explanatory view showing respective waveforms of a resistance component current (dotted line), a capacitance component current (chain line) and a ground voltage (dashed line) in a normal state of the zinc oxide type arrester 2, and FIG. 9 is a zinc oxide. 4 is a characteristic curve diagram showing the relationship between the resistance current flowing through the non-linear resistance 2a of the surge arrester 2 and the voltage to ground, the solid line portion corresponding to the normal state of the zinc oxide arrester 2, and the broken line portion corresponding to its deteriorated state.

【0004】次に作用について説明する。碍子形の酸化
亜鉛形避雷器2は碍管の内部に複数の酸化亜鉛素子を積
層して納め、碍管の両端に取り付けたフランジに蓋を固
定して密閉した構造を有する。したがって、酸化亜鉛形
避雷器2はその構造から等価的に非線形抵抗2aと静電容
量2bの並列電路で表わすことができ(図7参照)、酸化
亜鉛形避雷器2の接地線3に流れる漏れ電流は非線形抵
抗2aに流れる抵抗分電流と静電容量2bに流れる容量分電
流の合成電流である。酸化亜鉛形避雷器2が正常状態で
あれば、通常、抵抗分電流は容量分電流に比べてその波
高値が小さい(図8参照)。ところで、酸化亜鉛形避雷
器2に長期間に亙って商用周波の対地電圧を印加してい
ると酸化亜鉛素子が劣化して非線形抵抗2aの抵抗値が変
化し、抵抗分電流が増加する(図9参照)。また、酸化
亜鉛形避雷器2の静電容量2bはその構造ならびに配置に
よって決まるので、容量分電流は酸化亜鉛素子の劣化と
関係なく、変化することはない。したがって、酸化亜鉛
形避雷器2が劣化すると接地線3に流れる漏れ電流は正
弦波から大きく歪んだ波形になる。
Next, the operation will be described. The insulator type zinc oxide surge arrester 2 has a structure in which a plurality of zinc oxide elements are stacked and housed inside an insulator tube, and lids are fixed to the flanges attached to both ends of the insulator tube and hermetically sealed. Therefore, the zinc oxide type arrester 2 can be represented equivalently by a parallel circuit of the nonlinear resistance 2a and the electrostatic capacitance 2b due to its structure (see FIG. 7), and the leakage current flowing through the ground wire 3 of the zinc oxide type arrester 2 is It is a combined current of the resistance component current flowing through the non-linear resistance 2a and the capacitance component current flowing through the electrostatic capacitance 2b. When the zinc oxide arrester 2 is in a normal state, the peak value of the resistance component current is usually smaller than that of the capacitance component current (see FIG. 8). By the way, if a commercial frequency ground voltage is applied to the zinc oxide surge arrester 2 for a long period of time, the zinc oxide element deteriorates and the resistance value of the non-linear resistance 2a changes, and the resistance component current increases (Fig. 9). Further, since the electrostatic capacitance 2b of the zinc oxide type arrester 2 is determined by its structure and arrangement, the capacity current does not change regardless of the deterioration of the zinc oxide element. Therefore, when the zinc oxide arrester 2 deteriorates, the leakage current flowing through the ground wire 3 has a waveform that is greatly distorted from a sine wave.

【0005】送電線路1の対地電圧に比例した電圧信号
をコンデンサ形変成器5で検出するとともに酸化亜鉛形
避雷器2の接地線3に流れる漏れ電流に比例した電流信
号を変流器4で検出してそれぞれ劣化判定部10に送る。
電圧演算部11では電圧信号により90度位相の進んだ容量
分電流を演算し、容量分電流信号とタイミング信号を電
流演算部12へ出力するとともに電圧信号もそのまま出力
する。電流演算部12では電流信号と容量分電流信号とタ
イミング信号により抵抗分電流を演算し、抵抗分電流信
号を出力する。電圧演算部11からの電圧信号と電流演算
部12からの抵抗分電流信号をそれぞれA/D変換器13で
ディジタル量に変換してともにCPU15に入力する。C
PU15では抵抗分電流信号とメモリ14に記憶した基準電
流信号を比較し、抵抗分電流信号が大きければ、酸化亜
鉛形避雷器2に劣化ありと判定してそのときの抵抗分電
流信号と電圧信号をインターフェース16を経てプリンタ
21へ出力し、抵抗分電流と対地電圧を印字出力する。ま
た、抵抗分電流が小さければ、酸化亜鉛形避雷器2に劣
化ありと判定する。なお、メモリ14に記憶する基準電流
信号として、送電線路1の常規の対地電圧の√3倍に対
応した抵抗分電流を採ることがある。
A voltage signal proportional to the ground voltage of the transmission line 1 is detected by the capacitor type transformer 5 and a current signal proportional to the leakage current flowing through the ground wire 3 of the zinc oxide type arrester 2 is detected by the current transformer 4. And sends them to the deterioration determination unit 10.
The voltage calculation unit 11 calculates a capacitance component current having a 90 degree phase advance based on the voltage signal, outputs the capacitance component current signal and the timing signal to the current calculation unit 12, and outputs the voltage signal as it is. The current calculation unit 12 calculates the resistance component current from the current signal, the capacitance component current signal, and the timing signal, and outputs the resistance component current signal. The voltage signal from the voltage calculation unit 11 and the resistance current signal from the current calculation unit 12 are converted into digital quantities by the A / D converter 13 and input to the CPU 15 together. C
In PU15, the resistance current signal and the reference current signal stored in the memory 14 are compared. If the resistance current signal is large, it is determined that the zinc oxide arrester 2 has deteriorated and the resistance current signal and voltage signal at that time are compared. Printer via interface 16
Output to 21 and print resistance current and ground voltage. If the resistance component current is small, it is determined that the zinc oxide arrester 2 has deteriorated. The reference current signal stored in the memory 14 may be a resistance current corresponding to √3 times the normal ground voltage of the transmission line 1.

【0006】[0006]

【発明が解決しようとする課題】従来の酸化亜鉛形避雷
器の劣化監視装置は以上のように構成され、コンデンサ
形変成器5で検出した電圧信号により電圧演算部11で容
量分電流を演算し、その容量分電流信号と変流器4で検
出した電流信号により電流演算部12で抵抗分電流を演算
するうえ、酸化亜鉛形避雷器2が正常状態であれば通
常、抵抗分電流は容量分電流に比べてその波高値が小さ
いので、演算した抵抗分電流は精度が悪く、酸化亜鉛形
避雷器2の劣化を正確に判定できず、電路の構成も複雑
であるなどの解決すべき課題があった。
The conventional deterioration monitoring device for a zinc oxide type lightning arrester is constructed as described above, and the voltage calculating unit 11 calculates the current for the capacitance by the voltage signal detected by the capacitor type transformer 5, When the zinc oxide type lightning arrester 2 is in a normal state, the resistance component current is normally converted into the capacitance component current in addition to the resistance component current being calculated by the current calculation unit 12 based on the capacitance component current signal and the current signal detected by the current transformer 4. Since the peak value is smaller than that in comparison, the calculated resistance current is inaccurate, the deterioration of the zinc oxide arrester 2 cannot be accurately determined, and the configuration of the electric path is complicated.

【0007】この発明は上記のような課題を解決するた
めになされたもので、酸化亜鉛形避雷器の劣化を正確に
判定でき、かつ、電路の構成もより簡単になる酸化亜鉛
形避雷器の劣化監視装置を得ることを目的とする。
The present invention has been made to solve the above problems, and can monitor the deterioration of a zinc oxide surge arrester, which can accurately determine the deterioration of the zinc oxide surge arrester, and which has a simpler electric circuit structure. The purpose is to obtain the device.

【0008】[0008]

【課題を解決するための手段】この発明に係る酸化亜鉛
形避雷器の劣化監視装置は酸化亜鉛形避雷器の一端を送
電線路に接続するとともに他端を接地し、送電線路の対
地電圧により酸化亜鉛形避雷器に流れる漏れ電流に比例
した電流信号を検出して酸化亜鉛形避雷器の劣化を判定
するものにおいて、電流信号を半波整流または全波整流
したうえ、所定時間の時間積分と所定時間の休止とを行
なってこれを周期とする電荷量信号を検出し、所定周期
の各電荷量信号を所定期間に亙って複数回観測して時系
列データとし、この時系列データと酸化亜鉛形避雷器の
劣化判定基準とに基づいて判定する劣化判定部を設けた
ものである。
A zinc oxide type arrester deterioration monitoring apparatus according to the present invention has one end of a zinc oxide type arrester connected to a power transmission line and the other end grounded, and the zinc oxide type lightning arrester is connected to the ground voltage of the transmission line. In detecting the deterioration of the zinc oxide type arrester by detecting a current signal proportional to the leakage current flowing through the lightning arrester, perform half-wave rectification or full-wave rectification of the current signal, and then perform time integration for a predetermined time and pause for a predetermined time. To detect the charge amount signal with this period as a cycle, observe each charge amount signal of a predetermined cycle multiple times over a predetermined period to make time series data, and use this time series data and deterioration of the zinc oxide arrester. A deterioration determination unit that determines based on a determination standard is provided.

【0009】[0009]

【作用】この発明における劣化判定部は半波整流または
全波整流した電流信号に対して所定時間の時間積分と所
定時間の休止とを行なってこれを周期とする電荷量信号
を検出し、所定周期の各電荷量信号を所定周期に亙って
複数回観測して時系列データとし、この時系列データと
酸化亜鉛形避雷器の劣化判定基準とに基づいて判定す
る。
The deterioration determining unit according to the present invention performs time integration for a predetermined time and rest for a predetermined time on the current signal that has been half-wave rectified or full-wave rectified to detect a charge amount signal having this cycle as a predetermined period. Each charge amount signal of a cycle is observed a plurality of times over a predetermined cycle to form time series data, and the judgment is made based on this time series data and the deterioration judgment standard of the zinc oxide type arrester.

【0010】[0010]

【実施例】実施例1.図1はこの発明の一実施例を示す
電路線図であり、図において、1〜4と21は従来の酸化
亜鉛形避雷器の劣化監視装置におけるものと同じであ
る。30は酸化亜鉛形避雷器2の劣化を判定する劣化判定
部、31は変流器4で検出した電流信号を増巾する増巾
器、32は増巾器31で増巾した電流信号を半波整流する整
流回路、33は半波整流した電流信号の半波を時間積分す
る積分器、34は電流信号の半波を時間積分した電荷量信
号の時系列データと劣化判定基準とを記憶するメモリ、
35は電荷量信号の時系列データと劣化判定基準とに基づ
いて劣化を判定するCPU、41はCPU35で判定した結
果などを表示する表示器である。
EXAMPLES Example 1. FIG. 1 is a circuit diagram showing an embodiment of the present invention. In the figure, 1 to 4 and 21 are the same as those in a conventional deterioration monitoring device for a zinc oxide type arrester. 30 is a deterioration determination unit that determines the deterioration of the zinc oxide type arrester 2, 31 is an amplifier that amplifies the current signal detected by the current transformer 4, 32 is a half-wave of the current signal that is amplified by the amplifier 31 A rectifying circuit for rectifying, 33 is an integrator for time-integrating the half-wave of the half-wave rectified current signal, and 34 is a memory for storing time-series data of a charge amount signal obtained by time-integrating the half-wave of the current signal and a deterioration determination standard. ,
Reference numeral 35 is a CPU for judging deterioration based on time series data of the charge amount signal and deterioration judgment reference, and 41 is a display for displaying the result judged by the CPU 35.

【0011】また、図2は酸化亜鉛形避雷器2の劣化状
態における波形説明図であり、(A)は抵抗分電流(点
線)と容量分電流(鎖線)と対地電圧(破線)の各波形
と位相関係を示し、(B) は抵抗分電流と容量分電流を合
成した漏れ電流の波形を示し、(C) は漏れ電流を半波整
流した波形を示す。図3は漏れ電流に比例した電流信号
を半波整流し、所定時間T1 の時間積分と所定時間T2
の休止を行ない、これを周期とした電荷量信号を示す波
形図、図4は3周期の各電荷量信号を所定期間に亙って
複数回観測し、時系列データとして示した棒グラフであ
る。
FIG. 2 is an explanatory diagram of waveforms of the zinc oxide arrester 2 in a deteriorated state. FIG. 2A shows waveforms of a resistance component current (dotted line), a capacitance component current (chain line), and a ground voltage (broken line). The phase relationship is shown, (B) shows the waveform of the leakage current that combines the resistance current and the capacitance current, and (C) shows the waveform obtained by half-wave rectifying the leakage current. In FIG. 3, the current signal proportional to the leakage current is half-wave rectified, and the time integration of the predetermined time T 1 and the predetermined time T 2 are performed.
4 is a bar graph showing time-series data obtained by observing charge amount signals of three cycles a plurality of times over a predetermined period.

【0012】次に作用について説明する。酸化亜鉛形避
雷器2の接地線3に流れる漏れ電流は非線形抵抗2aに流
れる抵抗分電流と静電容量2bに流れる容量分電流の合成
電流であり、酸化亜鉛形避雷器2が正常状態であれば、
通常、抵抗分電流は容量分電流に比べてその波高値が小
さく、漏れ電流の波形は正弦波からの歪みも僅かである
が酸化亜鉛形避雷器2が劣化してくると、非線形抵抗2a
の抵抗値が変化し、抵抗分電流の波高値が大きくなって
(図2(A)参照)、正弦波から大きく歪んでくる(図2
(B) 参照)。酸化亜鉛形避雷器2の接地線3に流れる漏
れ電流に比例した電流信号を変流器4で検出し劣化判定
部30に送る。この電流信号を増巾器31で増巾し、整流回
路32で半波整流したうえ(図2(C) 参照)、積分器33で
時間積分して電荷量信号(図3参照)を検出する。電荷
量信号は抵抗分電流信号と容量分電流信号をそれぞれ時
間積分して合成したものであるが、抵抗分電流信号を時
間積分したものは酸化亜鉛形避雷器2の非線形抵抗2aで
消費される電力損失に比例し、容量分電流信号を時間積
分したものは酸化亜鉛形避雷器2の劣化と関係なく常に
一定である。また、酸化亜鉛形避雷器2の劣化は非線形
抵抗2aの電力損失によって生じる。したがって、電荷量
信号から酸化亜鉛形避雷器2の劣化を判定することがで
きる。半波整流した電流信号を積分器33で時間積分し、
所定時間T1 の時間積分と所定時間T2 の休止を行なっ
てこれを周期とする電荷量信号を検出し(図3参照)、
3周期の各電荷量信号を所定期間に複数回観測し時系列
データとして(図4参照)メモリ34に記憶させる。メモ
リ34には酸化亜鉛形避雷器2の劣化判定基準も記憶させ
ており、所定期間の終り、あるいはその間の随時にCP
U35で時系列データと劣化判定基準とに基づいて劣化を
判定する。この判定の結果と時系列データ、劣化判定基
準を表示器41で表示し、またプリンタで印字出力する。
Next, the operation will be described. The leakage current flowing through the ground wire 3 of the zinc oxide arrester 2 is a combined current of the resistance component current flowing through the non-linear resistance 2a and the capacitance component current flowing through the electrostatic capacitance 2b. If the zinc oxide arrester 2 is in a normal state,
Normally, the resistance component current has a smaller peak value than the capacitance component current, and the waveform of the leakage current is slightly distorted from the sine wave, but when the zinc oxide type arrester 2 deteriorates, the nonlinear resistance 2a
Resistance value changes, the peak value of the resistance current increases (see Fig. 2 (A)), and the sine wave is greatly distorted (Fig. 2).
(See (B)). A current signal proportional to the leakage current flowing through the ground wire 3 of the zinc oxide surge arrester 2 is detected by the current transformer 4 and sent to the deterioration determination unit 30. This current signal is amplified by the amplifier 31 and half-wave rectified by the rectifier circuit 32 (see FIG. 2 (C)), and the integrator 33 performs time integration to detect the charge amount signal (see FIG. 3). .. The charge amount signal is a combination of the resistance current signal and the capacitance current signal that are integrated over time. The time integration of the resistance current signal is the power consumed by the nonlinear resistance 2a of the zinc oxide arrester 2. What is proportional to the loss and which is obtained by time-integrating the current signal corresponding to the capacitance is always constant regardless of the deterioration of the zinc oxide arrester 2. The deterioration of the zinc oxide arrester 2 is caused by the power loss of the non-linear resistance 2a. Therefore, the deterioration of the zinc oxide type arrester 2 can be determined from the charge amount signal. The half-wave rectified current signal is time-integrated by the integrator 33,
This detects the amount of charge signal having a period by performing pause time integration and the predetermined time T 2 of the predetermined time T 1 (see FIG. 3),
Each charge amount signal of three cycles is observed a plurality of times in a predetermined period and stored in the memory 34 as time series data (see FIG. 4). The memory 34 also stores the criteria for deterioration of the zinc oxide type arrester 2, and the CP can be stored at the end of a predetermined period or at any time during that period.
At U35, the deterioration is judged based on the time series data and the deterioration judgment standard. The result of this judgment, the time series data, and the deterioration judgment standard are displayed on the display unit 41 and printed out by the printer.

【0013】上記の実施例では電流信号を整流回路32で
半波整流するものとしたが、全波整流を行なってもよ
く、また、半波整流した電流信号を積分器33で所定時間
1 の時間積分と所定時間T2 の休止とを行なって、こ
れを周期とする電荷量信号を検出し、3周期の各電荷量
信号を観測するものとしたが、3周期に限るものではな
く、何周期であってもよい。
In the above embodiment, the current signal is half-wave rectified by the rectifier circuit 32. However, full-wave rectification may be performed, and the half-wave rectified current signal is integrator 33 for a predetermined time T 1. performed and the time integration and the predetermined time T 2 pause, which detects the amount of charge signal having a period, it is assumed to observe the amount of charge signals of three cycles is not limited to 3 cycles, It may be any cycle.

【0014】実施例2.図5はこの発明の他の実施例の
劣化判定部を示す電路線図であり、劣化判定部50に送ら
れた電流信号を増巾器51で増巾し、A/D変換器52でデ
ィジタル量に変換したのち、CPU54で電荷量信号の検
出と劣化の判定とを行なうものである。この実施例によ
れば、劣化判定部50の構成がより簡単になる。なお、上
記各実施例において、酸化亜鉛形避雷器2は碍管の内部
に複数の酸化亜鉛素子を積層して納め、碍管の両端に取
り付けたフランジに蓋を固定して密閉した構造の碍子形
であっても、また、金属容器の内部に複数の酸化亜鉛素
子を積層して固定し絶縁ガスを充填した構造のタンク形
であってもよいことは云うまでもない。
Example 2. FIG. 5 is a circuit diagram showing a deterioration determining unit according to another embodiment of the present invention, in which the current signal sent to the deterioration determining unit 50 is amplified by the amplifier 51 and digitalized by the A / D converter 52. After the conversion into the amount, the CPU 54 detects the charge amount signal and determines the deterioration. According to this embodiment, the configuration of the deterioration determination unit 50 becomes simpler. In each of the above embodiments, the zinc oxide type arrester 2 is an insulator type having a structure in which a plurality of zinc oxide elements are stacked inside the porcelain tube and the lids are fixed to the flanges attached to both ends of the porcelain tube for sealing. However, it goes without saying that it may be of a tank type having a structure in which a plurality of zinc oxide elements are laminated and fixed inside a metal container and filled with an insulating gas.

【0015】[0015]

【発明の効果】以上説明したとおり、この発明によれ
ば、電流信号を半波整流または全波整流したうえ所定時
間の時間積分と所定時間の休止とを行なってこれを周期
とする電荷量信号を検出し、所定周期の各電荷量信号を
所定期間に亙って複数回観測して時系列データとし、こ
の時系列データと酸化亜鉛形避雷器の劣化判定基準とに
基づいて判定する劣化判定部を設けたので、酸化亜鉛形
避雷器の劣化を正確に判定でき、かつ電路の構成もより
簡単になる効果がある。
As described above, according to the present invention, the charge amount signal having the period as the cycle is obtained by performing the half-wave rectification or the full-wave rectification of the current signal, performing the time integration of the predetermined time and the rest of the predetermined time. A deterioration determination unit that detects each of the charge amount signals of a predetermined cycle a plurality of times over a predetermined period to form time series data, and determines based on this time series data and the deterioration determination standard of the zinc oxide surge arrester. Since the above is provided, it is possible to accurately determine the deterioration of the zinc oxide type lightning arrester and to simplify the configuration of the electric circuit.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す電路線図である。FIG. 1 is an electric line diagram showing an embodiment of the present invention.

【図2】酸化亜鉛形避雷器の劣化状態における波形説明
図である。
FIG. 2 is an explanatory diagram of waveforms in a deteriorated state of the zinc oxide arrester.

【図3】電荷量信号を示す波形図である。FIG. 3 is a waveform diagram showing a charge amount signal.

【図4】時系列データを示す棒グラフである。FIG. 4 is a bar graph showing time series data.

【図5】この発明の他の実施例の劣化判定部を示す電路
線図である。
FIG. 5 is an electric line diagram showing a deterioration determining unit according to another embodiment of the present invention.

【図6】従来の酸化亜鉛形避雷器の劣化監視装置を示す
電路線図である。
FIG. 6 is a circuit diagram showing a conventional deterioration monitoring device for a zinc oxide surge arrester.

【図7】酸化亜鉛形避雷器の等価電路図である。FIG. 7 is an equivalent circuit diagram of a zinc oxide type arrester.

【図8】酸化亜鉛形避雷器の正常状態における波形説明
図である。
FIG. 8 is a waveform explanatory diagram of the zinc oxide arrester in a normal state.

【図9】抵抗分電流と対地電圧の関係を示す特性曲線図
である。
FIG. 9 is a characteristic curve diagram showing the relationship between resistance component current and ground voltage.

【符号の説明】[Explanation of symbols]

1 送電線路 2 酸化亜鉛形避雷器 3 接地線 4 変流器 21 プリンタ 30 劣化判定部 32 整流回路 33 積分器 34 メモリ 35 CPU 41 表示器 1 Transmission Line 2 Zinc Oxide Lightning Arrester 3 Ground Wire 4 Current Transformer 21 Printer 30 Deterioration Judgment Section 32 Rectifier Circuit 33 Integrator 34 Memory 35 CPU 41 Display

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 酸化亜鉛形避雷器の一端を送電線路に接
続するとともに他端を接地し、上記送電線路の対地電圧
により上記酸化亜鉛形避雷器に流れる漏れ電流に比例し
た電流信号を検出して上記酸化亜鉛形避雷器の劣化を判
定するものにおいて、上記電流信号を半波整流または全
波整流したうえ、所定時間の時間積分と所定時間の休止
とを行なってこれを周期とする電荷量信号を検出し、所
定周期の各電荷量信号を所定期間に亙って複数回観測し
て時系列データとし、この時系列データと上記酸化亜鉛
形避雷器の劣化判定基準とに基づいて判定する劣化判定
部を設けたことを特徴とする酸化亜鉛形避雷器の劣化監
視装置。
1. A zinc oxide arrester is connected to one end of a transmission line and the other end is grounded, and a current signal proportional to a leakage current flowing through the zinc oxide arrester is detected by the ground voltage of the transmission line. In determining the deterioration of a zinc oxide surge arrester, the current signal is half-wave rectified or full-wave rectified, and then a time integration of a predetermined time and a rest of a predetermined time are performed to detect a charge amount signal having this cycle as a cycle. Then, each charge amount signal of a predetermined cycle is observed a plurality of times over a predetermined period as time series data, and a deterioration determination unit for determining based on this time series data and the deterioration determination standard of the zinc oxide arrester is provided. A deterioration monitoring device for a zinc oxide type lightning arrester characterized by being provided.
JP3266620A 1991-10-16 1991-10-16 Deterioration monitor for zinc oxide type arrestor Pending JPH05111147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3266620A JPH05111147A (en) 1991-10-16 1991-10-16 Deterioration monitor for zinc oxide type arrestor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3266620A JPH05111147A (en) 1991-10-16 1991-10-16 Deterioration monitor for zinc oxide type arrestor

Publications (1)

Publication Number Publication Date
JPH05111147A true JPH05111147A (en) 1993-04-30

Family

ID=17433348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3266620A Pending JPH05111147A (en) 1991-10-16 1991-10-16 Deterioration monitor for zinc oxide type arrestor

Country Status (1)

Country Link
JP (1) JPH05111147A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0656635A1 (en) * 1993-12-03 1995-06-07 Alcatel Cable Device for measuring pulse energy
JP2017122666A (en) * 2016-01-08 2017-07-13 東日本旅客鉄道株式会社 Lightning arrester leakage current detection method, lightning arrester leakage current detection device, and lightning arrester leakage current monitor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0656635A1 (en) * 1993-12-03 1995-06-07 Alcatel Cable Device for measuring pulse energy
FR2713345A1 (en) * 1993-12-03 1995-06-09 Alcatel Cable Impulse energy measuring device
US5497075A (en) * 1993-12-03 1996-03-05 Alcatel Cable Apparatus for measuring pulse energy
JP2017122666A (en) * 2016-01-08 2017-07-13 東日本旅客鉄道株式会社 Lightning arrester leakage current detection method, lightning arrester leakage current detection device, and lightning arrester leakage current monitor device

Similar Documents

Publication Publication Date Title
CA1047114A (en) Electronic energy consumption meter with input transformer having single resistance terminated secondary winding coupled to c-mos switches driven by pulse width modulated control signals
US8024157B2 (en) Device for detecting voltage disturbance
US4577148A (en) Surge arrester equipped for monitoring functions and method of use
JPH05111147A (en) Deterioration monitor for zinc oxide type arrestor
RU2726042C1 (en) Method of determining value of stationary resistance of earthing arrangement of supports of overhead power transmission lines without disconnection of overhead ground wire and device for its implementation
CA2168159C (en) Electrical apparatus with wide dynamic range for monitoring and protecting electric power systems
KR101976077B1 (en) Hall Sensor Power Measuring Apparatus Having Improved Accuracy Using Temperature Sensor
KR200260814Y1 (en) a diagnosis detection systemfor power condenser
JPH065407A (en) Deterioration monitor of arrester
JP2560772B2 (en) Deterioration detection device for lightning arrester
JP2002354510A (en) Power consumption indicating device
JPH08254564A (en) Inspection equipment for leak current detector for arrester and simulated leak current generation circuit for arrester
JPH02129881A (en) Monitoring system for deterioration of zinc oxide type arrester
US6876741B2 (en) Device for detecting telephone line seizure
JP3303939B2 (en) Neutral line open phase detection circuit device
US20230280389A1 (en) Insulation monitoring device using triangular wave and method for controlling thereof
JP3255817B2 (en) Ion concentration measurement device
JPH04370687A (en) Monitoring device for deterioration of zinc oxide type lightning arrester
JP2575540Y2 (en) Leakage detection device in single-phase two-wire circuit
KR102395261B1 (en) Apparatus and method of degradation diagnosis for a power-line filter
JPH11307226A (en) Arrestor deterioration monitoring device
JPH09196988A (en) Deterioration detector for zinc oxide type lightning arrester
JPH01272075A (en) Deterioration detecting device for lightning arrestor
JPH03219581A (en) Monitor of zinc oxide arrester
JPH11191477A (en) Leakage current detection device for arrester