JPH0511050B2 - - Google Patents

Info

Publication number
JPH0511050B2
JPH0511050B2 JP62264810A JP26481087A JPH0511050B2 JP H0511050 B2 JPH0511050 B2 JP H0511050B2 JP 62264810 A JP62264810 A JP 62264810A JP 26481087 A JP26481087 A JP 26481087A JP H0511050 B2 JPH0511050 B2 JP H0511050B2
Authority
JP
Japan
Prior art keywords
ore
particle size
leaching
silicon dioxide
sorting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62264810A
Other languages
Japanese (ja)
Other versions
JPH01108110A (en
Inventor
Shun Okada
Yoshikatsu Matsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP26481087A priority Critical patent/JPH01108110A/en
Publication of JPH01108110A publication Critical patent/JPH01108110A/en
Publication of JPH0511050B2 publication Critical patent/JPH0511050B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、二酸化ケイ素(石英SiO2)の精製
方法に係り、特に、一般の天然石英鉱石から、半
導体工業用の素材としても利用できる高純度の二
酸化ケイ素を得ることを可能としたものに関す
る。 [従来の技術] 二酸化ケイ素は、単結晶シリコン及び金属シリ
コン等の原料として用いられるほかに、二酸化ケ
イ素それ自体としても、ICフオトマスクあるい
は太陽電池等の基板材、水銀灯その外の放電管類
もしくは光フアイバー等の重要な素材の一つとし
て用いられる。 このような用途の中で、例えば、半導体集積回
路(IC)やトランジスター等の封止用のフイラ
ー材として用いられる二酸化ケイ素は、特に高純
度のもの(超高純度)が要求され、この中に含ま
れる不純物の鉄(Fe)が5ppm以下、アルミニユ
ウム(Al)が10ppm以下、ウラン(U)及びト
リウム(Th)が0.3ppb以下であることがそれぞ
れ必要であるとされている。この場合、不純物ウ
ラン及びトリウムの含有量が特に厳格に制限され
るのは、ICの高集積度化にともなつて、封止用
フイラー材に含まれる不純物ウラン等の崩壊によ
るα線によつてメモリ素子が誤動作をおこすおそ
れが高くなつたことによる。 ところで、二酸化ケイ素の精製方法として、従
来は、天然の鉱床中に存在する高純度の石英を直
接選別する方法、四塩化ケイ素と酸素の火災加水
分解反応によるいわゆるVAD法、浮選による精
製後に鉱酸(塩酸、硫酸もしくは硝酸またはこれ
らの混合液)処理を施す方法、あるいは、天然産
二酸化ケイ素を焙焼して高温状態で水砕し、しか
る後に塩酸を用いて浸出する方法等があつた。 [発明が解決しようとする問題点] しかしながら、上述の従来の方法によつて、上
記ICのフイラー材等として使用可能な超高純度
二酸化ケイ素を得るためには、いずれも精製原料
としてもともとウラン等の不純物が少ない極めて
限られた地域でのみ産出される高価な水晶を準備
しなければならなかつた。すなわち、前記従来の
精製方法によつて、広い地域で比較的大量に産出
される安価な天然石英原石を原料として精製して
も前記条件を満足できる超高純度二酸化ケイ素を
得ることはできなかつた。 本発明の目的は、一般の天然石英鉱石から、例
えば、前記IC封止用フイラー材等の素材として
利用できる超高純度二酸化ケイ素をも得ることが
できる二酸化ケイ素の精製方法を提供することに
ある。 [問題点を解決するための手段] 上述の背景のもとで、本発明者等が従来の精製
方法の各工程に採用されている精製原理を再検討
する中で、各工程における不純物含有率を詳細に
分析していたところ、前記鉱酸による浸出工程の
前工程である粉砕工程で得られた粒状鉱石の不純
物含有率の分析値が測定毎にバラツクという現象
に突き当たつた。この原因を追及した結果、分析
装置や分析手順、あるいはサンプリング方法等の
一般的分析方法自体には全く問題なく、唯一、分
析値がバラツク試料同士はその粒度分布が異なつ
ているのみであつた。そこで、原料鉱石を粉砕
し、それを粒度毎に区分けし、各々の不純物含有
率を調べたところ、明らかに粒度によつて含有率
が異なつていることが判明した。すなわち、粉砕
した原料鉱石粒のうち、粗い粒径のものよりも細
かい粒径のものに含まれる不純物の率が常に高い
という結果が得られた。 本発明者等は、この事実に着目し、種々実験を
重ねた結果、この原理を利用して不純物の含有率
の高い一定以下の粒度の鉱石粒を取り除くこと
で、一定水準以上の純度を有する鉱石粒が得られ
ることがわかり、さらに、このようにして得られ
た純度の高い鉱石粒に従来の精製工程で用いられ
ていた一定の精製処理を施すことにより、前記
IC封止用フイラー材としても適用可能な超高純
度の二酸化ケイ素をも得ることができることを解
明できた。 本発明は、以上のような経過によつてなされた
もので、 原料鉱石塊粒を粉砕して浸出処理を施すことに
より高純度の二酸化ケイ素を得る二酸化ケイ素の
精製方法であつて、 前記原料鉱石塊粒を粉砕する原料粉砕工程と、 この原料粉砕工程の後に行われる工程であつ
て、前工程で得られた鉱石粒のうち第1基準粒度
未満の粒度の鉱石粒を取り除いて第1基準粒度以
上の粒度の鉱石粒のみを選別して取り出してこれ
を粉砕する処理を、1又は2以上繰り返して行う
第1選別・粉砕工程と、 この第1選別・粉砕工程を経て得られた鉱石粒
から前記第1基準粒度以下で第2基準粒度以上の
鉱石粒のみを選別する第2選別工程と、 この第2選別工程を経て得られた鉱石粒を浸出
元鉱として浸出処理を行う浸出工程とを有する構
成とし、 また、この場合、好ましくは、前記第1基準粒
度が28メツシユであり、第2基準粒度が150メツ
シユであることを特徴とした構成とし、 さらに、好ましくは、前記第2選別工程と浸出
工程の間に第1選別・粉砕工程で得られた鉱石粒
の磁着物を取り除く磁選工程を行うことを特徴と
した構成とし、 さらに、より好ましくは、前記浸出工程は、フ
ツ化水素酸を含む浸出液を用いて行うものである
ことを特徴とした構成としたものである。 [作用] 上述の構成において、粉砕工程を経て得られる
鉱石粒は、粒度が細かいものほど不純物濃度が著
しく大きいという傾向がみられる。そこで、原料
粉砕工程の後に、前工程で得られた鉱石粒のうち
第1基準粒度未満の粒度の鉱石粒を取り除いて第
1基準粒度以上の粒度の鉱石粒のみを選別して取
り出してこれを粉砕する処理を、1又は2以上繰
り返して行う第1選別・粉砕工程を行うことによ
り、純度の高い鉱石粒のみを取り出すことができ
る。したがつて、この第1選別・粉砕工程を必要
なだけ繰返すことによつて、一般の天然石英鉱石
から従来の精製過程では得ることのできなかつた
極めて高品位の鉱石粒を得ることができる。 こうして得られた高品位の鉱石粒に、該鉱石粒
から第1基準粒度以下で第2基準粒度以上の鉱石
粒のみを選別する第2選別工程を施して、浸出工
程に適した粒度の鉱石粒を選別し、しかる後、従
来から知られている一連の浸出精製方法を適用す
ることによつて、ICフイラー材としても適用可
能な超高純度の二酸化ケイ素を高い歩留まり率を
もつて得ることができる。 なお、この場合、通常の天然石英鉱石を原料鉱
石として用いた場合には、上記第1基準粒度を28
メツシユに設定し、また、第2基準粒度を150メ
ツシユに設定することによつて超高純度の二酸化
ケイ素材を比較的単純な工程により容易に得られ
ることが確認された。 さらに、前記第2選別工程と浸出工程の間に第
1選別・粉砕工程で得られた鉱石粒の磁着物を取
り除く磁選工程を行い、さらには、前記浸出工程
をフツ化水素酸を含む浸出液を用いて行うことが
上記方法をより効果的にすることがわかつた。 このような結果が得られる理由の学問的解明
は、今後の研究を待たなければならないが、発明
者等の仮説によれば、天然産SiO2原石は、採石
した場所の相違等による大きな意味での不純物含
有率の相違は別として、精製段階における原料鉱
石粒のレベルでマクロ的にみると大略一様な不純
物含有率を有しているものと推察される。それゆ
え、従来のように、単に、SiO2原石を粉砕して
浸出可能な粒度にし、これを全部浸出するだけで
は浸出による分離効果しか得られず、この浸出に
よる分離効果だけでは前記超高純度の二酸化ケイ
素を得ることは不可能であつたものと考えられ
る。 しかしながら、前記SiO2原石をミクロ的にみ
ると、不純物の多くは同一の微少領域に集中して
存在し、この微少領域が種々の密度で分布してい
るものと考えられる。そして、この場合、この微
少領域を含む部分は不純物の少ない他の領域に比
較して衝撃その他の物理的力に対して脆い性質を
有し、この微少領域の分布密度が高くなるにした
がつて益々その傾向が強まるものと考えられる。
このため、SiO2原石を粉砕すると、この脆い部
分から先に粉砕されることになり、粉砕が進むに
つれて不純物含有率の高い部分程細かい鉱石粒に
粉砕されるものと推察される。 したがつて、浸出に適した粒度範囲にある鉱石
粒からこの不純物含有率の高い細かい粒度の鉱石
粒を取り除くことで純度の高い高品位の鉱石粒が
得られるものと考えられる。 [実施例] 以下、本発明の実施例にかかる二酸化ケイ素の
精製方法について説明する。 (実施例 1) まず、A鉱山産SiO2鉱石の塊鉱(最大粒径300
mm)を原料とし、これをドツジクラツシヤーで粉
砕し、得られた鉱石粒を振動フルイで篩別し、+
28メツシユ(28メツシユ以上)、28〜60メツシユ、
60〜150メツシユ、−150メツシユ(150メツシユ以
下)の粒度毎に別けて、各々の不純物含有率を分
析したところ別表1に示す通りであつた。すなわ
ち、別表1から明らかなように、粒度が細かい程
不純物含有率が高くなつている。 そこで、次に、前記工程で得られた鉱石粒のう
ち、+28メツシユの鉱石粒のみを取り出して、今
度はロールクラツシヤで粉砕して振動フイルで粒
度わけし、不純物を分析したところ、別表2に示
す通りであつた。 さらに、前記工程で得られた鉱石粒のうち、+
28メツシユの鉱石粒のみを取り出して再度ロール
クラツシヤで粉砕した後前記と同様に振動フルイ
で粒度わけして不純物含有率を分析した結果は別
表3に示す通りであつた。 この別表3から明らかなように、−150メツシユ
の粒度のものの不純物含有率が極めて高く、それ
以外の粒度のものがこれに比較して著しく不純物
含有率が低いことがわかる。 そこで、次に、前記工程で得られた鉱石粒のう
ち、20〜150メツシユのもののみを取り出し、こ
れに磁着物を取り除く磁選を施した。この場合、
磁選材の磁力は100ガウス以上とした。 その結果、不純物含有率が、鉄(Fe)20ppm、
アルミニウム(Al)60ppm、カルシウム(Ca)
27ppm、ナトリウム(Na)11ppm、カリウム
(K)3ppm、ウラン(U)+トリウム(Th)
11ppbの品位の鉱石粒が得られた。 次に、こうして得られた鉱石粒を浸出元鉱とし
て、これに水を加えて鉱液を作り、以下のような
種々の条件の浸出処理を施した。 すなわち、前記鉱液に酸濃度1規定(以下、N
と略記する)の硫酸を鉱液1トンに対し5キログ
ラム(以下、5Kg/tと記す)、または、8Nの硫
酸を320Kg/t添加し、これらにそれぞれ、フツ
化水素酸(濃度;フツ化水素46%)を0〜100
Kg/tの間でいくつかの値を選んで添加してそれ
ぞれ常温で約5時間の浸出を行なつた。 このような浸出処理を施した鉱液を、それぞれ
蒸留水で洗浄過し、これら別後の湿潤物質を
それぞれ160℃で約16時間乾燥して別表4で示さ
れるような超高純度の二酸化ケイ素を得ることが
できた。 (実施例 2) 前記実施例1における磁選工程を経て得られた
浸出元鉱に同様に水を加えて鉱液を作り、これに
酸濃度2Nの塩酸を70Kg/t添加したものをいく
つか作り、これらにフツ化水素酸(濃度;フツ化
水素46%)を0〜80Kg/tの間におけるいくつか
の値を選んでそれぞれ添加し、次に、常温と59℃
とでそれぞれ約5時間浸出処理を施した後、各々
に前記実施例1の場合と同様の乾燥処理を行なつ
て別表5に示されるような結果を得ることができ
た。 (実施例 3) この実施例では、前記実施例1の結果を参考に
して、50Kg/日の精製プラントを実施した。 この場合の浸出条件は以下の通りである。 添加硫酸 濃度……8N 添加量……320Kg/t 添加フツ化水素酸 添加量……60Kg/t 浸出温度…… 常温 浸出時間…… 5時間 乾燥条件 温度……160℃ 時間……16時間 これにより、別表6に示されるような結果が得
られた。 (実施例 4) 前記実施例3の精製プラントにおいて、浸出処
理における添加硫酸を180Kg/t、フツ化水素酸
を40Kg/tにそれぞおれ変えたほかは同一の条件
で実施したところ別表7に示される結果が得られ
た。 以上の結果から、明らかなように、いずれの実
施例においてもIC封止用のフイラー材としても
使用可能な超高純度の二酸化ケイ素が実験室的に
は勿論のこと工業プラントにおいても極めて高い
回収率でもつて得られることがわかる。 次に、本発明者等は、従来の浸出による精製方
法による精製も試みているので、その結果の一部
を比較例として以下に掲げる。 (比較例 1) A鉱山産SiO2原石(最大粒径300mm)を原料と
して、これをドツジクラツシヤーで粉砕し、次
に、これを振動フルイで篩別し、−28メツシユの
ものを浸出元鉱とした。 次いで、この浸出元鉱に水を加えていくつかの
鉱液を作り、これらに98%濃硫酸を320Kg/t及
び36%塩酸を100Kg/t添加して該鉱液をそれぞ
れ8Nの硫酸濃度及び3Nの塩酸濃度にし、常温も
しくは59℃で約5時間浸出処理を施した。 こうして得られた鉱液に160℃で約5時間の乾
燥処理を施して別表8に示されるような結果を得
た。 (比較例 2) 前記比較例1において、浸出処理の際に浸出効
果を増大させるためにフツ化水素酸を24Kg/t添
加したほかは、比較例1と同一の条件で処理した
ところ、別表9で示される結果が得られた。 (比較例 3) この例は、前記比較例1に、磁選工程を追加し
たものであり、別表10で示される結果が得られ
た。 (比較例 4) この例は、前記比較例2に、磁選工程を追加し
たものであつて、別表11に示される結果が得られ
ている。 以上のように、前記比較例1にあつては、不純
物含有率が、鉄18〜30ppm、アルミニウム89〜
101ppm、カルシウム42〜44ppm、カリウム34〜
39ppm、ウラン+トリウム1〜2ppbであつて、
極めて不十分であるとともに、フツ化水素酸を添
加し、あるいは、磁選工程を追加した比較例2〜
4にあつても、比較例1に比べると品位の向上が
みられるものの、前記IC封止用フイラー材とし
て必要とされる純度には遠く及ばない結果しか得
られていない。 なお、前記各実施例におては、鉄分が比較的多
いA鉱山産の石英原石を用いていることと、粉砕
にドツジクラツシヤーを用いており、これからの
混入鉄分もあるため、浸出工程の前に磁着物を除
去する磁選工程を行なつている例を掲げたが、鉄
分の比較的少ない原石を用いかつドツジクラシツ
ヤーを用いず鉄分の混入しない他の粉砕装置を用
いた場合は、必ずしも磁選工程をいれなくてもよ
く、また、不純物含有率がA鉱山産のものより少
ない原石を用いた場合には前記フツ化水素酸を添
加しなくても本発明の効果が得られることが本発
明者等の他の実験で確認されている。また、鉱石
粒の選別を振動フルイで行なつているが、これ
も、例えば水洗デスライム等の他の選別手段を採
用しても良いことは勿論である。 [発明の効果] 以上詳述したように、本発明にかかる二酸化ケ
イ素の精製方法は、比較的広い地域で産出される
天然の石英原石を粉砕して浸出処理を施す際に、
原料粉砕工程の後に、前工程で得られた鉱石粒の
うち第1基準粒度未満の粒度の鉱石粒を取り除い
て第1基準粒度以上の粒度の鉱石粒のみを選別し
て取り出してこれを粉砕する処理を1又は2以上
繰り返して行う第1選別・粉砕工程を行つて極め
て高品位の鉱石粒を得、次いで、こうして得られ
た高品位の鉱石粒に、該鉱石粒から第1基準粒度
以下で第2基準粒度以上の鉱石粒のみを選別する
第2選別工程を施して、浸出工程に適した粒度の
鉱石粒を選別し、しかる後、一連の浸出精製方法
を適用することによつて、ICフイラー材として
も適用可能な超高純度の二酸化ケイ素を高い歩留
まり率をもつて得ることを可能にしたものであ
る。
[Industrial Application Field] The present invention relates to a method for refining silicon dioxide (quartz SiO 2 ), and in particular, to obtaining high-purity silicon dioxide that can be used as a material for the semiconductor industry from general natural quartz ore. About what made it possible. [Prior Art] In addition to being used as a raw material for single crystal silicon and metal silicon, silicon dioxide is also used as a substrate material for IC photomasks, solar cells, etc., mercury lamps and other discharge tubes, and light sources. Used as one of the important materials such as fiber. Among these uses, for example, silicon dioxide used as a filler material for sealing semiconductor integrated circuits (ICs) and transistors is required to be of particularly high purity (ultra-high purity). It is said that the contained impurities iron (Fe) must be 5 ppm or less, aluminum (Al) must be 10 ppm or less, and uranium (U) and thorium (Th) must be 0.3 ppb or less. In this case, the content of impurities such as uranium and thorium is particularly strictly limited, due to α rays caused by the decay of impurities such as uranium contained in the filler material for sealing, as ICs become more highly integrated. This is because the risk of memory elements malfunctioning has increased. By the way, conventional methods for refining silicon dioxide include direct selection of high-purity quartz that exists in natural ore deposits, the so-called VAD method using a fire hydrolysis reaction of silicon tetrachloride and oxygen, and refining by flotation. There were two methods: treating with acid (hydrochloric acid, sulfuric acid, nitric acid, or a mixture thereof), or roasting naturally produced silicon dioxide, pulverizing it at high temperatures, and then leaching it with hydrochloric acid. [Problems to be Solved by the Invention] However, in order to obtain ultra-high purity silicon dioxide that can be used as a filler material for the above-mentioned IC by the above-mentioned conventional method, uranium etc. are originally used as a refining raw material. It was necessary to prepare expensive crystals that could only be produced in extremely limited areas with few impurities. In other words, it has not been possible to obtain ultra-high purity silicon dioxide that satisfies the above conditions even if the conventional refining methods described above use inexpensive natural quartz rough produced in relatively large quantities in a wide area as a raw material. . An object of the present invention is to provide a method for refining silicon dioxide that can obtain ultra-high purity silicon dioxide, which can be used as a material for the filler material for IC encapsulation, from general natural quartz ore. . [Means for Solving the Problems] Against the background described above, the present inventors reexamined the purification principles adopted in each step of conventional purification methods, and found that the impurity content rate in each step was As a result of detailed analysis, we came across a phenomenon in which the analytical value of the impurity content of the granular ore obtained in the crushing process, which is a pre-process to the mineral acid leaching process, varied from measurement to measurement. As a result of investigating the cause of this problem, we found that there was no problem with the analytical equipment, analytical procedures, or general analytical methods such as sampling methods, and the only difference was that the particle size distributions of samples with varying analytical values were different. Therefore, when the raw material ore was crushed, classified by particle size, and the impurity content of each was examined, it was found that the content clearly differed depending on the particle size. That is, the result was obtained that among the crushed raw material ore grains, the percentage of impurities contained in fine grains was always higher than in coarse grains. The present inventors focused on this fact, and as a result of various experiments, by using this principle to remove ore particles with a particle size below a certain level with a high content of impurities, it is possible to achieve purity above a certain level. It was found that ore grains can be obtained, and furthermore, by subjecting the thus obtained highly pure ore grains to a certain refining treatment used in conventional refining processes, the above-mentioned
It was revealed that ultra-high purity silicon dioxide, which can also be used as a filler material for IC encapsulation, can be obtained. The present invention has been made through the process described above, and is a method for refining silicon dioxide, which obtains high-purity silicon dioxide by crushing and leaching raw material ore lumps, the method comprising: A raw material crushing step for crushing lumps, and a step performed after this raw material crushing step, in which ore grains having a particle size smaller than the first standard particle size are removed from the ore grains obtained in the previous step to obtain a first standard particle size. A first sorting/pulverizing step in which the ore grains having the above particle size are selected, taken out, and crushed are repeated one or more times, and the ore grains obtained through this first sorting/pulverizing step are a second sorting step in which only ore grains having a second standard grain size or less are selected from the first reference grain size or less; and a leaching step in which the ore grains obtained through the second sorting step are used as a leaching source ore for leaching treatment. In this case, the first reference particle size is preferably 28 meshes, and the second reference particle size is 150 meshes, and further preferably, the second sorting step The structure is characterized in that a magnetic separation step is performed to remove magnetic substances from the ore grains obtained in the first sorting and crushing step between the leaching step and the leaching step, and more preferably, the leaching step is performed using hydrofluoric acid. The invention is characterized in that it is carried out using a leachate containing. [Function] In the above configuration, there is a tendency that the finer the particle size of the ore particles obtained through the pulverization process, the significantly higher the impurity concentration. Therefore, after the raw material crushing step, out of the ore grains obtained in the previous step, those with a particle size smaller than the first reference particle size are removed, and only the ore particles with a particle size equal to or larger than the first reference particle size are selected and taken out. By performing the first sorting and crushing process in which the crushing process is repeated one or more times, only ore grains with high purity can be taken out. Therefore, by repeating this first sorting and crushing process as many times as necessary, it is possible to obtain extremely high-grade ore grains that could not be obtained through conventional refining processes from ordinary natural quartz ore. The high-grade ore grains obtained in this way are subjected to a second sorting step in which only ore grains having a first standard grain size or less and a second standard grain size or more are sorted from the ore grains to obtain ore grains with a grain size suitable for the leaching process. By selecting and then applying a series of conventionally known leaching and purification methods, ultra-high purity silicon dioxide, which can also be used as an IC filler material, can be obtained with a high yield rate. can. In this case, if normal natural quartz ore is used as the raw material ore, the first standard particle size above is 28
It was confirmed that an ultra-high purity silicon dioxide material can be easily obtained by a relatively simple process by setting the particle size to 150 mesh and setting the second reference particle size to 150 mesh. Furthermore, between the second sorting step and the leaching step, a magnetic separation step is performed to remove the magnetic particles of the ore grains obtained in the first sorting and crushing step, and furthermore, the leaching step is performed using a leachate containing hydrofluoric acid. It has been found that using the above method makes the method more effective. Academic elucidation of the reason why such results are obtained will have to wait for future research, but according to the inventors' hypothesis, naturally produced SiO 2 rough material has a large effect due to differences in the location where it was quarried. Apart from the difference in impurity content, it is presumed that the impurity content is approximately uniform when viewed macroscopically at the level of the raw material ore grains in the refining stage. Therefore, as in the past, simply crushing the SiO 2 raw stone to a leachable particle size and leaching it all can only obtain the separation effect by leaching. It is considered that it would have been impossible to obtain silicon dioxide. However, when looking at the SiO 2 raw stone from a microscopic perspective, it is thought that most of the impurities are concentrated in the same minute region, and these minute regions are distributed at various densities. In this case, the part containing this minute region has a property of being more vulnerable to impact and other physical forces than other regions with less impurities, and as the distribution density of this minute region increases, This trend is expected to become even stronger.
For this reason, when SiO 2 raw ore is crushed, this brittle portion is crushed first, and it is presumed that as the crushing progresses, the portion with a higher impurity content is crushed into finer ore grains. Therefore, it is thought that high-grade ore grains with high purity can be obtained by removing fine ore grains with a high impurity content from ore grains in a grain size range suitable for leaching. [Example] Hereinafter, a method for purifying silicon dioxide according to an example of the present invention will be described. (Example 1) First, lump ore of SiO 2 ore from mine A (maximum particle size 300
mm) as a raw material, it is crushed with a dotsuji crusher, the obtained ore grains are sieved with a vibrating sieve, and
28 meshes (more than 28 meshes), 28 to 60 meshes,
The impurity content of each particle was analyzed by particle size of 60 to 150 mesh and -150 mesh (150 mesh or less), and the results were as shown in Attached Table 1. That is, as is clear from Attached Table 1, the finer the particle size, the higher the impurity content. Next, from among the ore grains obtained in the above process, only the ore grains with a mesh size of +28 were taken out, crushed with a roll crusher, divided into particle sizes with a vibrating filter, and analyzed for impurities, as shown in Attached Table 2. It was hot on the street. Furthermore, among the ore grains obtained in the above step, +
Only 28 mesh ore grains were taken out and crushed again using a roll crusher, and then divided into particle sizes using a vibrating sieve in the same manner as above and analyzed for impurity content. The results are shown in Attached Table 3. As is clear from Table 3, the impurity content of -150 mesh particles is extremely high, and the impurity contents of other particle sizes are significantly lower. Then, from among the ore grains obtained in the above step, only 20 to 150 meshes were taken out and subjected to magnetic separation to remove magnetic substances. in this case,
The magnetic force of the magnetically selected material was set to 100 Gauss or more. As a result, the impurity content was 20ppm iron (Fe),
Aluminum (Al) 60ppm, Calcium (Ca)
27ppm, sodium (Na) 11ppm, potassium (K) 3ppm, uranium (U) + thorium (Th)
Ore grains with a grade of 11 ppb were obtained. Next, the ore grains thus obtained were used as a leaching source ore, water was added thereto to prepare a mineral liquid, and leaching treatments were performed under various conditions as described below. That is, an acid concentration of 1N (hereinafter, N
5 kg of sulfuric acid (hereinafter referred to as 5 Kg/t) or 320 kg/t of 8N sulfuric acid is added to each ton of mineral fluid, and to each of these, hydrofluoric acid (concentration; Hydrogen 46%) from 0 to 100
Several values were selected between Kg/t and leaching was carried out at room temperature for about 5 hours. The mineral solution subjected to such leaching treatment is washed and filtered with distilled water, and the wet substances after separation are dried at 160°C for about 16 hours to produce ultra-high purity silicon dioxide as shown in Attached Table 4. I was able to get (Example 2) In the same manner, water was added to the leaching source ore obtained through the magnetic separation process in Example 1 to create mineral liquid, and to this, 70 kg/t of hydrochloric acid with an acid concentration of 2N was added to make several mineral liquids. To these, hydrofluoric acid (concentration: hydrogen fluoride 46%) was added at several values between 0 and 80 kg/t, and then heated at room temperature and 59°C.
After each was subjected to leaching treatment for about 5 hours, each was subjected to drying treatment in the same manner as in Example 1, and the results shown in Attached Table 5 were obtained. (Example 3) In this example, a 50 kg/day purification plant was implemented with reference to the results of Example 1 above. The leaching conditions in this case are as follows. Added sulfuric acid Concentration...8N Added amount...320Kg/t Added hydrofluoric acid Added amount...60Kg/t Leaching temperature...Room temperature Leaching time...5 hours Drying conditions Temperature...160℃ Time...16 hours As a result , the results shown in Attached Table 6 were obtained. (Example 4) In the refining plant of Example 3, the leaching process was carried out under the same conditions except that the added sulfuric acid and hydrofluoric acid were changed to 180 kg/t and 40 kg/t, respectively. The results shown were obtained. From the above results, it is clear that in each of the examples, ultra-high purity silicon dioxide, which can be used as a filler material for IC encapsulation, is recovered at an extremely high rate not only in the laboratory but also in industrial plants. It can be seen that even the ratio can be obtained. Next, the present inventors also attempted purification by a conventional purification method by leaching, and some of the results are listed below as a comparative example. (Comparative Example 1) Using raw SiO2 from mine A (maximum particle size 300 mm) as a raw material, crush it with a dotsuji crusher, then sieve it with a vibrating sieve, and leach -28 mesh. It was originally a mine. Next, water is added to this leaching source ore to make several mineral liquids, and 320 kg/t of 98% concentrated sulfuric acid and 100 kg/t of 36% hydrochloric acid are added to these to make the mineral liquids have a sulfuric acid concentration of 8N and a concentration of 8N, respectively. Leaching was carried out at room temperature or 59°C for about 5 hours with a hydrochloric acid concentration of 3N. The mineral solution thus obtained was subjected to a drying treatment at 160°C for about 5 hours, and the results shown in Attached Table 8 were obtained. (Comparative Example 2) In Comparative Example 1, treatment was carried out under the same conditions as in Comparative Example 1, except that 24 kg/t of hydrofluoric acid was added to increase the leaching effect during the leaching treatment. The results shown are obtained. (Comparative Example 3) In this example, a magnetic separation step was added to Comparative Example 1, and the results shown in Appendix 10 were obtained. (Comparative Example 4) In this example, a magnetic separation process was added to Comparative Example 2, and the results shown in Appendix 11 were obtained. As mentioned above, in Comparative Example 1, the impurity content was 18 to 30 ppm for iron and 89 to 30 ppm for aluminum.
101ppm, calcium 42~44ppm, potassium 34~
39ppm, uranium + thorium 1-2ppb,
Comparative Examples 2 to 3 were extremely insufficient and added hydrofluoric acid or a magnetic separation process
Even in Example 4, the quality was improved compared to Comparative Example 1, but the purity was far short of the purity required for the filler material for IC encapsulation. In addition, in each of the above examples, quartz rough from Mine A, which has a relatively high iron content, is used, and a dotsushi crusher is used for crushing, so there will be some iron mixed in, so the leaching process In the previous section, we gave an example in which a magnetic separation process is used to remove magnetic substances, but if the raw ore with a relatively low iron content is used, and another crushing device that does not mix iron without using a double crusher is used. , it is not necessary to necessarily include the magnetic separation process, and if raw ore with a lower impurity content than that from mine A is used, the effects of the present invention can be obtained without adding the hydrofluoric acid. has been confirmed in other experiments by the inventors. Further, although the ore grains are sorted using a vibrating sieve, it goes without saying that other sorting means such as water washing and desliming may also be used. [Effects of the Invention] As detailed above, the method for refining silicon dioxide according to the present invention involves crushing and leaching natural quartz ore produced in a relatively wide area.
After the raw material crushing step, remove ore grains with a particle size smaller than the first reference particle size from among the ore particles obtained in the previous step, and select and take out only the ore particles with a particle size equal to or higher than the first reference particle size, and crush them. A first sorting and crushing step in which the treatment is repeated one or more times is performed to obtain extremely high-grade ore grains, and then the high-grade ore grains obtained in this way are subjected to a first sorting and crushing step in which the treatment is repeated one or more times. A second sorting process is performed to select only ore grains with a second reference grain size or higher to select ore grains with a grain size suitable for the leaching process, and then a series of leaching and purification methods are applied to produce IC. This makes it possible to obtain ultra-high purity silicon dioxide, which can also be used as a filler material, with a high yield rate.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 原料鉱石塊粒を粉砕して浸出処理を施すこと
により高純度の二酸化ケイ素を得る二酸化ケイ素
の精製方法であつて、 前記原料鉱石塊粒を粉砕する原料粉砕工程と、 この原料粉砕工程の後に行われる工程であつ
て、前工程で得られた鉱石粒のうち第1基準粒度
未満の粒度の鉱石粒を取り除いて第1基準粒度以
上の粒度の鉱石粒のみを選別して取り出してこれ
を粉砕する処理を、1又は2以上繰り返して行う
第1選別・粉砕工程と、 この第1選別・粉砕工程を経て得られた鉱石粒
から前記第1基準粒度以下で第2基準粒度以上の
鉱石粒のみを選別する第2選別工程と、 この第2選別工程を経て得られた鉱石粒を浸出
元鉱として浸出処理を行う浸出工程とを有する二
酸化ケイ素の精製方法。 2 前記第1基準粒度が28メツシユであり、第2
基準粒度が150メツシユであることを特徴とした
特許請求の範囲第1項記載の二酸化ケイ素の精製
方法。 3 前記第2選別工程と浸出工程の間に第1粉
砕・選別工程で得られた鉱石粒の磁着物を取り除
く磁選工程を行うことを特徴とした特許請求の範
囲第1項又は第2項記載の二酸化ケイ素の精製方
法。 4 前記浸出工程は、フツ化水素酸を含む浸出液
を用いて行うものであることを特徴とした特許請
求の範囲第1項ないし第3項のいずれかに記載の
二酸化ケイ素の精製方法。
[Scope of Claims] 1. A method for refining silicon dioxide for obtaining high-purity silicon dioxide by pulverizing raw material ore lumps and subjecting them to leaching treatment, comprising: a raw material crushing step of pulverizing the raw material ore lumps; This is a step performed after this raw material crushing step, in which ore grains with a particle size smaller than the first reference particle size are removed from the ore particles obtained in the previous step, and only ore particles with a particle size equal to or larger than the first reference particle size are sorted. a first sorting/pulverizing process in which the ore particles are taken out and crushed one or more times, and the ore grains obtained through the first sorting/pulverizing process have a particle size equal to or less than the first standard particle size. A method for refining silicon dioxide, comprising: a second sorting step in which only ore grains having a particle size or higher are sorted; and a leaching step in which the ore grains obtained through the second sorting step are used as a source ore for leaching. 2 The first reference particle size is 28 mesh, and the second
The method for purifying silicon dioxide according to claim 1, wherein the standard particle size is 150 mesh. 3. Claims 1 or 2, characterized in that between the second sorting step and the leaching step, a magnetic separation step is performed to remove magnetic substances from the ore grains obtained in the first crushing and sorting step. A method for purifying silicon dioxide. 4. The method for refining silicon dioxide according to any one of claims 1 to 3, wherein the leaching step is performed using a leaching solution containing hydrofluoric acid.
JP26481087A 1987-10-20 1987-10-20 Purification of silicon dioxide Granted JPH01108110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26481087A JPH01108110A (en) 1987-10-20 1987-10-20 Purification of silicon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26481087A JPH01108110A (en) 1987-10-20 1987-10-20 Purification of silicon dioxide

Publications (2)

Publication Number Publication Date
JPH01108110A JPH01108110A (en) 1989-04-25
JPH0511050B2 true JPH0511050B2 (en) 1993-02-12

Family

ID=17408529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26481087A Granted JPH01108110A (en) 1987-10-20 1987-10-20 Purification of silicon dioxide

Country Status (1)

Country Link
JP (1) JPH01108110A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0751452B2 (en) * 1989-07-25 1995-06-05 信越石英株式会社 Silica glass powder manufacturing equipment
JP2008230875A (en) * 2007-03-19 2008-10-02 Kyoto Univ Method for manufacturing high-purity silicon dioxide
TW201033123A (en) * 2009-03-13 2010-09-16 Radiant Technology Co Ltd Method for manufacturing a silicon material with high purity
JP2012188332A (en) * 2011-03-14 2012-10-04 Admatechs Co Ltd Method for making highly pure silica raw material
CN102303870B (en) * 2011-08-26 2012-11-07 田辉明 High-purity quartz sand purifying and pickling device
KR102516715B1 (en) * 2015-11-23 2023-03-31 주식회사 케이씨씨 Method of Preparing High Purity Anorthite

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109215A (en) * 1979-02-13 1980-08-22 Elkem Spigerverket As Method of leaching silicate ore

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55109215A (en) * 1979-02-13 1980-08-22 Elkem Spigerverket As Method of leaching silicate ore

Also Published As

Publication number Publication date
JPH01108110A (en) 1989-04-25

Similar Documents

Publication Publication Date Title
CA1334821C (en) Method of reforming soluble salts to effect purification and increase crystal size thereof
WO2011003777A1 (en) Method for producing a highly pure quartz granulate
US4818510A (en) Modified close fraction batch process for purification of SiO2
DE102009020143A1 (en) Process for the treatment of saw waste for the recovery of silicon for the production of solar silicon
JPS5867834A (en) Treatment of aluminum molten slag
US6267789B1 (en) Method for enriching raw salt
US4067953A (en) Process for upgrading ores containing baddeleyite
US4119700A (en) Production of pharmaceutical barium sulphate
JPH0511050B2 (en)
Harbuck Increasing germanium extraction from hydrometallurgical zinc residues
JPH11117030A (en) Enriching of nickel-containing oxide ore
US4385902A (en) Process for purifying crystalline potassium chloride
KR100489931B1 (en) High purity careful manufacture method of natural silica
EP0096718A1 (en) Process for reducing radioactive contamination in phosphogypsum.
JP4863887B2 (en) Method for purifying metal silicon
US2031947A (en) Process for the refining of alloys
JPH03153542A (en) Production of purified quartz powder
CA2150988C (en) Mercury recovery process
JPH066495B2 (en) Method for producing high-purity quartz glass
JPS5924731B2 (en) Method for removing and recovering uranium or/and thorium from a liquid containing uranium or/and thorium
SU631209A1 (en) Mineral disintegration method
US20040013594A1 (en) Method for producing phosphoric acid
CA1050235A (en) Production of pharmaceutical barium sulphate
AU762672B2 (en) Method for the preparation of nickel concentrate
AU2002223320A1 (en) Process for the recovery of phosphate from phosphate rock