JPH0511100A - X-ray high-order light elimination filter - Google Patents

X-ray high-order light elimination filter

Info

Publication number
JPH0511100A
JPH0511100A JP3038856A JP3885691A JPH0511100A JP H0511100 A JPH0511100 A JP H0511100A JP 3038856 A JP3038856 A JP 3038856A JP 3885691 A JP3885691 A JP 3885691A JP H0511100 A JPH0511100 A JP H0511100A
Authority
JP
Japan
Prior art keywords
light
multilayer film
order light
wavelength
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3038856A
Other languages
Japanese (ja)
Other versions
JP2993147B2 (en
Inventor
Katsuhiko Murakami
勝彦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP3038856A priority Critical patent/JP2993147B2/en
Publication of JPH0511100A publication Critical patent/JPH0511100A/en
Application granted granted Critical
Publication of JP2993147B2 publication Critical patent/JP2993147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate high-order light effectively and select only desired wave length by layering two different materials by turns and constituting a filter with the multilayer film of the same thickness of each layer. CONSTITUTION:An X-ray high-order light elimination filter utilizes a multilayer flat film reflection mirror formed by layering two different materials A and B by turns in the same thicknesses d1, d2. As the thicknesses of the two layers constituting the multilayer film are the same, the primary peak reflection factor of the multilayer film is kept high and the secondary reflection factor is suppressed very low at the same time. Since the central wave length of high- order peak does not become strictly the reverse of integer time of the central wave length of primary reflection peak and shifts slightly in the reflection in a multilayer film because of refraction of light and the dispersion of refraction factor, the coupling of reflection peak of the primary incidence light delets the reflection of the high-order light of the incidence light. By rotating a reflection mirror around the axis perpendicular to the surface of incidence, the incidence angle is varied and selected wave length and the high-order light wave length to be eliminated are varied. By this, effective elimination of the high- order light and the selection of desired wave length become possible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、軟X線の波長域の光の
分光技術に関するものであり、特に分光器から生じる回
折光の高次光を除去できるフィルター装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for spectroscopic analysis of light in the wavelength range of soft X-rays, and more particularly to a filter device capable of removing higher-order light of diffracted light generated from a spectroscope.

【0002】[0002]

【従来の技術】近年、放射光やレーザープラズマX線源
などの高輝度の光源の発達に伴い、軟X線領域の波長の
光を分光して希望する波長を選択する技術の重要性が増
大している。そして、この波長域での波長選択には、一
般に凹面回折格子を用いた分光器が使用される。例え
ば、図5に示すように、凹面回折格子3の曲率半径Rを
直径とする円(ローランド円)6上に、凹面回折格子3
を間に挟んで入射スリット4,出射スリット5を設けた
ものがある。
2. Description of the Related Art In recent years, with the development of high-intensity light sources such as synchrotron radiation and laser plasma X-ray sources, the importance of a technique for separating light of a wavelength in the soft X-ray region and selecting a desired wavelength has increased. is doing. A spectroscope using a concave diffraction grating is generally used for wavelength selection in this wavelength range. For example, as shown in FIG. 5, the concave diffraction grating 3 is formed on a circle (Roland circle) 6 having a radius of curvature R of the concave diffraction grating 3.
There is one in which an entrance slit 4 and an exit slit 5 are provided with a space between them.

【0003】この図に示すような分光器の波長分解能
は、収差の影響を無視すれば次式で与えられる。
The wavelength resolution of the spectroscope as shown in this figure is given by the following equation, ignoring the influence of aberration.

【0004】[0004]

【数1】 [Equation 1]

【0005】ここで、λは軟X線の波長、Rは凹面回折
格子の曲率半径(ローランド円の直径)、dは回折格子
のピッチ、aは出射スリット幅である。従って、この分
光器では、例えば20Åの波長のX線に対して、曲率半
径Rを2m、aを50μmとして、1mmあたり240
0本回折格子を用いると、(1)式でλ/△λは192と
なり、△λは0.1Åの分解能が得られる。
Here, λ is the wavelength of the soft X-ray, R is the radius of curvature of the concave diffraction grating (the diameter of the Rowland circle), d is the pitch of the diffraction grating, and a is the exit slit width. Therefore, in this spectroscope, for example, with respect to X-rays having a wavelength of 20 Å, the radius of curvature R is set to 2 m, and a is set to 50 μm.
If 0 diffraction grating is used, λ / Δλ becomes 192 in the equation (1), and Δλ can obtain a resolution of 0.1Å.

【0006】[0006]

【発明が解決しようとする課題】以上のように、図5に
示すような、凹面回折格子を用いた分光器では軟X線に
対して充分な分解能が得られるが、回折格子では選択し
て得ようとする波長(以下、選択波長という。)の他
に、必ず選択波長の高次光が混入するという問題点があ
る。
As described above, a spectroscope using a concave diffraction grating as shown in FIG. 5 can obtain a sufficient resolution for soft X-rays. In addition to the wavelength to be obtained (hereinafter referred to as the selected wavelength), there is a problem that high-order light of the selected wavelength is always mixed.

【0007】即ち、凹面回折格子による分散条件とロー
ランド円結像の基本公式は、よく知られているように次
式で与えられる。 d(sinα+sinβ)=mλ (m=0,±1,±2…) …(2) 式 ここで、r1 =R・cosα,r2 =R・cosβ、ま
た、αは凹面回折格子への入射角,βは同じく反射角,
1 は入射スリットと凹面回折格子との距離,r2 は出
射スリットと凹面回折格子との距離である(図5参
照)。
That is, the dispersion formula by the concave diffraction grating and the basic formula of Rowland circle image formation are given by the following equations as well known. d (sinα + sinβ) = mλ (m = 0, ± 1, ± 2 ...) (2) where r 1 = R · cos α, r 2 = R · cos β, and α is incident on the concave diffraction grating. Angle β is also the reflection angle,
r 1 is the distance between the entrance slit and the concave diffraction grating, and r 2 is the distance between the exit slit and the concave diffraction grating (see FIG. 5).

【0008】この(2) 式から明らかなように、選択波長
λの光を分光して得ようとするときに、選択波長λの光
(m=1)の他に、その整数分の一の波長、即ちλ/
2,λ/3,λ/4……(m=2,3,4,……)の波
長をもつ光(以下、高次光という。)も分散条件を満た
すため、これらが回折光に混入してくる。このため、放
射光のように広い範囲で連続なスペクトルを持つ光源を
使用する場合、このような高次光の混入は選択波長を利
用する装置の誤動作や実験結果の解釈を複雑にするため
重大な問題点となる。
As is apparent from the equation (2), when the light of the selected wavelength λ is to be spectrally obtained, in addition to the light of the selected wavelength λ (m = 1), it is Wavelength, λ /
Light having a wavelength of 2, λ / 3, λ / 4 ... (m = 2, 3, 4, ...) (hereinafter referred to as high-order light) also satisfies the dispersion condition, and therefore these are mixed in the diffracted light. come. Therefore, when using a light source with a continuous spectrum over a wide range, such as synchrotron radiation, such a mixture of higher-order light complicates the malfunction of the device using the selected wavelength and the interpretation of the experimental result, which is a serious problem. It becomes a point.

【0009】そこで、このような高次光を除去する方法
としては、分光器の前で白金等をコーティングしたミラ
ーにごく小さい斜入射角で光を入射させ、X線の全反射
により高エネルギー成分(即ち、高次光の波長領域)を
除去する方法と、所望の波長の光のみをよく透過し高次
光を吸収するような物質から成る薄い膜をフィルターと
して用いる方法が一般に行われている。
Therefore, as a method of removing such higher-order light, light is made incident on a mirror coated with platinum or the like in front of the spectroscope at a very small oblique incident angle, and high energy components (ie Generally, a method of removing a high-order light wavelength region) and a method of using as a filter a thin film made of a substance that transmits only light of a desired wavelength and absorbs high-order light.

【0010】しかしながら、前者の全反射を利用する方
法では、ミラー表面物質と斜入射角で決まるある波長値
より長い波長のX線はすべて反射するので、軟X線領域
の比較的長い波長のX線を利用しようとする際には、高
次光の除去にはほとんど効果がない。
However, in the former method of utilizing total reflection, all X-rays having a wavelength longer than a certain wavelength value determined by the mirror surface material and the oblique incident angle are reflected, so that X having a relatively long wavelength in the soft X-ray region is reflected. When trying to use lines, it has little effect in removing higher order light.

【0011】また、後者の吸収を利用したフィルターで
は2次光を低減できるだけで、3次以上の高次光に対し
てはほとんど効果がない。さらに、2次光の除去率を高
めようとすると必然的に1次光の透過率も減少する問題
がある。また、選択波長を変える毎にフィルターの材質
を変える必要があること、選択波長によっては適切なフ
ィルター材料が存在しない場合もあることなどの問題点
もある。
Further, the latter filter utilizing absorption can reduce the secondary light, but has almost no effect on the tertiary or higher-order light. Further, if the removal rate of the secondary light is increased, the transmittance of the primary light is inevitably reduced. Further, there are also problems that it is necessary to change the material of the filter each time the selected wavelength is changed, and there is a case where an appropriate filter material does not exist depending on the selected wavelength.

【0012】このように、これまで軟X線領域の波長で
分光器から出てくる高次光を完全に除去する有効な手段
は存在せず、分光した軟X線を用いた実験を行う際の大
きな障害となっていた。本発明は、この様な従来の問題
点に鑑みてなされたもので、分光した軟X線から高次光
を完全に除去できる新しい概念に基づく高次光除去フィ
ルターを提供することを目的とする。
As described above, there has been no effective means for completely removing the high-order light emitted from the spectroscope at the wavelength in the soft X-ray region, and it is a great problem in conducting an experiment using the dispersed soft X-rays. It was an obstacle. The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a high-order light removal filter based on a new concept that can completely remove high-order light from spectral soft X-rays.

【0013】[0013]

【課題を解決するための手段】上記問題点の解決のため
に請求項1記載の発明では、多層膜平面反射鏡を入射面
に垂直な軸の回りに回転させて波長走査を行うX線高次
光除去フィルターにおいて、前記多層膜が、二つの異な
る物質を交互に積層し、それぞれの物質の層の膜厚が互
いに等しい多層膜からなることを特徴とする。
In order to solve the above-mentioned problems, in the invention according to claim 1, X-ray higher-order light for wavelength scanning by rotating a multilayer film flat reflecting mirror around an axis perpendicular to the incident surface. In the removal filter, the multi-layered film is formed by alternately stacking two different substances, and the layers of the respective substances have the same film thickness.

【0014】さらに、請求項2記載の発明では、請求項
1に記載した多層膜平面反射鏡を2枚用い、各多層膜平
面反射鏡を平行に対向させると共に、その平行状態を保
ったまま各々の多層膜平面反射鏡を同一角度だけ回転さ
せる回動手段を備えたこと特徴とする。
Further, in the invention described in claim 2, two multilayer film plane reflecting mirrors according to claim 1 are used, and the multilayer film plane reflecting mirrors are opposed to each other in parallel, and each of them is kept in the parallel state. The multi-layered film flat reflecting mirror is provided with a rotating means for rotating the same by the same angle.

【0015】[0015]

【作用】本願請求項1記載の発明は上記のように構成さ
れているため、二つの異なる物質A,Bが交互に積層さ
れ、かつそれぞれの物質A,Bの一層の膜厚dA ,dB
が互いに等しい多層膜平面反射鏡を用い、これを入射面
に垂直な軸の回りに回転させて波長走査を行う。
Since the invention according to claim 1 of the present application is configured as described above, two different substances A and B are alternately laminated, and one layer thickness d A and d of each substance A and B is formed. B
Are used to perform wavelength scanning by rotating the mirror about a shaft perpendicular to the incident surface.

【0016】この入射光は、図5に示すような分光器か
ら射出されたX線の回折光であり、このような分光器で
分光された選択波長とその高次光とを含んでいる。そし
て、多層膜平面反射鏡を入射光軸に垂直な軸回りに回転
させることで入射角を変更し、選択波長並びに除去すべ
き高次光の波長の変更を行う。
This incident light is the diffracted light of the X-ray emitted from the spectroscope as shown in FIG. 5, and includes the selected wavelength and the higher-order light thereof which are spectroscopically separated by such a spectroscope. Then, the incident angle is changed by rotating the multilayer film flat reflecting mirror about an axis perpendicular to the incident optical axis, and the selected wavelength and the wavelength of the higher-order light to be removed are changed.

【0017】また、請求項2記載の発明では、請求項1
記載の多層膜平面反射鏡を2枚用いて互いに平行に対向
させることで、一方の多層膜平面反射鏡で反射した反射
光を他方の多層膜平面反射鏡に再度入射させ、上記のよ
うな分光器から出たX線の回折光を2回反射させる。こ
こで、2枚の多層膜平面反射鏡を平行に対向させている
ため、相互に等しい入射角で多層膜平面反射鏡に入射す
る。
According to the second aspect of the invention, the first aspect is
By using two described multilayer flat mirrors to face each other in parallel, the reflected light reflected by one of the multilayer flat mirrors is re-incident on the other flat multilayer mirror, and the above-mentioned spectroscopic analysis is performed. The diffracted light of the X-ray emitted from the container is reflected twice. Here, since the two multilayer film plane reflecting mirrors are opposed to each other in parallel, they are incident on the multilayer film plane reflecting mirror at the same incident angle.

【0018】さらに、回動手段によりこの平行状態を保
ったまま各々の多層膜平面反射鏡を同一角度だけ回転さ
せることで、互いの多層膜平面反射鏡へ入射角が等しい
状態のまま、選択波長並びに除去すべき高次光の波長の
変更を行う。
Further, by rotating the respective multilayer film flat reflecting mirrors by the same angle while maintaining this parallel state by the rotating means, the selected wavelengths are kept in a state where the incident angles are equal to each other. Also, the wavelength of the higher-order light to be removed is changed.

【0019】ここで、本発明における高次光の除去作用
について説明する。まず、多層膜を構成する2つの物質
の層の厚さを互いに等しくしたことで、高次光の内、特
に2次光の反射光強度が弱くなる。
Now, the function of removing high-order light in the present invention will be described. First, by making the thicknesses of the layers of the two substances constituting the multilayer film equal to each other, the reflected light intensity of the secondary light, especially the secondary light, becomes weak.

【0020】即ち、多層膜での反射においては、入射光
の波長λ、斜入射角θ、更に多層膜の周期dについて、
以下のBraggの条件を満たすときにのみX線を反射
し、この条件を満たさないところではほとんど反射しな
い。 2dsinθ=nλ (nは正の整数) …(3) 式 ここで、nは正の整数で反射の次数である。従って、入
射角が一定であれば、とびとびの波長(n=1,2,3
……に夫々対応する波長)に対し反射率がピークを持つ
ことになる。
That is, in the reflection by the multilayer film, the wavelength λ of the incident light, the oblique incident angle θ, and the cycle d of the multilayer film are
X-rays are reflected only when the following Bragg conditions are satisfied, and almost no reflection occurs when these conditions are not satisfied. 2d sin θ = nλ (n is a positive integer) (3) Equation (3) Here, n is a positive integer and is the order of reflection. Therefore, if the incident angle is constant, the discrete wavelengths (n = 1, 2, 3
The reflectance has a peak for each wavelength).

【0021】ところで、この(3) 式は、元々X線回折に
おいて厚さが無視できる結晶面が周期dで並んでいると
きの回折条件である。本発明ではこれをX線を反射する
多層膜に応用し、2つの異なる物質を交互に等しい厚さ
で積層することで人工的に周期構造を作りだしたもので
ある。
By the way, the expression (3) is a diffraction condition when the crystal planes whose thickness is originally negligible in X-ray diffraction are arranged at the period d. In the present invention, this is applied to a multilayer film that reflects X-rays, and two different substances are alternately laminated with the same thickness to artificially create a periodic structure.

【0022】この積層構造を構成する各物質からなる薄
膜層の一例を示すと、例えばX線の散乱の大きい重原子
層と散乱の小さい軽原子層とを組合せて交互に積層する
ことにより、結晶面の周期構造とほぼ同様な反射状態を
示すこととなる。ここで、重原子層と軽原子層との組合
せは異なる物質の選択基準として、反射効率の高いもの
を示す一例であり、これらに限定されるものではなく、
X線に対する散乱の異なる物質であれば良い。
An example of a thin film layer made of each substance constituting this laminated structure is shown. For example, a heavy atom layer having a large X-ray scattering and a light atom layer having a small X-ray scattering are combined and alternately laminated to form a crystal. The reflection state is almost the same as the periodic structure of the surface. Here, the combination of the heavy atomic layer and the light atomic layer is an example showing a high reflection efficiency as a selection criterion for different substances, and is not limited to these.
Any substance that has a different scattering for X-rays may be used.

【0023】そして、本発明に係る多層膜におけるBr
aggの条件は、より散乱の大きい物質からなる層(例
えば、上記の各重原子層)で散乱されたX線が、互いに
2πの整数倍だけ位相がずれて干渉する場合に満足する
こととなる。
Then, Br in the multilayer film according to the present invention
The condition of agg is satisfied when the X-rays scattered in the layer made of a substance having a larger scattering (for example, each of the heavy atom layers described above) interfere with each other while being out of phase with each other by an integral multiple of 2π. .

【0024】ここで、本発明の多層膜反射が結晶による
回折と異なる点は、X線を散乱する層(以下「反射層」
という。)の厚さが無視できない点であり、入射光のう
ちBraggの条件を満足していても反射しない場合が
ある。すなわち、多層膜に入射したX線は反射層内部で
の散乱により反射する(反射層内部での散乱位置に違い
が生ずる)ため、ひとつの反射層での散乱により反射さ
れたX線が反射層の厚さに応じた位相の幅を持つことと
なる。
Here, the point that the multilayer film reflection of the present invention is different from the diffraction by crystals is a layer that scatters X-rays (hereinafter referred to as "reflection layer").
Say. The thickness of () is not negligible, and may not be reflected even if the incident light satisfies the Bragg condition. That is, since X-rays incident on the multilayer film are reflected by scattering inside the reflective layer (differences occur in scattering positions inside the reflective layer), X-rays reflected by scattering at one reflective layer are reflected. The width of the phase depends on the thickness of the.

【0025】散乱光の振幅を正弦波で表現すると、この
ひとつの反射層で散乱されたX線の振幅は以下の式に比
例する。
When the amplitude of scattered light is represented by a sine wave, the amplitude of X-rays scattered by this one reflecting layer is proportional to the following equation.

【0026】[0026]

【数2】 [Equation 2]

【0027】ここで、αは散乱光の位相、Pは重原子層
の厚さに対応する位相の幅、kは波数、xは光の進行方
向にとった座標である。この(4) 式からも明らかなよう
に、先のBraggの条件を満足していたとしてても、
P=2mπ(m:整数)のときは反射光のピーク強度は
0になる。
Here, α is the phase of the scattered light, P is the width of the phase corresponding to the thickness of the heavy atom layer, k is the wave number, and x is the coordinate in the traveling direction of the light. As is clear from the equation (4), even if the above Bragg condition is satisfied,
When P = 2mπ (m: integer), the peak intensity of reflected light becomes zero.

【0028】一方、本発明の多層膜の周期をd、反射層
の厚さをdH とすると、n次の反射波は一層対で位相が
2nπだけずれるから、重原子層での散乱光の位相の幅
は P=2nπdH /d となる。従って、 n=md/dH (n,m:整数) が満たされるとき反射光のピーク強度は0になる。例え
ば、d/dH =2のときは偶数次の反射光のピーク強度
は0になり、d/dH =3のときは3の倍数の次数の反
射光のピーク強度が0になる。以上の議論はX線回折に
おける消衰理論に対応するものである。ここでは、吸収
を考慮していないので、実際には厳密に0にはならない
が、ピーク強度は他の次数の反射に比べて非常に低くな
る。
On the other hand, when the period of the multilayer film of the present invention is d and the thickness of the reflective layer is d H , the reflected waves of the nth order are phase-shifted by 2nπ in one pair, and therefore the scattered light in the heavy atom layer is The width of the phase is P = 2nπd H / d. Therefore, when n = md / d H (n, m: integer) is satisfied, the peak intensity of the reflected light becomes 0. For example, when d / d H = 2, the peak intensity of the even-order reflected light is 0, and when d / d H = 3, the peak intensity of the reflected light of a multiple of 3 is 0. The above discussion corresponds to the extinction theory in X-ray diffraction. Here, since absorption is not taken into consideration, it does not actually become exactly 0, but the peak intensity is much lower than reflections of other orders.

【0029】本発明では、多層膜を構成する2つの層の
厚さを互いに等しく構成しているため、多層膜の1次ピ
ーク反射率を高く維持しながら2次ピーク反射率を極め
て低く抑えている。即ち、本発明に係るX線高次光フィ
ルターによれば、分光器からの高次光を含んだ入射光の
内、1次光を強く反射し2次光をほとんど反射しないの
で、2次の高次光を除去することができる。
In the present invention, since the two layers constituting the multilayer film have the same thickness, the secondary peak reflectance of the multilayer film can be kept extremely low while the primary peak reflectance of the multilayer film is kept high. There is. That is, according to the X-ray high-order optical filter of the present invention, of the incident light including the high-order light from the spectroscope, the primary light is strongly reflected and the secondary light is hardly reflected, so that the secondary high-order light is removed. be able to.

【0030】次に、多層膜による反射においては、光の
屈折と屈折率の分散のために、高次の反射ピークの中心
波長が、厳密に1次の反射ピークの中心波長の整数分の
一の波長(入射光の高次光の波長)とはならずに少しず
れるため、入射光の1次光の反射ピークを合わせると入
射光の高次光(特に、3次光以上)は反射しないものと
なる。
Next, in the reflection by the multilayer film, the center wavelength of the higher-order reflection peak is exactly an integer fraction of the center wavelength of the first-order reflection peak due to refraction of light and dispersion of the refractive index. The wavelength of the incident light is higher than the wavelength of the incident light (the wavelength of the higher-order light of the incident light), and is slightly shifted.

【0031】即ち、上記のBraggの式ではX線の屈
折の影響は無視されている。X線の波長域では、物質の
屈折率は1に近いのでX線の屈折はごくわずかだが、斜
入射になるとその影響は無視できなくなってくる。この
屈折を考慮したBraggの式は次式で与えられる。 2dsinθ(1−δ(λ)/sin2 θ)=mλ …(5) 式 ここで、δは多層膜を構成する物質の屈折率の実部を表
わす(本発明では、2つの物質の平均値)。
That is, in the above Bragg equation, the influence of X-ray refraction is neglected. In the wavelength range of X-rays, the refractive index of the substance is close to 1, so the refraction of X-rays is very small, but the effect cannot be ignored when it is obliquely incident. The Bragg equation considering this refraction is given by the following equation. 2d sin θ (1−δ (λ) / sin 2 θ) = mλ (5) where δ represents the real part of the refractive index of the substance that constitutes the multilayer film (in the present invention, the average value of the two substances). ).

【0032】このδは、一般に入射光の波長により異な
る(屈折率分散)ため、多層膜による反射では、反射強
度の高次ピークの中心波長は一次ピークの中心波長の正
確に整数分の一にはならない。一方、分光器から出てく
る回折光の高次光の波長は一次光の波長の整数分の一で
あり、本発明の多層膜に入射する入射光にはこの高次光
が含まれている。
Since this δ generally differs depending on the wavelength of incident light (refractive index dispersion), the center wavelength of the higher-order peak of the reflection intensity is exactly an integral fraction of the center wavelength of the first-order peak in reflection by the multilayer film. Don't On the other hand, the wavelength of the higher-order light of the diffracted light emitted from the spectroscope is a fraction of the wavelength of the first-order light, and the incident light entering the multilayer film of the present invention includes this higher-order light.

【0033】従って、図3に示すように、多層膜での反
射の1次ピークの中心波長と分光器から出てくる1次光
の波長とが一致するように多層膜反射鏡への斜入射角θ
をあわせると、多層膜反射の高次ピークの中心波長と分
光器から来る回折光の高次光の波長とは一致せず、少し
ずれることとなる。
Therefore, as shown in FIG. 3, the oblique incidence on the multilayer reflecting mirror is made so that the center wavelength of the primary peak of the reflection on the multilayer film and the wavelength of the primary light emitted from the spectroscope coincide with each other. Angle θ
In addition, the central wavelength of the higher-order peak of the reflection of the multilayer film and the wavelength of the higher-order light of the diffracted light coming from the spectroscope do not match, and there is a slight deviation.

【0034】このとき、多層膜での反射率ピークの半値
幅がこのズレ量よりも充分小さければ、分光器から来る
高次光は多層膜によって反射されないこととなり、高次
光が除去されることとなる。尚、反射率ピークの半値幅
は、多層膜の層数をある程度多くすることにより、狭く
することができる。本発明にかかるX線高次光除去フィ
ルターでは、このような多層膜の性質を利用して特に3
次以上の高次光をも除去するものとしている。
At this time, if the full width at half maximum of the reflectance peak in the multilayer film is sufficiently smaller than this deviation amount, the higher order light coming from the spectroscope will not be reflected by the multilayer film, and the higher order light will be removed. The full width at half maximum of the reflectance peak can be narrowed by increasing the number of layers of the multilayer film to some extent. The X-ray high-order light removal filter according to the present invention utilizes the properties of the multilayer film as described above, and particularly
It is supposed that high-order light higher than the second order will be removed.

【0035】即ち、本発明においては、二つの物質を
A,Bとすると、それぞれの層の厚さdA ,dB が等し
い多層膜平面反射鏡で、分光器からの回折光を反射させ
てそこに含まれる高次光をすべて除去する。このとき、
多層膜による1次の反射のピークの中心波長が分光器か
らの回折光の1次光の波長に一致するように、この多層
膜平面反射鏡への回折光の入射角を設定すればよい。そ
して、波長を変えて波長走査を行うときは、入射角が選
択波長に応じた適切な値になるように、多層膜平面反射
鏡を回転させれば良い。
That is, in the present invention, assuming that the two substances are A and B, the diffracted light from the spectroscope is reflected by the multilayer film plane reflecting mirror having the same thickness d A and d B of the respective layers. All high-order light contained therein is removed. At this time,
The incident angle of the diffracted light on this multilayer film plane reflecting mirror may be set so that the central wavelength of the peak of the first-order reflection by the multilayer film matches the wavelength of the primary light of the diffracted light from the spectroscope. Then, when wavelength scanning is performed by changing the wavelength, the multilayer film plane reflecting mirror may be rotated so that the incident angle becomes an appropriate value according to the selected wavelength.

【0036】また、請求項2記載の発明では、このよう
な多層膜平面反射鏡を2枚用い、これらを互いに平行に
反射面が対向するように配置して、分光器から来た回折
光を2回反射させる。
According to the second aspect of the present invention, two such multilayer film plane reflecting mirrors are used, and they are arranged in parallel with each other so that their reflecting surfaces face each other. Reflect twice.

【0037】この場合、多層膜反射の1次光の反射率
(I1 )に対する高次光のうちn次光の反射率(In
の比をIn /I1 とすると、上記のように2回反射させ
ることによって、この値は(In /I12 になる。従
って、回折光のn次光の除去率は1−(In /I12
になるため、2回反射させることによって、高次光の除
去率が著しく増大する。
In this case, the reflectance (I n ) of the n-th light out of the higher-order light with respect to the reflectance (I 1 ) of the primary light reflected by the multilayer film.
Assuming that the ratio of In is I n / I 1 , this value becomes (I n / I 1 ) 2 by reflecting twice as described above. Therefore, the removal rate of the nth-order light of the diffracted light is 1- (I n / I 1 ) 2
Therefore, the reflection rate of the high-order light is significantly increased by reflecting the light twice.

【0038】また、選択波長を変えて波長走査を行うと
きは、回動手段により2枚の多層膜反射鏡が互いに平行
状態を保ったまま回転するので、入射角が変化しても互
いの多層膜反射鏡への入射角は同一の状態のままであり
光の出射方向は変わらない。ただし、出射光軸が波長走
査とともに平行移動してしまうので、一方の多層膜反射
鏡を回転と同時に光軸方向に平行移動させてもよい(図
4参照)。こうすれば、出射光軸が動かないようにする
ことができる。
When wavelength scanning is performed by changing the selected wavelength, the rotating means rotates the two multilayer film reflecting mirrors while keeping them in parallel with each other. The incident angle to the film reflecting mirror remains the same, and the light emitting direction does not change. However, since the emission optical axis moves in parallel with the wavelength scanning, one of the multilayer film reflecting mirrors may be moved in parallel in the optical axis direction at the same time as the rotation (see FIG. 4). This makes it possible to prevent the outgoing optical axis from moving.

【0039】[0039]

【実施例】以下、図を用いて本発明の実施例について詳
しく述べる。図1に、本発明の第1の実施例にかかる多
層膜平面反射鏡を示す。この実施例では、各層を形成す
る物質としてタングステンと炭素とを用いた。(以下、
W/C多層膜という。)鏡面研磨したシリコン基板上
に、rfマグネトロンスパッタ法により、タングステン
と炭素を交互に積層して多層膜平面反射鏡1を作成し
た。そして、タングステン層の厚さ(dA )と炭素の層
の厚さ(dB)とはいずれも等しく30Åとし、一周期
(1対層)の厚さdが60Åになるように形成し、多層
膜の層数は、それぞれ50層とした。
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 1 shows a multilayer-film flat mirror according to the first embodiment of the present invention. In this example, tungsten and carbon were used as the material forming each layer. (Less than,
It is called a W / C multilayer film. ) On the mirror-polished silicon substrate, tungsten and carbon were alternately laminated by the rf magnetron sputtering method to form the multilayer film plane reflecting mirror 1. The thickness of the tungsten layer (d A ) and the thickness of the carbon layer (d B ) are both equal to 30Å, and the thickness d of one cycle (one layer) is 60Å, The number of layers of the multilayer film was 50 layers each.

【0040】このように構成された多層膜平面反射鏡1
を図1に示すように、入射光軸に垂直な軸の回りに回転
できるように保持して高次光除去フィルターを構成し
た。そして、放射光から出てくる連続なスペクトルをも
った光を、図5に示すような凹面回折格子を用いた分光
器で分光し、その回折光2をこの実施例にかかる高次光
除去フィルターへ入射させている。
The multi-layered film plane mirror 1 thus constructed
As shown in FIG. 1, a high-order light removal filter was constructed by holding it so that it could rotate around an axis perpendicular to the incident optical axis. Then, the light having a continuous spectrum emitted from the emitted light is dispersed by a spectroscope using a concave diffraction grating as shown in FIG. 5, and the diffracted light 2 is incident on the high-order light removal filter according to this embodiment. I am letting you.

【0041】この実施例において、多層膜平面反射鏡1
への斜入射角を10°に固定にしたとき、多層膜反射の
1次のピーク波長は19.3Åであり、2次,3次のピ
ーク波長は、それぞれ10.15Å,6.90Åであっ
た。また、1次ピークの反射率は14.8%であり、2
次ピークの反射率は0.1%である。
In this embodiment, the multilayer flat mirror 1 is used.
When the oblique incidence angle to is fixed at 10 °, the first-order peak wavelength of the multilayer reflection is 19.3Å, and the second- and third-order peak wavelengths are 10.15Å and 6.90Å, respectively. It was The reflectance of the primary peak is 14.8%, which is 2
The reflectance of the next peak is 0.1%.

【0042】従って、この多層膜平面反射鏡1による1
回の反射で、回折光2の2次光反射は、同じく1次光の
反射に比較すると、その比率が1/148となる。従っ
て、2次光の1次光に対する除去率は1−(1/14
8)=99.32%となり、2次光は、ほぼ完全に除去
されたものとなる。
Therefore, the multilayer flat mirror 1
The second-order light reflection of the diffracted light 2 after the first reflection is 1/148 in comparison with the first-order light reflection. Therefore, the removal rate of the secondary light from the primary light is 1- (1/14
8) = 99.32%, and the secondary light is almost completely removed.

【0043】さらに、多層膜反射の3次の反射率は1.
4%であるが、反射ピークの波長は6.90Åでありピ
ーク半値幅は0.04Åである。一方、分光器からの1
次光の波長を、多層膜反射の1次ピークに一致させて1
9.3Åとしたときの回折光の3次光の波長は6.43
Åである。
Further, the third-order reflectance of the multilayer film reflection is 1.
Although it is 4%, the wavelength of the reflection peak is 6.90Å and the peak half width is 0.04Å. On the other hand, 1 from the spectroscope
Match the wavelength of the next light with the primary peak of the multilayer reflection, and
The wavelength of the third-order light of the diffracted light is 6.4 when assuming 9.3Å.
It is Å.

【0044】従って、回折光2の3次光の波長は多層膜
反射の3次ピーク位置とは全く重ならないので、回折光
2の3次光はこの多層膜では反射しない。このとき、回
折光2の3次光の除去率は99.93%以上であり、3
次光は除去された。そして、回折光2の4次以上の高次
光に対しても同様にしてこれらと同等以上の除去率が得
られるため、これらは完全に除去される。
Therefore, since the wavelength of the third-order light of the diffracted light 2 does not overlap with the third-order peak position of the multilayer film reflection, the third-order light of the diffracted light 2 is not reflected by this multilayer film. At this time, the removal rate of the third-order light of the diffracted light 2 is 99.93% or more, which is 3
The next light was removed. Then, the removal rates equal to or higher than those of the diffracted light 2 of the fourth and higher orders are obtained in the same manner, so that these are completely removed.

【0045】次に、多層膜平面反射鏡1への斜入射角を
20°に固定した。このとき、多層膜反射の1次ピーク
波長は39.0Åであり、2次,3次のピーク波長は、
それぞれ20.3Å,13.5Åである。そして、1次
ピークの反射率は3.7%であり、2次ピークの反射率
は0.04%である。
Next, the oblique incidence angle on the multilayer flat mirror 1 was fixed at 20 °. At this time, the first-order peak wavelength of the multilayer film reflection is 39.0Å, and the second- and third-order peak wavelengths are
They are 20.3Å and 13.5Å respectively. The reflectance of the primary peak is 3.7%, and the reflectance of the secondary peak is 0.04%.

【0046】従って、多層膜平面反射鏡1による1回の
反射で、回折光2の2次光の1次光に対する反射強度の
比率は4/370となる。従って、回折光2の2次光の
1次光に対する除去率は1−(4/370)=98.9
2%となり、この場合にも2次光はほぼ完全に除去され
ている。
Therefore, the ratio of the reflection intensity of the secondary light of the diffracted light 2 to the primary light is 4/370 by one reflection by the multilayer film plane reflecting mirror 1. Therefore, the removal rate of the secondary light of the diffracted light 2 with respect to the primary light is 1- (4/370) = 98.9.
2%, and in this case as well, the secondary light is almost completely removed.

【0047】また、多層膜反射の3次の反射率は3.0
%であるが、反射ピークの波長は13.5Åでありピー
ク半値幅は0.13Åである。一方、分光器からの1次
光の波長を、この場合の多層膜反射の1次ピーク波長に
一致させて39.0Åとしたときの3次光の波長は1
3.0Åである。
The third-order reflectance of the multilayer reflection is 3.0.
%, But the wavelength of the reflection peak is 13.5 Å and the peak half width is 0.13 Å. On the other hand, when the wavelength of the primary light from the spectroscope is matched with the primary peak wavelength of the multilayer film reflection in this case to be 39.0Å, the wavelength of the tertiary light is 1
It is 3.0Å.

【0048】従って、この場合にも回折光の3次光の波
長は多層膜反射の3次ピーク位置とは全く重ならないの
で、回折光の3次光は反射しない。このとき、回折光の
3次光の除去率は99.08%以上であり、3次光は完
全に除去されており、さらに4次以上の高次光に対して
も同様にして、これらと同等以上の除去率が得られる。
Therefore, also in this case, the wavelength of the third-order light of the diffracted light does not overlap with the third-order peak position of the reflection in the multilayer film at all, so that the third-order light of the diffracted light is not reflected. At this time, the removal rate of the third-order light of the diffracted light is 99.08% or more, the third-order light is completely removed, and the same is true for the higher-order light of the fourth-order or higher, and the same or higher. The removal rate of is obtained.

【0049】以上のように、本実施例にかかる多層膜平
面反射鏡では、一周期dが60ÅのW/C多層膜を用
い、これを斜入射角10°から20°の範囲で用いるこ
とによって、選択波長19Åから39Åの範囲でその高
次光を効率良く除去できる高次光除去フィルターを実現
できた。
As described above, in the multilayer film flat reflecting mirror according to the present embodiment, the W / C multilayer film having one period d of 60Å is used, and this is used in the range of the oblique incident angle of 10 ° to 20 °. , A high-order light removal filter capable of efficiently removing the high-order light in the selected wavelength range of 19 Å to 39 Å was realized.

【0050】比較のために、通常の吸収係数の差を利用
するフィルターの場合の高次光除去率を調べた。この場
合、X線の線吸収係数μ1 は次式で与えられる。 μ1 =4πβ/λ ここで、βは屈折率の虚部、λはX線の波長である。ま
た、厚さtの物質中をX線が透過するとき、X線は吸収
によりexp(−μ1 t)に減衰する。従って、波長λ
2 の光の透過率と波長λ1 の光の透過率との比は、 exp(−μ2 t)/exp(−μ1 t) となる。
For comparison, the high-order light removal rate in the case of a filter utilizing the usual difference in absorption coefficient was examined. In this case, the X-ray absorption coefficient μ 1 is given by the following equation. μ 1 = 4πβ / λ where β is the imaginary part of the refractive index and λ is the wavelength of the X-ray. Further, when X-rays pass through a substance having a thickness t, the X-rays are attenuated to exp (−μ 1 t) by absorption. Therefore, the wavelength λ
The ratio between the transmittance of the light of No. 2 and the transmittance of the light of wavelength λ 1 is exp (−μ 2 t) / exp (−μ 1 t).

【0051】このため、m次の高次光の除去率は、1次
光の波長での線吸収係数をμ1 ,m次光の波長での線吸
収係数をμm として 1−exp(−μm t)/exp(−μ1 t) で与えられ、μm >μ1 なる材料を用いればフィルター
の厚さtを増すほど高次光除去率は高まるが、同時に1
次光の透過率が低下する。
[0051] Therefore, the removal rate of m-th order higher light 1 a linear absorption coefficient at the wavelength of the primary light mu, m order light 1-exp (- [mu] m linear absorption coefficient at a wavelength as mu m of t) / exp (-μ 1 t), and if a material having μ m > μ 1 is used, the higher order light removal rate increases as the filter thickness t increases, but at the same time
The transmittance of the next light is reduced.

【0052】ところで、フィルターの材料は、吸収端よ
りも少し長い波長で吸収が小さくなることから、使用す
る選択波長よりも少し短い波長に吸収端を持つ材料が適
している。このため、波長19.3ÅのX線に対して
は、13Åに吸収端を持つ銅を用いた。そして、実施例
と比較するために、透過率が同じになるようにフィルタ
ーの厚さを0.55μmとした。このとき、2次光の除
去率は76.9%であった。また、3次光に対しては1
次光よりも透過率が高くなり、フィルターとしての効果
はなかった。
By the way, as the material of the filter, since the absorption becomes small at a wavelength slightly longer than the absorption edge, a material having an absorption edge at a wavelength slightly shorter than the selected wavelength to be used is suitable. Therefore, for X-rays having a wavelength of 19.3Å, copper having an absorption edge at 13Å was used. Then, for comparison with the example, the thickness of the filter was set to 0.55 μm so that the transmittance was the same. At this time, the removal rate of the secondary light was 76.9%. Also, 1 for 3rd order light
The transmittance was higher than that of the next light and there was no effect as a filter.

【0053】一方、波長39.0ÅのX線に対しては、
31Åに吸収端を持つ銀を用い、同じく実施例との比較
のために、透過率が同じになるようにフィルターの厚さ
を0.4μmとした。このとき、2次光の除去率は9
7.52%であり本発明の実施例よりも低く、3次光の
除去率は5.1%であり、ほとんど除去できない問題が
ある。
On the other hand, for X-rays with a wavelength of 39.0Å,
Silver having an absorption edge at 31 Å was used, and the thickness of the filter was set to 0.4 μm so that the transmittance was the same for comparison with the example. At this time, the removal rate of the secondary light is 9
The ratio is 7.52%, which is lower than that of the embodiments of the present invention, and the removal rate of the third-order light is 5.1%, which is a problem that the removal is hardly possible.

【0054】次に、本発明の第2の実施例について説明
する。第1実施例と同様のスペックで、W/C多層膜か
らなる2枚の同じ多層膜平面鏡1A,1Bを作成し、こ
れらを図2に示すように、反射面が互いに平行になるよ
うに対向させた。そして、その平行状態を保ったまま共
に同一角度づつ回転できるように保持して高次光除去フ
ィルターを構成した。
Next, a second embodiment of the present invention will be described. With the same specifications as in the first embodiment, two identical multilayer film plane mirrors 1A and 1B made of a W / C multilayer film are formed, and these are opposed to each other so that their reflecting surfaces are parallel to each other, as shown in FIG. Let Then, the high-order light removal filter was constructed by holding the parallel state so that they can be rotated by the same angle.

【0055】そして、放射光から出てくる連続なスペク
トルをもった光を、図5に示すような凹面回折格子を用
いた分光器で分光した後、その回折光2をこの第2実施
例にかかる高次光除去フィルターへ入射させた。
Then, the light having a continuous spectrum emitted from the emitted light is dispersed by a spectroscope using a concave diffraction grating as shown in FIG. 5, and the diffracted light 2 is used in this second embodiment. The light was made incident on the high-order light removal filter.

【0056】この実施例において、多層膜平面反射鏡1
Aへの斜入射角を10°に固定したとき、多層膜平面反
射鏡1Bへの斜入射角も10°となる。そして、多層膜
反射のピーク波長は第1実施例と同様であり、1次,2
次,3次のピーク波長は、それぞれ19.3Å,10.
5Å,6.90Åである。1枚の多層膜平面反射鏡での
反射率も第1実施例と同様であり、1次ピークの反射率
は14.8%であり、2次ピークの反射率は0.1%で
ある。
In this embodiment, the multilayer flat mirror 1 is used.
When the oblique incident angle on A is fixed at 10 °, the oblique incident angle on the multilayer film flat reflecting mirror 1B is also 10 °. The peak wavelength of the reflection of the multilayer film is similar to that of the first embodiment.
The second and third peak wavelengths are 19.3Å and 10.
They are 5Å and 6.90Å. The reflectance of one multilayer flat mirror is similar to that of the first embodiment, the reflectance of the primary peak is 14.8%, and the reflectance of the secondary peak is 0.1%.

【0057】従って、この実施例においては、多層膜平
面反射鏡1A,1Bによる2回の反射で、回折光の2次
光反射の1次光に対する除去率は、1−(1/148)
2 =99.995%となり、2次光は完全に除去され
た。また、このとき1次光のフィルター透過効率は2.
2%であった。
Therefore, in this embodiment, the removal rate of the diffracted light from the secondary light reflected by the multilayered film flat reflecting mirrors 1A and 1B with respect to the primary light is 1- (1/148).
2 = 99.995%, and the secondary light was completely removed. At this time, the filter transmission efficiency of the primary light is 2.
It was 2%.

【0058】また、この実施例での3次反射率、ピーク
波長は第1実施例と同様であり、従って、回折光の3次
光の波長は多層膜反射の3次ピーク位置とは全く重なら
ないので3次光は反射しない。そして、この実施例にお
ける2回の反射により、回折光の3次光の除去率は9
9.999%以上であり、3次光は完全に除去される。
さらに、回折光の4次以上の高次光に対しても同様にし
てこれと同等の除去率が得られる。
The third-order reflectance and the peak wavelength in this embodiment are the same as those in the first embodiment. Therefore, the wavelength of the third-order light of the diffracted light completely overlaps with the third-order peak position of the multi-layer film reflection. Therefore, the third-order light is not reflected. The removal rate of the third-order light of the diffracted light is 9 due to the twice reflection in this embodiment.
It is 9.999% or more, and the third-order light is completely removed.
Furthermore, a removal rate equivalent to this can be obtained in the same manner for diffracted light of higher than 4th order.

【0059】次に、回折光2の斜入射角を20°に固定
した場合には、この実施例で2回反射したあとの2次光
の1次光に対する除去率は、1−(4/370)2 =9
9.988%となり、2次光は完全に除去される。ま
た、このとき1次光のフィルター透過率は0.15%で
あった。
Next, when the oblique incidence angle of the diffracted light 2 is fixed at 20 °, the removal rate of the secondary light after being reflected twice in this embodiment with respect to the primary light is 1- (4 / 370) 2 = 9
It becomes 9.988%, and the secondary light is completely removed. At this time, the filter transmittance of primary light was 0.15%.

【0060】一方、この実施例でも多層膜反射の3次ピ
ークと回折光2の3次光の波長とが全く重ならないた
め、この3次光は反射しない。このため、この実施例で
2回反射したあとの3次光の1次光に対する除去率は、
99.99%以上であり、3次光は完全に除去された。
そして、4次以上の高次光に対しても同様にしてこれと
同等の除去率が得られる。
On the other hand, also in this embodiment, since the third-order peak of the multilayer film reflection and the wavelength of the third-order light of the diffracted light 2 do not overlap at all, the third-order light is not reflected. Therefore, the removal rate of the third-order light from the first-order light after being reflected twice in this example is
It was 99.99% or more, and the third-order light was completely removed.
Then, a removal rate equivalent to this can be similarly obtained for higher-order light of 4th order or higher.

【0061】以上のように、第2実施例においては周期
dが60ÅのW/C多層膜を斜入射角10°から20°
の範囲で用いることによって、選択波長19Åから39
Åの範囲で高次光を完全に除去できる高次光除去フィル
ターを実現できた。
As described above, in the second embodiment, the W / C multilayer film having the period d of 60Å is used for the oblique incident angle of 10 ° to 20 °.
When used in the range of,
A high-order light removal filter that can completely remove high-order light in the range of Å was realized.

【0062】なお、2枚の多層膜平面反射鏡1A,1B
の角度を変更する際に、例えば図4に示すように、一方
の多層膜平面反射鏡1Bを光軸方向に平行に移動させる
ことで、出射光の光軸が移動せず、この選択波長を利用
する装置の構成を簡易化できる。
It should be noted that the two multilayer flat mirrors 1A and 1B are
When the angle of is changed, for example, as shown in FIG. 4, by moving one of the multilayer film plane reflecting mirrors 1B in parallel to the optical axis direction, the optical axis of the emitted light does not move, and this selected wavelength is changed. The configuration of the device used can be simplified.

【0063】ここで、比較のために、先の通常の吸収係
数の差を利用するフィタルーの場合の高次光除去率を述
べる。波長19.3ÅのX線に対しては、先と同様に1
3Åに吸収端を持つ銅を用いたが、第2実施例と比較す
るために、透過率が同じなるようフィルータの厚さを
1.1μmとした。このとき、回折光の2次光の除去率
は94.3%であった。また、3次光に対しては1次光
よりも透過率が高くフィルターの効果はなかった。
Here, for comparison, the high-order light removal rate in the case of a filter using the above-mentioned difference in normal absorption coefficient will be described. For X-rays with a wavelength of 19.3Å, 1
Although copper having an absorption edge at 3Å was used, for comparison with the second embodiment, the thickness of the filter was set to 1.1 μm so that the transmittance was the same. At this time, the removal rate of the secondary light of the diffracted light was 94.3%. Further, the transmittance of the third-order light was higher than that of the first-order light, and the effect of the filter was not obtained.

【0064】次に、波長39.0ÅのX線に対しては、
31Åに吸収端を持つ銀を用い、同じく第2実施例との
比較のために、透過率が同じになるようにフィルターの
厚さを0.8μmとした。このとき、回折光の2次光の
除去率は99.92%であり本発明の実施例よりも低
く、3次光の除去率は10.0%でありほとんど除去で
きない。
Next, for X-rays having a wavelength of 39.0Å,
Silver having an absorption edge at 31 Å was used, and the thickness of the filter was 0.8 μm so that the transmittance was the same for comparison with the second embodiment. At this time, the removal rate of the secondary light of the diffracted light is 99.92%, which is lower than that of the embodiment of the present invention, and the removal rate of the third order light is 10.0%, which is almost impossible to remove.

【0065】また、通常のフィルターを用いる場合、吸
収端波長が選択波長よりも短く、選択波長の二分の一よ
りも長い物質のみが使用できるが、選択波長が吸収端波
長から離れるにつれて、高次光除去率は低下する問題が
ある。従って、本実施例で示したような19Åから39
Åの波長範囲に亙ってフィルターで高次光を除去しよう
とすると、充分な高次光除去率が得られない範囲が存在
する。
When a normal filter is used, only a substance having an absorption edge wavelength shorter than the selected wavelength and longer than half the selected wavelength can be used. There is a problem that the rate decreases. Therefore, from 19Å to 39 as shown in this embodiment.
When trying to remove high-order light with a filter over the wavelength range of Å, there is a range where a sufficient high-order light removal rate cannot be obtained.

【0066】しかし、上記で説明した実施例にかかるX
線高次光除去フィルターでは、物質の吸収端とは無関係
なので、使用する波長領域の全体の範囲にわたって上記
のように高い高次光除去率を得ることができる。また、
上記の波長領域はこれに限定されるものではなく、多層
膜の各層の厚みや入射角を変更することで他の波長域で
も使用することができる。
However, X according to the embodiment described above
Since the linear high-order light removal filter has nothing to do with the absorption edge of the substance, it is possible to obtain a high high-order light removal rate as described above over the entire range of the wavelength region to be used. Also,
The above-mentioned wavelength region is not limited to this, and it can be used in other wavelength regions by changing the thickness and incident angle of each layer of the multilayer film.

【0067】[0067]

【発明の効果】以上説明したように、本発明に係るX線
高次光除去フィルターにおいては、多層膜の2つの物質
の膜厚を互いに等しくすることによって2次光を除去
し、X線の屈折と屈折率の分散の効果を用いてさらに高
次の高次光を除去するので、1次光の透過率をある程度
維持したまま2次光を効率よく除去することができ、ま
た、従来のフィルター等では除去できない3次以上の高
次光を完全に除去することができる。また、従来の吸収
係数の差を利用したフィルターでは、選択波長がフィル
ター材料の吸収端波長から長波長側へ離れるに従って高
次光除去率は大きく低下し、さらには選択波長によって
は高次光を除去できない波長域が存在するが、本発明に
よれば、広い波長範囲に亙って常に高い高次光除去率を
得ることができる利点がある。
As described above, in the X-ray high-order light removal filter according to the present invention, the secondary light is removed by making the thicknesses of the two substances of the multilayer film equal to each other, and the X-ray refraction is suppressed. Since the higher order light of higher order is removed by using the effect of dispersion of the refractive index, it is possible to efficiently remove the second order light while maintaining the transmittance of the first order light to some extent. It is possible to completely remove the high-order light of the third order or higher, which cannot be performed. Further, in the filter utilizing the conventional difference in absorption coefficient, the higher-order light removal rate is greatly reduced as the selected wavelength is separated from the absorption edge wavelength of the filter material to the longer wavelength side, and further, the higher-order light cannot be removed depending on the selected wavelength. However, according to the present invention, there is an advantage that it is possible to always obtain a high high-order light removal rate over a wide wavelength range.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例にかかる多層膜平面反射鏡を
用いた高次光除去フィルターの概念図である。
FIG. 1 is a conceptual diagram of a high-order light removal filter using a multilayer film plane reflecting mirror according to an embodiment of the present invention.

【図2】本発明の第2の実施例にかかる2枚の多層膜平
面反射鏡を用いた高次光除去フィルターの概念図であ
る。
FIG. 2 is a conceptual diagram of a high-order light removal filter using two multilayer film plane reflecting mirrors according to a second embodiment of the present invention.

【図3】X線の屈折と屈折率の分散により多層膜の高次
ピーク波長が分光器の高次ピーク波長からはずれる様子
を示す説明図である。
FIG. 3 is an explanatory diagram showing a state in which the higher-order peak wavelength of the multilayer film deviates from the higher-order peak wavelength of the spectroscope due to the refraction of X-rays and the dispersion of the refractive index.

【図4】本発明の一実施例で光軸が動かないようにした
場合の構成図である。
FIG. 4 is a configuration diagram in a case where an optical axis is kept stationary in an embodiment of the present invention.

【図5】凹面回折格子を用いた分光器の説明図である。FIG. 5 is an explanatory diagram of a spectroscope using a concave diffraction grating.

【符号の説明】[Explanation of symbols]

1,1A,1B…多層膜平面反射鏡 2…分光器から来る回折光 3…凹面回折格子 4…入射スリット 5…出射スリット 6…ローランド円 1, 1A, 1B ... Multilayer flat mirror 2 ... Diffracted light coming from the spectroscope 3 ... concave diffraction grating 4 incident slit 5: exit slit 6 ... Roland Yen

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 多層膜平面反射鏡を入射面に垂直な軸の
回りに回転させて波長走査を行うX線高次光除去フィル
ターにおいて、 前記多層膜が、二つの異なる物質を交互に積層し、それ
ぞれの物質の層の膜厚が互いに等しい多層膜からなるこ
とを特徴とするX線高次光除去フィルター。
1. An X-ray high-order light removal filter that performs wavelength scanning by rotating a multilayer film flat mirror about an axis perpendicular to an incident surface, wherein the multilayer film alternately stacks two different substances, An X-ray high-order light removing filter, wherein the X-ray high-order light removing filter is formed of a multilayer film in which the film thicknesses of the substance layers are the same.
【請求項2】 請求項1に記載した多層膜平面反射鏡を
2枚用い、各多層膜平面反射鏡を平行に対向させると共
に、その平行状態を保ったまま各々の多層膜平面反射鏡
を同一角度だけ回転させる回動手段を備えたこと特徴と
するX線高次光除去フィルター。
2. The two multilayer film plane reflecting mirrors according to claim 1 are used, each multilayer film plane reflecting mirror is made to face each other in parallel, and each multilayer film plane reflecting mirror is the same while keeping the parallel state. An X-ray high-order light removal filter, which is provided with a rotating means for rotating by an angle.
JP3038856A 1991-02-12 1991-02-12 X-ray high-order light removal filter Expired - Fee Related JP2993147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3038856A JP2993147B2 (en) 1991-02-12 1991-02-12 X-ray high-order light removal filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3038856A JP2993147B2 (en) 1991-02-12 1991-02-12 X-ray high-order light removal filter

Publications (2)

Publication Number Publication Date
JPH0511100A true JPH0511100A (en) 1993-01-19
JP2993147B2 JP2993147B2 (en) 1999-12-20

Family

ID=12536849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3038856A Expired - Fee Related JP2993147B2 (en) 1991-02-12 1991-02-12 X-ray high-order light removal filter

Country Status (1)

Country Link
JP (1) JP2993147B2 (en)

Also Published As

Publication number Publication date
JP2993147B2 (en) 1999-12-20

Similar Documents

Publication Publication Date Title
US4915463A (en) Multilayer diffraction grating
US20160202396A1 (en) Multilayer mirror
US5604629A (en) Discrete vacuum ultra violet reflective interference filter
Voronov et al. Refraction effects in soft x-ray multilayer blazed gratings
Salashchenko et al. Short-period X-ray multilayers based on CrSc
JP2005156201A (en) X-ray total reflection mirror and x-ray exposure system
JPH06174897A (en) Multilayer x-ray mirror and multilayer x-ray optical system
JPH01213599A (en) Reflection type diffraction grating
JP2993147B2 (en) X-ray high-order light removal filter
Hecquet et al. Design and performance of two-channel EUV multilayer mirrors with enhanced spectral selectivity
JP2001027699A (en) Multi-layer film reflecting mirror and reflecting optical system
JP2011106842A (en) Diffraction grating spectrometer
JP2014112532A (en) Double-multilayer monochromator
JP2530029B2 (en) Multilayer spectrometer
US10578783B2 (en) Optical grating and optical assembly for same
Larruquert Sub-quarterwave multilayers with enhanced reflectance at 13.4 and 11.3 nm
Seely et al. Extreme ultraviolet optical constants for the design and fabrication of multilayer-coated gratings
WO2007119852A1 (en) Multi-layer film type diffraction grating
JPH03152426A (en) Spectroscope
JP3065706B2 (en) Multilayer reflector and optical device having the multilayer reflector
JP7269878B2 (en) Spectral selective element for XUV radiation
US7173759B2 (en) Monochromator mirror for the EUV-spectral range
Barbee Combined microstructure x-ray optics; multilayer diffraction gratings
Rife Applications of layered synthetic microstructures in vacuum ultraviolet and soft x-ray grating spectrometers
CN114544675A (en) Band-pass light splitting X-ray optical system and film distribution determining method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees