JPH0511091B2 - - Google Patents

Info

Publication number
JPH0511091B2
JPH0511091B2 JP60032330A JP3233085A JPH0511091B2 JP H0511091 B2 JPH0511091 B2 JP H0511091B2 JP 60032330 A JP60032330 A JP 60032330A JP 3233085 A JP3233085 A JP 3233085A JP H0511091 B2 JPH0511091 B2 JP H0511091B2
Authority
JP
Japan
Prior art keywords
pva
concentration
gel
aqueous solution
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60032330A
Other languages
Japanese (ja)
Other versions
JPS61191609A (en
Inventor
Jokyu Gen
Yoshito Ikada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIO MATERIAL UNIVERS KK
Original Assignee
BIO MATERIAL UNIVERS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIO MATERIAL UNIVERS KK filed Critical BIO MATERIAL UNIVERS KK
Priority to JP3233085A priority Critical patent/JPS61191609A/en
Publication of JPS61191609A publication Critical patent/JPS61191609A/en
Publication of JPH0511091B2 publication Critical patent/JPH0511091B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Medicinal Preparation (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は薬理活性物質を高含水高強度のポリビ
ニルアルコール多孔質ゲル中に含む徐放性製剤に
関する。 [従来の技術] 近年、製薬分野において新しい薬剤投与系(ド
ラツグデリバリーシステム)に対する関心が非常
に高まつている。これは、既存の医薬の薬効を最
大限に高めると同時に、副作用を最小限に抑制す
ることを目的とするものである。そのために採用
されている手段の一つとして、高分子材料を用い
た医薬の徐放化があり、種々の高分子材料が用い
られる。ハイドロゲル材料もその一つである。 ハイドロゲルとは、水に溶けずに水を包含して
いるゲルのことである。そうしたハイドロゲルは
古くから知られているが、近年、機能性材料に対
する関心が高まるとともにその性質が注目される
ようになつてきている。たとえば、ソフトコンタ
クトレンズや医薬の徐放性担体のような医用材料
として、または酵素や菌体の固定化担体、保冷用
熱媒体、芳香剤の徐放性担体などとして用いられ
ている。 ハイドロゲル用の高分子材料としては、ゼラチ
ン、カラギーナン、アルギン酸、ポリメタクリル
酸2−ヒドロキシエチル、架橋カルボキシル化メ
チルデンプン、アクリロニトリル、グラフト化デ
ンプン加水分解物、ポリアクリロニトリル誘導
体、ポリアクリル酸塩、酢酸ビニル−アクリル酸
メチル共重合体ケン化物、ポリオキシエチレン、
ポリビニルピロリドン、ポリスチレンスルホン
酸、ポリビニルアルコールなどが知られている。 ポリビニルアルコール(以下、PVAと略す)
の濃厚水溶液を室温以下で放置すると粘度が次第
に増大し、ついにはゲル化することはよく知られ
ている。しかし、その結果えられるゲルは粘着性
を示すものであり、機械的強度に劣るものであ
る。 そこでPVAハイドロゲルの機械的強度を向上
させるため、ホルムアルデヒドやグルタルアルデ
ヒドなどの架橋剤を用いて化学的にPVAを架橋
させる方法や、ホウ酸、コンゴーレツド、グリセ
リンなどの増粘剤を添加してPVA水溶液をゲル
化させる方法、γ線、電子線、紫外線などを照射
してPVAを架橋する方法、チタン、銅、コバル
トなどの金属化合物を添加して配位結合化する方
法などが提案されている。しかしながら、これら
の方法でえられたPVAハイドロゲルは高含水性
と高強度とのバランスがよくない。すなわち、機
械的強度を高めようとすると含水率が低下し、ま
た含水率を高めようとすると機械的強度を犠牲に
せざるをえない。 添加剤を用いずに高含水率を保持したまま
PVAハイドロゲルの機械的強度を高める試みと
して、PVA濃厚水溶液に低温にて短時間で凍結
し、ついで室温にて短時間で解凍する方法が提案
されている(特開昭50−52296号公報)。しかし、
この方法でえられるPVAハイドロゲルの機械的
強度は満足のいくものではなく、しかも水中に浸
漬すると大きく膨潤してしまうという欠点を有し
ている。 また、凍結後凍結体を融解させることなく真空
乾燥させる方法も提案されている(特開昭57−
130543号公報)。この方法は、ケン化化度95モル
%以上、粘度平均重合度1500以下のPVAの水溶
液を注型したのち−6℃よりも低い温度で凍結成
形し、この凍結成形体を融解させることなく真空
乾燥をするものである。かかる方法によるとき、
真空乾燥という処理が必要である。 本発明者らは、従来のPVAハイドロゲルの欠
点を解消するべく鋭意研究を重ねた結果、PVA
水溶液を氷点以下の温度にて凍結させて氷層と高
分子相に分離したのち0〜10℃の低温にて高分子
相を結晶化させると、高含水率でかつ高強度性の
多孔質PVAハイドロゲルがえられ、さらにPVA
水溶液に薬理活性物質を加えておくとすぐれた徐
放性製剤となることを見出し、本発明を完成する
に至つた。 [発明が解決しようとする問題点] 本発明は、高含水率でかつ高強度の多孔質
PVAハイドロゲルと薬理活性物質との複合体か
らなる徐々放性製剤を提供することを目的とす
る。 [問題点を解決するための手段] 本発明は、薬理活性物質を含むPVA水溶液を
氷点以下の温度にて凍結させて氷相と高分子相に
分離して相分離微小構造体を形成したのち、0〜
10℃の低温にて10時間以上放置して高分子相を結
晶化させてえられる、薬理活性物質をPVAの多
孔質ハイドロゲル中に含む徐放性製剤に関する。 [作用] 本発明の徐放性製剤における多孔質のPVAハ
イドロゲルは含水性および機械的強度のいずれに
もすぐれたものである。かかるすぐれた多孔質ゲ
ルがえられる理由は、まず薬理活性物質を含む
PVA水溶液が氷点以下で凍結することにより、
PVAの高分子相と氷相とに分離して相分離微小
構造体が形成され、その結果PVA分子鎖の局所
濃度が高まると共にPVA分子鎖間で二次結合が
生じて結晶核が形成されるためと考えられる。つ
いでこの凍結体を0〜10℃にて10時間以上放置す
ると、氷相の解凍と同時にPVAの結晶化が進み、
その際形成される微結晶が架橋点となつてPVA
の強固な三次元網目構造(多孔質構造)が形成さ
れ、それらの間隙に薬理活性物質を含む水相が充
填しているものと考えられる。 [実施例] 本発明の徐放性製剤は、前記のごとく強固な三
次元網目構造を有する多孔質のPVAに薬理活性
物質および水が包含されたものである。 本発明に用いるPVAは、ケン化度95モル%以
上、好ましくは97モル%以上、とくに99モル%以
上のものが好ましい。これより低いケン化度、た
とえば85モル%以下では、軟弱なゲルがえられる
にすぎない。平均重合度は粘度平均で1000以上、
とくに、1700以上のものが好ましい。PVAの重
合度が低下すると共に、えられるゲルの強度も低
下するため、通常市販されている重合度1700〜
2000程度の高重合度品を用いるのがよい。 本発明においては、まず薬理活性物質を含む
PVAの濃厚水溶液が調製されるのであるが、濃
度としては10〜30重量%の範囲にするのがよい。
このような濃厚水溶液の調製は、PVAを加熱溶
解させることにより行なわれる。 PVA水溶液は室温まで冷却したのち、直ちに
氷点以下で凍結させる。凍結温度はPVA水溶液
が充分に凍結しさえすればよく、−5℃以下が好
ましいが、充分に凍結するのに要する時間の点か
ら、とくに−20℃で行なうのが好ましい。また凍
結時間は5時間以上、通常は10〜24時間である。
この凍結操作により水が氷結し、PVAの高分子
相が分離して相分離微小構造体がえられる。その
際、薬理活性物質は高分子相、氷相または高分子
相の表面に存在していると考えられる。 ついで凍結相分離微小構造体を0〜10℃に放置
し、PVAをさらに結晶化させて最終ゲルをする
のであるが、放置時間は10時間以上が好ましい。
放置時間が10時間より短すぎるばあいには結晶化
が不充分であり、高強度のゲルはえられない。 薬理活性物質としてはヒトまたは動物の治療ま
たは疾病の予防に用いられる化合物であればよ
く、とくに限定されない。また水溶性であつても
非水溶性であつてもよく、液状でも粉末状、粒状
でもよい。 薬理活性物質の配合量は任意に選択でき、投与
目的、剤形、徐放性などにより適宜選定すればよ
いが、通常PVA100部(重量部、以下同様)に対
して0.01〜500部、好ましくは10〜50部である。 本発明の製剤における徐放性は、PVAの濃度
や薬理活性物質の量などを調節することにより、
任意に制御できる。 本発明の徐放性製剤は、徐放性が要求される
種々の剤形にすることができ、たとえば坐剤、経
皮投与剤、舌下剤、経口投与剤などにすることが
できる。 つぎに参考例および実施例をあげて本発明の徐
放性製剤を説明するが、本発明はかかる実施例の
みに限定されるものではない。 参考例 (PVA多孔質ハイドロゲルの製造と分析) PVA((株)ユニチカ製、ケン化度99.5モル%、平
均重合度1700)に第1表の濃度となるように水を
加え、オートクレーブ中で110℃にて2時間加熱
して完全に溶解させたのち、室温にまで冷却し、
PVA水溶液を調製した。 ついで各PVA水溶液を−20℃のフリーザ中に
入れ、24時間かけて凍結させた。えられた凍結物
を第1表に示す条件にて解凍し、PVAハイドロ
ゲル1〜5をえた。
[Industrial Application Field] The present invention relates to a sustained release preparation containing a pharmacologically active substance in a highly water-containing, high-strength polyvinyl alcohol porous gel. [Prior Art] In recent years, interest in new drug delivery systems has increased significantly in the pharmaceutical field. The purpose of this is to maximize the efficacy of existing drugs while minimizing side effects. One of the means adopted for this purpose is sustained release of medicines using polymeric materials, and various polymeric materials are used. Hydrogel materials are one such material. Hydrogel is a gel that does not dissolve in water but contains water. Such hydrogels have been known for a long time, but in recent years, as interest in functional materials has increased, their properties have been attracting attention. For example, they are used as medical materials such as soft contact lenses and sustained-release carriers for medicines, as immobilized carriers for enzymes and microbial cells, as heat carriers for cold storage, and as sustained-release carriers for fragrances. Polymeric materials for hydrogels include gelatin, carrageenan, alginic acid, poly 2-hydroxyethyl methacrylate, cross-linked carboxylated methyl starch, acrylonitrile, grafted starch hydrolyzate, polyacrylonitrile derivatives, polyacrylates, and vinyl acetate. -Saponified methyl acrylate copolymer, polyoxyethylene,
Known examples include polyvinylpyrrolidone, polystyrene sulfonic acid, and polyvinyl alcohol. Polyvinyl alcohol (hereinafter abbreviated as PVA)
It is well known that when a concentrated aqueous solution of is left at room temperature or below, its viscosity gradually increases and eventually gels. However, the resulting gel is sticky and has poor mechanical strength. Therefore, in order to improve the mechanical strength of PVA hydrogel, there are methods to chemically cross-link PVA using cross-linking agents such as formaldehyde and glutaraldehyde, and methods to chemically cross-link PVA using cross-linking agents such as formaldehyde and glutaraldehyde. Proposed methods include gelling an aqueous solution, crosslinking PVA by irradiating it with gamma rays, electron beams, and ultraviolet rays, and adding metal compounds such as titanium, copper, and cobalt to create coordination bonds. . However, the PVA hydrogels obtained by these methods do not have a good balance between high water content and high strength. That is, if an attempt is made to increase the mechanical strength, the moisture content decreases, and if an attempt is made to increase the moisture content, the mechanical strength must be sacrificed. Maintains high moisture content without using additives
In an attempt to increase the mechanical strength of PVA hydrogel, a method has been proposed in which it is frozen in a concentrated aqueous solution of PVA at low temperature for a short period of time, and then thawed at room temperature for a short period of time (Japanese Patent Laid-Open No. 50-52296). . but,
The mechanical strength of the PVA hydrogel obtained by this method is not satisfactory, and it also has the disadvantage that it swells significantly when immersed in water. Additionally, a method has been proposed in which the frozen body is vacuum-dried without thawing after freezing (Japanese Patent Laid-Open No. 1983-
Publication No. 130543). This method involves casting an aqueous solution of PVA with a saponification degree of 95 mol% or more and a viscosity average polymerization degree of 1500 or less, and then freeze-molding it at a temperature lower than -6℃, and then vacuuming the frozen molded product without melting it. It is for drying. When using such a method,
A process called vacuum drying is required. The present inventors have conducted intensive research to resolve the drawbacks of conventional PVA hydrogel, and as a result, PVA hydrogel
By freezing an aqueous solution at a temperature below the freezing point to separate it into an ice layer and a polymer phase, and then crystallizing the polymer phase at a low temperature of 0 to 10℃, a porous PVA with a high water content and high strength is created. Hydrogel is obtained and PVA
The present inventors have discovered that adding a pharmacologically active substance to an aqueous solution provides an excellent sustained-release preparation, and have completed the present invention. [Problems to be solved by the invention] The present invention provides a porous material with a high moisture content and high strength.
The objective is to provide a gradual release formulation consisting of a complex of PVA hydrogel and a pharmacologically active substance. [Means for Solving the Problems] The present invention involves freezing a PVA aqueous solution containing a pharmacologically active substance at a temperature below the freezing point and separating it into an ice phase and a polymer phase to form a phase-separated microstructure. , 0~
This invention relates to a sustained-release preparation containing a pharmacologically active substance in a porous PVA hydrogel, which is obtained by crystallizing the polymer phase by leaving it at a low temperature of 10°C for 10 hours or more. [Function] The porous PVA hydrogel in the sustained release preparation of the present invention has excellent water retentivity and mechanical strength. The reason why such an excellent porous gel can be obtained is that it contains pharmacologically active substances.
When the PVA aqueous solution freezes below the freezing point,
PVA separates into a polymer phase and an ice phase to form a phase-separated microstructure, and as a result, the local concentration of PVA molecular chains increases and secondary bonds occur between PVA molecular chains to form crystal nuclei. It is thought that this is because of this. Then, when this frozen body is left at 0 to 10°C for 10 hours or more, the PVA crystallization progresses as the ice phase thaws.
The microcrystals formed at this time become crosslinking points and PVA
It is thought that a strong three-dimensional network structure (porous structure) is formed, and the gaps between them are filled with an aqueous phase containing the pharmacologically active substance. [Example] The sustained release preparation of the present invention contains a pharmacologically active substance and water in porous PVA having a strong three-dimensional network structure as described above. The PVA used in the present invention preferably has a saponification degree of 95 mol% or more, preferably 97 mol% or more, particularly 99 mol% or more. If the degree of saponification is lower than this, for example 85 mol% or less, only a weak gel is obtained. Average degree of polymerization is viscosity average of 1000 or more,
In particular, those with a value of 1700 or more are preferable. As the degree of polymerization of PVA decreases, so does the strength of the resulting gel.
It is best to use a product with a high polymerization degree of about 2000. In the present invention, first, a drug containing a pharmacologically active substance is used.
A concentrated aqueous solution of PVA is prepared, and the concentration is preferably in the range of 10 to 30% by weight.
Such a concentrated aqueous solution is prepared by heating and dissolving PVA. After cooling the PVA aqueous solution to room temperature, it is immediately frozen below the freezing point. The freezing temperature should be as long as the PVA aqueous solution is sufficiently frozen, and is preferably -5°C or lower, but from the viewpoint of the time required for sufficient freezing, it is particularly preferable to carry out the freezing at -20°C. Further, the freezing time is 5 hours or more, usually 10 to 24 hours.
This freezing operation freezes the water, separates the PVA polymer phase, and yields a phase-separated microstructure. In this case, the pharmacologically active substance is considered to be present on the surface of the polymer phase, ice phase, or polymer phase. The frozen phase-separated microstructure is then left to stand at 0 to 10°C to further crystallize the PVA to form a final gel, but the standing time is preferably 10 hours or more.
If the standing time is shorter than 10 hours, crystallization will be insufficient and a gel with high strength will not be obtained. The pharmacologically active substance is not particularly limited as long as it is a compound used for treatment or disease prevention in humans or animals. Further, it may be water-soluble or water-insoluble, and may be liquid, powder, or granule. The amount of the pharmacologically active substance to be mixed can be arbitrarily selected depending on the purpose of administration, dosage form, sustained release properties, etc., but is usually 0.01 to 500 parts per 100 parts (parts by weight, hereinafter the same) of PVA, preferably 0.01 to 500 parts. 10 to 50 copies. The sustained release properties of the formulation of the present invention can be achieved by adjusting the concentration of PVA, the amount of pharmacologically active substance, etc.
Can be controlled arbitrarily. The sustained release preparation of the present invention can be made into various dosage forms that require sustained release properties, such as suppositories, transdermal preparations, sublingual preparations, and oral preparations. Next, the sustained release preparation of the present invention will be explained with reference to Reference Examples and Examples, but the present invention is not limited to these Examples. Reference example (Production and analysis of PVA porous hydrogel) Add water to PVA (manufactured by Unitika Co., Ltd., saponification degree 99.5 mol%, average polymerization degree 1700) to the concentration shown in Table 1, and add it in an autoclave. After heating at 110℃ for 2 hours to completely dissolve, cool to room temperature.
A PVA aqueous solution was prepared. Each PVA aqueous solution was then placed in a -20°C freezer and frozen for 24 hours. The obtained frozen product was thawed under the conditions shown in Table 1 to obtain PVA hydrogels 1 to 5.

【表】【table】

【表】 ゲル1および3ならびに比較ゲル1〜3の試料
約6gを蒸留水50ml中に浸漬し、37℃の恒温槽中
で1日毎にゲル試料の重量を秤量とすることによ
り膨潤度と収縮度を測定した。ここで膨潤度およ
び収縮度は37℃の水中における重量変化から次式
により求めた。 膨潤度(%)または収縮度(%)=W−W0/W0×100 W0=膨潤前のゲル重量 W=膨潤後のゲル重量 ゲル1および3の本発明の試料、比較ゲル1お
よび2の急速解凍試料および比較ゲル3の高温徐
解凍試料の37℃における水中膨潤度および収縮度
の経時変化を測定した結果を第1図に示す。 第1図から明らかなように、比較ゲル1および
2の急速解凍試料では各PVA濃度とも時間経過
と共に膨潤度が増大し、約4日後には一定値に達
する。また膨潤度はPVA濃度に依存しており、
濃度が高い程膨潤度は大きい。一方、比較ゲル3
の高温徐解凍試料では初期に若干膨潤し、4日後
には収縮減少を示す。これに反し、ゲル1および
3の本発明の試料では膨潤現像はまつたく認めら
れず、逆に収縮現像が認められる。このばあいも
4日程度までは徐々に収縮し、それ以降は一定値
に達する。また、膨潤度と同じく収縮変化にも
PVA濃度依存性が認められ、ゲル1の方がゲル
3に比べて収縮度は大きい。ゲル1および2の急
速解凍試料において認められる膨潤現像は、ゲル
が不安定で37℃において微結晶の部分溶解が起こ
るためであり、一方、ゲル1および3の本発明の
試料に認められる収縮現像は、アニーリング効果
によつて非晶部の一部がさらに結晶化するためと
考えられる。 これらの実験結果は、凍結後の解凍温度、換言
すれば、ゲルの結晶化条件が強固なゲルの生成に
大きく影響していることを示すものである。 (力学的性質) (株)東洋ボールドウイン製、Tensilon/UTM−
4−100を用いて引張速度100mm/min、温度20
℃、相対湿度65%でゲル1〜5および比較ゲル3
〜6の力学特性を測定した。なお、ゲル試料は2
mm厚でダンベル型引張試験片に打抜いて測定に供
し、破断引張強度と伸度を求めた。 ゲル1、3および5の本発明の試料の応力−ひ
ずみ曲線は第2図に示す通りであつた。この応力
−ひずみ曲線は一般のプラスチツク、繊維、エラ
ストマーなどの曲線とは異なり、むしろ生体組織
の力学特性に類似している。 ゲル1〜5の本発明の試料および比較ゲル3〜
6の高温徐解凍試料の引張強度と伸度を測定した
結果を第3図および第4図に示す。比較ゲル1お
よび2の急速解凍試料は軟弱なため測定は不可能
であつた。第3図および第4図には、明らかに、
凍結後の結晶化条件がゲルの機械的強度に大きく
影響していることが示されている。一般に、架橋
剤や放射線によつて架橋したばあい、架橋密度の
増大に伴つて強度は増大するが、逆に伸度は減少
する。しかしながら、本発明に用いるゲルは第2
〜4図からも明らかなように、強度が増大する
程、伸度も増大している。このことは、低温結晶
化によつてられるゲルの構造は、一般の化学的架
橋によつてえられるゲルとは本質的に異なること
を示唆している。 (電子顕微鏡観察) 二日−明石製MSM−9型走査型電子顕微鏡を
用い、臨界点乾燥したゲル試料の形態を観察し
た。 ゲル試料をそのまま凍結乾燥すると大きな体積
収縮が起こり、ゲルの構造が破壊されてしまうた
め、生体組織の電顕観察用の試料作製と同様に、
臨界点乾燥法により試料を作製した。ゲル1、3
および5の本発明の試料を操作型電顕観察した結
果、いずれの試料にも多孔質構造が認められ、そ
の孔径はゲル試料のPVA濃度に大きく依存して
いることがわかつた。ゲル1は平均約5μm、ゲ
ル3は平均約2〜3μm、ゲル5は平均約1μmの
孔径を有していた。 実施例 1〜7 PVA((株)ユニチカ製、ケン化度99.5モル%、平
均重合度1700)に第2表の濃度となるように水を
加え、オートクレーブ中で110℃にて2時間加熱
して完全に溶解させたのち、室温にまで冷却して
それぞれPVA水溶液を調製した。 ついで各PVA水溶液に、薬理活性物質として
抗悪性腫瘍剤である水溶性のアドリアマイシン
(協和発酵工業(株)製、以下ADMという)を第2
表に示す量加えて溶解させたのち、5mmφの試験
管に入れた。 各試験管を−20℃のフリーザ中に入れ、約10時
間かけて水溶液を凍結させた。ついでえられた凍
結体を5℃の恒温槽中で約10時間かけて解凍し、
長さ1cm、直径5mmのロツド状の本発明の徐放性
製剤をえた。
[Table] Approximately 6 g of samples of Gels 1 and 3 and Comparative Gels 1 to 3 were immersed in 50 ml of distilled water, and the swelling degree and shrinkage were determined by weighing the gel samples every day in a constant temperature bath at 37°C. The degree was measured. Here, the degree of swelling and degree of shrinkage were determined from the weight change in water at 37°C using the following formula. Swelling degree (%) or shrinkage degree (%) = W - W 0 /W 0 ×100 W 0 = Gel weight before swelling W = Gel weight after swelling Inventive samples of gels 1 and 3, comparative gels 1 and FIG. 1 shows the results of measuring changes over time in the degree of swelling and shrinkage in water at 37° C. of the rapidly thawed sample of No. 2 and the high-temperature slowly thawed sample of Comparative Gel 3. As is clear from FIG. 1, in the rapidly thawed samples of Comparative Gels 1 and 2, the degree of swelling increases with time for each PVA concentration and reaches a constant value after about 4 days. In addition, the swelling degree depends on the PVA concentration,
The higher the concentration, the greater the degree of swelling. On the other hand, comparative gel 3
The sample thawed at high temperature slowly swelled slightly at the beginning, and showed a decrease in shrinkage after 4 days. On the contrary, in the samples of the present invention, Gels 1 and 3, no swelling development was observed, but on the contrary, shrinkage development was observed. In this case, it also gradually shrinks until about 4 days, and then reaches a certain value. In addition, as well as the degree of swelling, changes in shrinkage also
PVA concentration dependence was observed, and the degree of shrinkage was greater in Gel 1 than in Gel 3. The swelling development observed in the rapidly thawed samples of gels 1 and 2 is due to the gel instability and partial dissolution of the microcrystals at 37°C, whereas the shrinkage development observed in the inventive samples of gels 1 and 3. This is considered to be because a part of the amorphous portion is further crystallized due to the annealing effect. These experimental results indicate that the thawing temperature after freezing, in other words, the crystallization conditions of the gel, greatly influences the formation of a strong gel. (Mechanical properties) Manufactured by Toyo Baldwin Co., Ltd., Tensilon/UTM−
Using 4-100, tensile speed 100mm/min, temperature 20
Gels 1-5 and Comparative Gel 3 at 65% relative humidity
-6 mechanical properties were measured. In addition, the gel sample is 2
A dumbbell-shaped tensile test piece with a thickness of mm was punched out and subjected to measurement, and the tensile strength and elongation at break were determined. The stress-strain curves of the inventive samples of Gels 1, 3 and 5 were as shown in FIG. This stress-strain curve is different from the curves of common plastics, fibers, elastomers, etc., and is rather similar to the mechanical properties of living tissue. Samples of the invention for Gels 1-5 and Comparative Gels 3-
The results of measuring the tensile strength and elongation of the high temperature slowly thawed sample of No. 6 are shown in FIGS. 3 and 4. The rapidly thawed samples of comparative gels 1 and 2 were too soft to measure. Figures 3 and 4 clearly show that
It has been shown that the crystallization conditions after freezing greatly affect the mechanical strength of the gel. Generally, when crosslinking is performed using a crosslinking agent or radiation, the strength increases as the crosslink density increases, but the elongation decreases. However, the gel used in the present invention
As is clear from Figure 4, as the strength increases, the elongation also increases. This suggests that the structure of gels obtained by low-temperature crystallization is essentially different from gels obtained by general chemical crosslinking. (Electron Microscope Observation) The morphology of the critical point dried gel sample was observed using a scanning electron microscope model MSM-9 manufactured by Akashi Corporation. If a gel sample is freeze-dried as it is, a large volumetric contraction will occur and the gel structure will be destroyed.
Samples were prepared using the critical point drying method. Gel 1, 3
As a result of observation using an operating electron microscope of the samples of the present invention No. 5 and 5, a porous structure was observed in each sample, and it was found that the pore size was largely dependent on the PVA concentration of the gel sample. Gel 1 had an average pore size of about 5 μm, Gel 3 had an average pore size of about 2-3 μm, and Gel 5 had an average pore size of about 1 μm. Examples 1 to 7 Water was added to PVA (manufactured by Unitika Co., Ltd., degree of saponification 99.5 mol%, average degree of polymerization 1700) to the concentration shown in Table 2, and heated in an autoclave at 110°C for 2 hours. After completely dissolving the mixture, the mixture was cooled to room temperature to prepare a PVA aqueous solution. Next, a second dose of water-soluble adriamycin (manufactured by Kyowa Hakko Kogyo Co., Ltd., hereinafter referred to as ADM), which is an anti-malignant tumor agent, was added to each PVA aqueous solution as a pharmacologically active substance.
After adding and dissolving the amount shown in the table, the mixture was placed in a 5 mm diameter test tube. Each test tube was placed in a -20°C freezer, and the aqueous solution was frozen for about 10 hours. The resulting frozen body was then thawed in a constant temperature bath at 5°C for about 10 hours.
A rod-shaped sustained release preparation of the present invention with a length of 1 cm and a diameter of 5 mm was obtained.

【表】 日本薬局方の規格に準拠した溶出試験機
(NTR−VS3、富山産業(株)製)を用いて、所定時
間毎にサンプリングした。測定は482nmのUV吸
収により行なつた。結果を第5〜7図に示す。第
5図はADM濃度が1.25mg/mlPVA水溶液のばあ
いで、PVA濃度を変化させたときの放出率(重
量%)の経時変化を示すグラフ、第6図はADM
濃度が2.5mg/mlPVA水溶液のばあいで、PVA濃
度を変化させたときの放出率(重量%)の経時変
化を示すグラフ、第7図はPVA水溶液のPVA濃
度を一定(10%)とし、ADM濃度を変化させた
ときの放出率(重量%)の経時変化を示すグラフ
である。 第5図に示すごとく、各試料とも溶出初期の溶
出速度は大きいが、PVA濃度が高い程、溶出し
にくい傾向にある。10%濃度のゲル試料実施例1
は30分間ですでに約50%ものADMを放出し、約
4時間で放出が完結している。20%濃度のゲル試
料実施例4は、30分間で約40%の放出を示し、放
出完結は約8時間である。これらに対して30%濃
度のゲル試料実施例6は、初期の放出は約20%と
低く、6時間で約70%の放出を示すが、その後の
放出はきわめて遅く、13時間でも約75%しか放出
していない。このようにPVA濃度を変化させる
ことによりADMの放出時間を調節できる。
ADMの濃度を2.5mg/mlPVA水溶液としたばあ
いも、第6図に示すごとく第5図と同様の傾向が
認られ、しかも放出時間を大幅に延長することが
できる。 ADM濃度と放出速度との関係は、第7図に示
すごとく、ADM濃度の増大に伴つて放出速度が
低下する傾向にある。 実施例 8〜11 PVA((株)ユニチカ製、ケン化度99.5モル%、平
均重合度1700)に第3表の濃度となるように水を
加え、オートクレーブ中で110℃にて2時間加熱
してPVAを溶解させたのち、室温にまで冷却し
てPVA水溶液を調製した。 ついで各PVA水溶液に、血小板凝集抑制剤で
ある非水溶性のプロスタグランジンI2類似体(小
野薬品工業(株)、以下PGI2−Aという)を第3表
に示す量加えて分散させたのち、5mmφの試験管
に入れた。 各試験管を−20℃のフリーザ中に入れ、約10時
間かけて水溶液を凍結させた。ついでえられた凍
結体を5℃の恒温槽中で約10時間かけて解凍し、
長さ1cm、直径5mmのロボツト状の本発明の徐放
性製剤をえた。
[Table] Using a dissolution tester (NTR-VS3, manufactured by Toyama Sangyo Co., Ltd.) that complies with the standards of the Japanese Pharmacopoeia, samples were taken at predetermined intervals. Measurements were performed by UV absorption at 482 nm. The results are shown in Figures 5-7. Figure 5 is a graph showing the change in release rate (wt%) over time when the PVA concentration is changed in the case of a PVA aqueous solution with an ADM concentration of 1.25 mg/ml.
In the case of a PVA aqueous solution with a concentration of 2.5 mg/ml, a graph showing the change in release rate (wt%) over time when the PVA concentration is changed, Figure 7 shows the PVA concentration of the PVA aqueous solution constant (10%). It is a graph showing the change in release rate (wt%) over time when the ADM concentration is changed. As shown in FIG. 5, each sample has a high elution rate at the initial stage of elution, but the higher the PVA concentration, the more difficult it is to elute. 10% concentration gel sample Example 1
already releases about 50% of ADM in 30 minutes, and the release is completed in about 4 hours. Gel sample Example 4 at 20% concentration shows approximately 40% release in 30 minutes and complete release in approximately 8 hours. On the other hand, for gel sample Example 6 with a concentration of 30%, the initial release is low at about 20% and shows about 70% release in 6 hours, but the subsequent release is extremely slow and shows about 75% release even after 13 hours. only released. By changing the PVA concentration in this way, the release time of ADM can be adjusted.
When the concentration of ADM is 2.5 mg/ml in PVA aqueous solution, the same tendency as shown in FIG. 5 is observed as shown in FIG. 6, and the release time can be significantly extended. As shown in FIG. 7, the relationship between ADM concentration and release rate is such that the release rate tends to decrease as the ADM concentration increases. Examples 8 to 11 Water was added to PVA (manufactured by Unitika Co., Ltd., degree of saponification 99.5 mol%, average degree of polymerization 1700) to the concentration shown in Table 3, and heated in an autoclave at 110°C for 2 hours. After dissolving PVA, the solution was cooled to room temperature to prepare a PVA aqueous solution. Next, a water-insoluble prostaglandin I 2 analog (manufactured by Ono Pharmaceutical Co., Ltd., hereinafter referred to as PGI 2 -A), which is a platelet aggregation inhibitor, was added to each PVA aqueous solution in the amount shown in Table 3 and dispersed. Afterwards, it was placed in a 5 mmφ test tube. Each test tube was placed in a -20°C freezer, and the aqueous solution was frozen for about 10 hours. The resulting frozen body was then thawed in a constant temperature bath at 5°C for about 10 hours.
A robot-shaped sustained release preparation of the present invention with a length of 1 cm and a diameter of 5 mm was obtained.

【表】 実施例1で使用した溶出試験機を用いて、所定
時間毎にサンプリングした。測定は高速液体クロ
マトグラフイー(カラム:ステンレス1.4×200
mm、波長:210nm)を用いて定量した。結果を
第8〜9図に示す。第8図および第9図は、それ
ぞれPVA水溶液のPVA濃度を10%および15%と
一定にし、PGI2−A濃度を変えたばあいの放出
率(重量%)の経時変化を示すグラフである。 第8図に示すごとく、PGI2−A濃度が0.5mg/
mlPVA水溶液のばあい実施例8、30分後に約40
%放出し、約4時間後には放出が停止する(約65
%)。しかしPGI2−A濃度が2.0mg/mlPVA水溶
液のばあい実施例9は約6時間後には100%放出
される。また、PVA濃度が15%のばあい(第9
図)でも同様の傾向があるが、PGI2−Aの放出
は遅延されている。 以上の実施例の結果から、本発明の徐放性製剤
は有効な徐放性を示し、かつPVA濃度および
(または)薬理活性物質の濃度を適当に組合せる
ことにより、徐放時間や傾向を制御することがで
きることが明らかである。 [発明の効果] 本発明の徐放性製剤は、PVAのゲル化に際し
て化学的架橋剤や触媒などは一切使用していない
うえ、加熱もしないので、薬理活性物質の活性の
低下や変性が生起することはない。したがつて、
きわめて安定に薬理活性物質をゲル内に包含させ
ることができると同時に、生体に対してまつたく
刺激を与えない。 さらに、薬理活性物質の性状や形状に無関係に
均一にPVAゲル内に薬理活性物質を包含させる
ことができるのみならず、PVA濃度や薬理活性
物質含有量を変化させるとにより、徐放性を制御
することもできる。
[Table] Using the dissolution tester used in Example 1, samples were taken at predetermined time intervals. Measurement was performed using high performance liquid chromatography (column: stainless steel 1.4 x 200
mm, wavelength: 210 nm). The results are shown in Figures 8-9. FIGS. 8 and 9 are graphs showing changes over time in the release rate (wt%) when the PVA concentration of the PVA aqueous solution was kept constant at 10% and 15%, respectively, and the PGI 2 -A concentration was changed. As shown in Figure 8, the PGI 2 -A concentration was 0.5mg/
In the case of mlPVA aqueous solution Example 8, about 40 minutes after 30 minutes
%, and the release stops after about 4 hours (about 65%).
%). However, when the PGI 2 -A concentration is 2.0 mg/ml PVA aqueous solution, 100% of Example 9 is released after about 6 hours. In addition, if the PVA concentration is 15% (No. 9
There is a similar trend in Figure), but the release of PGI 2 -A is delayed. From the results of the above examples, the sustained release preparation of the present invention exhibits effective sustained release properties, and the sustained release time and tendency can be controlled by appropriately combining the PVA concentration and/or the concentration of the pharmacologically active substance. It is clear that it can be controlled. [Effects of the Invention] The sustained-release preparation of the present invention does not use any chemical crosslinking agents or catalysts when gelling PVA, and also does not heat, so there is no reduction in the activity or denaturation of the pharmacologically active substance. There's nothing to do. Therefore,
It is possible to incorporate pharmacologically active substances into the gel in an extremely stable manner, and at the same time, it does not cause any irritation to living organisms. Furthermore, it is not only possible to uniformly incorporate the pharmacologically active substance into the PVA gel regardless of the properties and shape of the pharmacologically active substance, but also to control sustained release by changing the PVA concentration and the content of the pharmacologically active substance. You can also.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いるPVAハイドロゲルお
よび比較用ゲルの水中膨潤度および収縮度の経時
変化を示すグラフ、第2図は本発明に用いる
PVAハイドロゲルの応力−ひずみ曲線を示すグ
ラフ、第3図は本発明に用いるPVAハイドロゲ
ルおよび比較用ゲルの引張強度とPVA濃度の関
係を示すグラフ、第4図は本発明に用いるPVA
ハイドロゲルおよび比較用ゲルの伸度とPVA濃
度の関係を示すグラフ、第5図はADM濃度1.25
mg/mlPVA水溶液の本発明の徐放性製剤のPVA
濃度を変えたばあいの放出率の経時変化を示すグ
ラフ、第6図はADM濃度2.5mg/mlPVA水溶液
の本発明の徐放性製剤のPVA濃度を変えたばあ
いの放出率の経時変化を示すグラフ、第7図は本
発明の徐放性製剤のPVA濃度を一定(10%)と
しADM濃度を変化させたときの放出率の経時変
化を示すグラフ、第8図および第9図はそれぞれ
本発明のPGI2−Aを含む徐放性製剤のPVA濃度
を10%および15%としてPGI2−A濃度を変えた
ばあいの放出率の経時変化を示すグラフである。
Figure 1 is a graph showing changes over time in the degree of swelling and shrinkage in water of the PVA hydrogel used in the present invention and the comparative gel, and Figure 2 is a graph showing changes over time in the degree of swelling and shrinkage in water of the PVA hydrogel used in the present invention and the comparative gel.
A graph showing the stress-strain curve of PVA hydrogel. Figure 3 is a graph showing the relationship between the tensile strength and PVA concentration of the PVA hydrogel used in the present invention and the comparative gel. Figure 4 is a graph showing the relationship between the PVA concentration and the PVA hydrogel used in the present invention.
Graph showing the relationship between elongation and PVA concentration of hydrogel and comparison gel, Figure 5 shows ADM concentration of 1.25
PVA of the sustained release formulation of the present invention in mg/ml PVA aqueous solution
Graph showing the change in release rate over time when the concentration is changed. Figure 6 is a graph showing the change over time in the release rate when the PVA concentration is changed for the sustained release preparation of the present invention having an ADM concentration of 2.5 mg/ml PVA aqueous solution. , FIG. 7 is a graph showing the change in release rate over time when the PVA concentration is constant (10%) and the ADM concentration is changed for the sustained-release preparation of the present invention, and FIG. 8 and FIG. 2 is a graph showing changes over time in the release rate when the PGI 2 -A concentration of a sustained release preparation containing PGI 2 -A is changed by setting the PVA concentration to 10% and 15%.

Claims (1)

【特許請求の範囲】[Claims] 1 薬理活性物質を含むポリビニルアルコール水
溶液を氷点以下の温度にて凍結させて氷相と高分
子相に分離して相分離微小構造体を形勢したの
ち、0〜10℃の低温にて10時間以上放置して高分
子相を結晶化させてえられる多孔質徐放性製剤。
1 A polyvinyl alcohol aqueous solution containing a pharmacologically active substance is frozen at a temperature below the freezing point, separated into an ice phase and a polymer phase to form a phase-separated microstructure, and then frozen at a low temperature of 0 to 10°C for 10 hours or more. A porous sustained-release preparation obtained by allowing the polymer phase to crystallize on standing.
JP3233085A 1985-02-20 1985-02-20 Slow-releasing medicinal preparation Granted JPS61191609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3233085A JPS61191609A (en) 1985-02-20 1985-02-20 Slow-releasing medicinal preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3233085A JPS61191609A (en) 1985-02-20 1985-02-20 Slow-releasing medicinal preparation

Publications (2)

Publication Number Publication Date
JPS61191609A JPS61191609A (en) 1986-08-26
JPH0511091B2 true JPH0511091B2 (en) 1993-02-12

Family

ID=12355928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3233085A Granted JPS61191609A (en) 1985-02-20 1985-02-20 Slow-releasing medicinal preparation

Country Status (1)

Country Link
JP (1) JPS61191609A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0516026A1 (en) * 1991-05-28 1992-12-02 Takeda Chemical Industries, Ltd. Hydrogel and method of producing same
DE19751031A1 (en) 1997-11-19 1999-06-24 Ingo Dipl Ing Heschel Process for the production of porous structures
US20070218139A1 (en) * 2002-12-20 2007-09-20 Smith Thomas J High Pressure Compaction For Pharmaceutical Formulations
JPWO2021205886A1 (en) * 2020-04-10 2021-10-14
CN111606630B (en) * 2020-06-15 2021-12-17 陕西金磊混凝土有限公司 Steam-curing-free high-fluidity concrete and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956446A (en) * 1982-09-24 1984-03-31 Nippon Oil Co Ltd Method for lowering flexibility of frozen polyvinyl alcohol gel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5956446A (en) * 1982-09-24 1984-03-31 Nippon Oil Co Ltd Method for lowering flexibility of frozen polyvinyl alcohol gel

Also Published As

Publication number Publication date
JPS61191609A (en) 1986-08-26

Similar Documents

Publication Publication Date Title
US4591496A (en) Process for making systems for the controlled release of macromolecules
US5540912A (en) Viscous suspensions of controlled-release drug particles
US5759583A (en) Sustained release poly (lactic/glycolic) matrices
US4164560A (en) Systems for the controlled release of macromolecules
US4391797A (en) Systems for the controlled release of macromolecules
RU2093148C1 (en) Composition exhibiting the delayed (prolonged) releasing
US5346935A (en) Hydrogel
US6488952B1 (en) Semisolid therapeutic delivery system and combination semisolid, multiparticulate, therapeutic delivery system
US5081156A (en) Sustained-release preparation
EP1592405B1 (en) Composition for chemoembolotherapy of solid tumors
JPH09510468A (en) Gel for the treatment of skin diseases and for the disinfection of its skin
CN108126237B (en) Silver sulfadiazine temperature-sensitive gel and preparation method and application thereof
JP2007526273A (en) Pharmaceutical composition and method of manufacture for topical use in the form of a xerogel or film
JP2001519787A (en) Intravesical drug delivery system
JP3296579B2 (en) Compounds with controlled component release
JPH0776175B2 (en) Compositions and methods for topical treatment of damaged or diseased tissue
JPH0511091B2 (en)
US4781926A (en) Transdermal therapeutic composition
Krajacic et al. Matrix formation in sustained release tablets: possible mechanism of dose dumping
CN106491517B (en) Preparation method of pirfenidone PVA hydrogel and pirfenidone PVA hydrogel
RU2404781C1 (en) Composition as antibacterial agent, method for production of material on its basis and macroporous antibacterial material based on this composition
AU661726B2 (en) Peroral drug delivery system
SK1795A3 (en) Drug delivery device and method of this production
JPH01186823A (en) Production of medicament-permeating substance
Airemwen et al. Influence of carnauba wax on the release profile of ibuprofen implants