JPH05110166A - Raman laser device - Google Patents

Raman laser device

Info

Publication number
JPH05110166A
JPH05110166A JP26954191A JP26954191A JPH05110166A JP H05110166 A JPH05110166 A JP H05110166A JP 26954191 A JP26954191 A JP 26954191A JP 26954191 A JP26954191 A JP 26954191A JP H05110166 A JPH05110166 A JP H05110166A
Authority
JP
Japan
Prior art keywords
cylinder
temperature
laser light
multiple reflection
medium gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26954191A
Other languages
Japanese (ja)
Inventor
Yasuaki Miyamoto
泰明 宮本
Masayoshi Hagiwara
正義 萩原
Makoto Hasegawa
信 長谷川
Yubun Inoue
雄文 井上
Yumio Yato
弓雄 矢戸
Hideo Tashiro
英夫 田代
Keiji Yoshimura
敬二 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Mitsubishi Heavy Industries Ltd
Power Reactor and Nuclear Fuel Development Corp
RIKEN Institute of Physical and Chemical Research
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Mitsubishi Heavy Industries Ltd
Power Reactor and Nuclear Fuel Development Corp
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan, Mitsubishi Heavy Industries Ltd, Power Reactor and Nuclear Fuel Development Corp, RIKEN Institute of Physical and Chemical Research filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP26954191A priority Critical patent/JPH05110166A/en
Publication of JPH05110166A publication Critical patent/JPH05110166A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable non-uniformity of temperature of laser medium gas at a multiplex reflection part of laser beam to be eliminated and prevent refraction of laser beam for achieving an accurate multiple reflection. CONSTITUTION:Edge plates 22 and 23 are fixed at both edge parts of an inside cylinder 3 and recessed mirrors 1 and 2 are inserted into short tubes 20 and 21 of the edge plates 22 and 23. A Jacket 7 for cooling is formed at an outer periphery of the inside cylinder 3 and then a cooling cylinder 8 which is formed by a material with a large thermal conductivity is installed within the inside cylinder 3 so that a multiple reflection part 24 may be surrounded, thus enabling non-uniformity in temperature due to heat conviction of laser medium gas which is cooled by a refrigerant within a Jacket 7 to be suppressed by the cooling cylinder 8 and a temperature of the laser medium gas to be uniform at the multiple reflection part 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ラマンレーザ装置の改
良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improved Raman laser device.

【0002】[0002]

【従来の技術】ラマンレーザは、ガス分子の回転散乱遷
移でレーザ光を長波長側へ波長変換するものであり、一
対の鏡によりレーザ光を多重反射させるものが知られて
いる。(参考文献:石川島播磨技報第24巻5号,昭和
59年9月)
2. Description of the Related Art A Raman laser is one that converts the wavelength of a laser beam to a long wavelength side by the rotational scattering transition of gas molecules, and it is known that a laser beam is multiple-reflected by a pair of mirrors. (Reference: Ishikawajima Harima Technical Report Vol. 24, No. 5, September 1984)

【0003】そのラマンレーザ装置の一例を図4に示
し、図4及びレーザ光の多重反射を説明する図2に基づ
き、従来の技術を説明する。
An example of the Raman laser device is shown in FIG. 4, and a conventional technique will be described with reference to FIG. 4 and FIG. 2 for explaining multiple reflection of laser light.

【0004】図4に示すように、それぞれ端板22,2
3に短管20,21が固定されており、短管20,21
に挿入された凹面鏡1,2が、内側円筒3の両端フラン
ジ3A,3Bに、端板22,23を介して固定されてい
る。従って、レーザ光30が、端板22のレーザ光入射
用の窓4及び凹面鏡2の入射用孔2Aを介して凹面鏡
1,2間に入り、図2に示すように、この凹面鏡1,2
間の多重反射部分24で多重反射する。そして、多重反
射してラマンレーザ光となったレーザ光31は、凹面鏡
1の出射孔1A及び端板23のレーザ光出射用の窓5を
介して装置外に出射される。
As shown in FIG. 4, end plates 22 and 2 are respectively provided.
Short pipes 20 and 21 are fixed to 3 and short pipes 20 and 21
The concave mirrors 1 and 2 inserted in are fixed to both end flanges 3A and 3B of the inner cylinder 3 via end plates 22 and 23. Therefore, the laser light 30 enters between the concave mirrors 1 and 2 through the laser light entrance window 4 of the end plate 22 and the entrance hole 2A of the concave mirror 2 and, as shown in FIG.
Multiple reflection is performed at the multiple reflection portion 24 between them. Then, the laser light 31 that has been multiply reflected and becomes Raman laser light is emitted to the outside of the device through the emission hole 1A of the concave mirror 1 and the window 5 for emitting laser light of the end plate 23.

【0005】一方、円側円筒3の外周に設けられた外側
円筒6によって形成されるジャケット7内に、冷媒入口
6Aから液体窒素等の冷媒を入れて、凹面鏡1,2間の
多重反射部分24に存在するレーザ媒質ガスを低温に維
持している。
On the other hand, a multiple reflection portion 24 between the concave mirrors 1 and 2 is filled with a coolant such as liquid nitrogen from a coolant inlet 6A in a jacket 7 formed by an outer cylinder 6 provided on the outer circumference of the circular cylinder 3. The laser medium gas existing in is maintained at a low temperature.

【0006】[0006]

【発明が解決しようとする課題】前述のように、ジャケ
ット7内に冷媒を入れ、多重反射部分24を覆う内側円
筒3を、外周側より一様に冷却するが、冷却に伴い内側
円筒3内でレーザ媒質ガスの熱対流作用が生ずることと
なる。この結果、内側円筒3内の上部側に位置するレー
ザ媒質ガスの温度が、下部側に位置するレーザ媒質ガス
の温度より高くなり、レーザ媒質ガスに大きな温度差が
生ずることとなる。
As described above, the cooling medium is put into the jacket 7 to uniformly cool the inner cylinder 3 covering the multiple reflection portion 24 from the outer peripheral side. Thus, thermal convection of the laser medium gas occurs. As a result, the temperature of the laser medium gas located on the upper side in the inner cylinder 3 becomes higher than the temperature of the laser medium gas located on the lower side, and a large temperature difference occurs in the laser medium gas.

【0007】以上より、レーザ媒質ガスの屈折率も内側
円筒3内の位置によって異なり、レーザ光が屈折して正
確な多重反射が困難であるという課題を生ずることとな
る。
As described above, the refractive index of the laser medium gas also differs depending on the position in the inner cylinder 3, and the laser beam is refracted, which causes a problem that accurate multiple reflection is difficult.

【0008】[0008]

【課題を解決するための手段】本発明のラマンレーザ装
置は、外周側より冷却される筒状をした容器内の両端部
に一対の凹面鏡を設け、これら凹面鏡の間でレーザ光を
多重反射させるラマンレーザ装置において、レーザ光を
多重反射する部分を囲い且つ熱伝導性の良好な材質で形
成された冷却筒を前記容器内に取付けたことを特徴とす
るものである。
SUMMARY OF THE INVENTION A Raman laser device of the present invention is a Raman laser in which a pair of concave mirrors are provided at both ends in a cylindrical container that is cooled from the outer peripheral side, and laser light is multiply reflected between these concave mirrors. The apparatus is characterized in that a cooling cylinder formed of a material having good thermal conductivity is attached to the inside of the container so as to surround a portion where the laser light is multiply reflected.

【0009】[0009]

【作用】一対の凹面鏡間でレーザ光を多重反射させ、容
器内からラマンレーザ光を射出させる。
The laser light is multiply reflected between the pair of concave mirrors, and the Raman laser light is emitted from the inside of the container.

【0010】この際、熱伝導性の良好な冷却筒がレーザ
光の多重反射する部分を囲い、容器内のレーザ媒質ガス
の温度を一定化して、レーザ媒質ガス密度の不均一によ
るレーザ光の屈折を防止する。
At this time, a cooling cylinder having a good thermal conductivity surrounds a portion where the laser light is multiply reflected, the temperature of the laser medium gas in the container is kept constant, and the laser light is refracted due to the non-uniformity of the laser medium gas density. Prevent.

【0011】[0011]

【実施例】本発明のラマンレーザ装置に係る一実施例を
図1に示し、図1,図2及び図3に基づき本実施例を説
明する。尚、従来の技術で説明した部材と同一の部材に
は、同一の符号を付す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the Raman laser device of the present invention is shown in FIG. 1, and this embodiment will be described with reference to FIGS. 1, 2 and 3. The same members as those described in the related art are designated by the same reference numerals.

【0012】図1に示すように、一対の凹面鏡1,2が
短管20,21にそれぞれ装着され、筒状容器である内
側円筒3の端部を構成する両端フランジ3B,3Aに取
付けられて内側円筒3を封止する端板23,22に、短
管20,21が固定されている。右側に位置する端板2
2にはレーザ光入射用の窓4が設置されており、凹面鏡
2には窓4に対応して入射用孔2Aが形成されている。
凹面鏡1には出射用孔1Aが形成されており、左側に位
置する端板23にはこの孔1Aに対応してレーザ光出射
用の窓5が設置されている。この内側円筒3の外周側に
は冷媒入口6Aを有した外側円筒6が設けられている。
従って、外側円筒6により形成されたジャケット7内の
冷媒より、内側円筒3内が冷却されることとなる。
As shown in FIG. 1, a pair of concave mirrors 1 and 2 are attached to short tubes 20 and 21, respectively, and are attached to both end flanges 3B and 3A constituting the end of an inner cylinder 3 which is a cylindrical container. Short tubes 20 and 21 are fixed to end plates 23 and 22 that seal the inner cylinder 3. End plate 2 located on the right side
2, a window 4 for laser light incidence is installed, and the concave mirror 2 has an entrance hole 2A corresponding to the window 4.
An emission hole 1A is formed in the concave mirror 1, and a window 5 for emitting laser light is installed in the end plate 23 located on the left side so as to correspond to the hole 1A. An outer cylinder 6 having a refrigerant inlet 6A is provided on the outer peripheral side of the inner cylinder 3.
Therefore, the inside of the inner cylinder 3 is cooled by the refrigerant inside the jacket 7 formed by the outer cylinder 6.

【0013】一方、内側円筒3内には、レーザ光が多重
反射する多重反射部分24を囲うように内側円筒3と同
軸状に位置し且つ、熱伝導率が大きく熱伝導性の良好な
材料であるアルミニウム材で円筒状に形成された冷却筒
8が設置され、取付けられている。
On the other hand, inside the inner cylinder 3, a material having a large thermal conductivity and a good thermal conductivity is positioned coaxially with the inner cylinder 3 so as to surround the multiple reflection portion 24 where the laser light is multiply reflected. A cooling cylinder 8 formed of a certain aluminum material in a cylindrical shape is installed and attached.

【0014】次に、本実施例のラマンレーザ装置の作用
を説明する。
Next, the operation of the Raman laser device of this embodiment will be described.

【0015】レーザ光30が端板23の窓4から入射す
ると、凹面鏡2の孔2Aを通過し、図2に示すように凹
面鏡1と凹面鏡2との間の多重反射部分24で多重反射
する。この結果、最終的にレーザ光30がラマンレーザ
光31となり、凹面鏡1の孔1Aを通過して端板23の
窓5から出射する。
When the laser light 30 enters through the window 4 of the end plate 23, it passes through the hole 2A of the concave mirror 2 and is multiply reflected by the multiple reflection portion 24 between the concave mirror 1 and the concave mirror 2 as shown in FIG. As a result, the laser light 30 finally becomes the Raman laser light 31, passes through the hole 1A of the concave mirror 1, and is emitted from the window 5 of the end plate 23.

【0016】一方、外側円筒6により形成されたジャケ
ット7内に、冷媒入口6Aから冷媒を入れることによ
り、ジャケット7の内側に位置する内側円筒3が冷却さ
れ、凹面鏡1,2間に位置する多重反射部分24が低温
に維持される。これに伴って、内側円筒3内の冷却筒8
が冷媒により冷却された内側円筒3との間の伝熱により
冷却され、冷却筒8により周囲を囲まれた形となる多重
反射部分24が冷却筒8を介して均一に冷却されること
となる。
On the other hand, when the refrigerant is introduced from the refrigerant inlet 6A into the jacket 7 formed by the outer cylinder 6, the inner cylinder 3 located inside the jacket 7 is cooled, and the multiple cylinders located between the concave mirrors 1 and 2 are cooled. The reflective portion 24 is kept cool. Along with this, the cooling cylinder 8 in the inner cylinder 3
Is cooled by heat transfer with the inner cylinder 3 cooled by the refrigerant, and the multiple reflection portion 24 surrounded by the cooling cylinder 8 is uniformly cooled through the cooling cylinder 8. ..

【0017】つまり、多重反射部分24が冷却される際
に、内側円筒3内の上下位置間で、レーザ媒質ガス9の
熱対流作用により温度差が生じても、熱伝導率の大きい
材料で形成された冷却筒8は容易に全体が均一な温度と
なる為、冷却筒8とレーザ媒質ガス9との間で熱が移動
し、温度差が解消されることになる。この結果、凹面鏡
1,2間の多重反射部分24が均一に冷却されることと
なる。
That is, when the multiple reflection portion 24 is cooled, it is formed of a material having a large thermal conductivity even if a temperature difference occurs due to the thermal convection action of the laser medium gas 9 between the upper and lower positions in the inner cylinder 3. Since the entire cooling cylinder 8 is easily brought to a uniform temperature, heat is transferred between the cooling cylinder 8 and the laser medium gas 9 to eliminate the temperature difference. As a result, the multiple reflection portion 24 between the concave mirrors 1 and 2 is cooled uniformly.

【0018】次に、本実施例の冷却筒8の効果を確認す
べく行った試験の解析結果を図3及び表1に基づき説明
する。
Next, the analysis result of the test conducted to confirm the effect of the cooling cylinder 8 of this embodiment will be described with reference to FIG. 3 and Table 1.

【0019】ここで図3は、温度測定個所を指し示す図
である。表1は、図3の測定個所における測定値を表に
したものであり、周方向温度分布の解析結果が示される
こととなる。
Here, FIG. 3 is a diagram showing the temperature measurement points. Table 1 is a table of the measured values at the measurement points in FIG. 3, and the analysis result of the circumferential temperature distribution will be shown.

【0020】尚、測定値の計算方法は、文献名「Tra
nsport Phenomena(著者:R.BYR
ON BIRD,WARREN E.STEWART,
EDWIN N.LIGHTFOOT、出版元:Top
pan Company,Ltd.)」内に記載された
「9.7 Heat Conduction ina
Cooling Fin」(288ページ〜291ペー
ジ)に基づくこととする。
The method of calculating the measured value is described in the literature name "Tra.
nport Phenomena (Author: R. BYR
ON BIRD, WARREN E. STEWART,
EDWIN N.E. LIGHTFOOT, Publisher: Top
pan Company, Ltd. ) ”Described in“ 9.7 Heat Condition ina ”
Cooling Fin "(pages 288-291).

【0021】[0021]

【表1】 [Table 1]

【0022】ここでケース1は、従来の技術の構造であ
り、冷却筒のない場合である。ケース2は、冷却筒3に
アルミニウム製の円筒部材(直径d1 =345mm,板厚
1 =20mm)を用いた場合である。ケース3は、冷却
筒3に同じくアルミニウム製であるが板厚の異なる円筒
部材(直径d1 =345mm,板厚t1 =30mm)を用い
た場合である。
Here, the case 1 has a structure of the prior art, and is a case without a cooling cylinder. Case 2 is a case where an aluminum cylinder member (diameter d 1 = 345 mm, plate thickness t 1 = 20 mm) is used for the cooling cylinder 3. Case 3 is a case in which a cylindrical member (diameter d 1 = 345 mm, plate thickness t 1 = 30 mm) made of aluminum but different in plate thickness is used for the cooling cylinder 3.

【0023】そして、これらケース1からケース3を同
一のステンレス鋼製の内側円筒3(直径d2 =355.
6mm,板厚t2 =5mm)内においての図3に示す位置
(ケース1については内側円筒3の同一角度の位置)に
ついて、温度測定を行った。尚、内側円筒3の熱伝導率
は14kcal/mh℃であり、冷却筒8の熱伝導率は
175kcal/mh℃であった。また、ケース1にお
ける内側円筒3内の空間の上層部温度Ta1 は−130
℃であり、下層部の温度Ta2 は−196℃であった。
The cases 1 to 3 are made of the same stainless steel inner cylinder 3 (diameter d 2 = 355.
The temperature was measured at the position shown in FIG. 3 (6 mm, plate thickness t 2 = 5 mm) (the position of the inner cylinder 3 at the same angle in case 1). The thermal conductivity of the inner cylinder 3 was 14 kcal / mh ° C, and the thermal conductivity of the cooling cylinder 8 was 175 kcal / mh ° C. Further, the upper layer temperature Ta 1 of the space inside the inner cylinder 3 in the case 1 is −130.
The temperature Ta 2 of the lower layer was −196 ° C.

【0024】以上のような測定の結果から、ケース1の
最高温度は−138.1℃、最低温度は−196.0℃
であり、約58℃の温度差が生じた。また、ケース2の
最高温度は−188.7℃、最低温度は−196.0℃
であり、約7℃の温度差となった。さらに、ケース3の
最高温度は−190.9℃、最低温度−196℃であ
り、約5℃の温度差となった。
From the above measurement results, the maximum temperature of case 1 is -138.1 ° C and the minimum temperature is -196.0 ° C.
And a temperature difference of about 58 ° C. occurred. The maximum temperature of Case 2 is -188.7 ° C, and the minimum temperature is -196.0 ° C.
And the temperature difference was about 7 ° C. Furthermore, the maximum temperature of case 3 is -190.9 ° C and the minimum temperature is -196 ° C, which is a temperature difference of about 5 ° C.

【0025】この結果、冷却筒8を設けたことにより、
内側円筒3内の周方向温度分布を大幅に均一化できるこ
とが明確となり、レーザ媒質ガス温度を大幅に均一化す
ることが可能となった。
As a result, by providing the cooling cylinder 8,
It became clear that the temperature distribution in the circumferential direction inside the inner cylinder 3 can be made largely uniform, and the temperature of the laser medium gas can be made largely uniform.

【0026】尚、本実施例において、冷却筒8をアルミ
ニウム製としたが、これに限定されるものでなく、アル
ミニウム合金製,銅製,銅合金製など他の周知な熱伝導
性の良好な材料を用いた冷却筒としてもよい。
In this embodiment, the cooling cylinder 8 is made of aluminum, but the cooling cylinder 8 is not limited to this, and other well-known materials having good thermal conductivity such as aluminum alloy, copper, copper alloy, etc. It may be a cooling cylinder using.

【0027】また、本実施例では、冷却筒8を単一の部
材としたが、軸方向に分割した複数の部材とすることと
してもよい。
In this embodiment, the cooling cylinder 8 is a single member, but it may be a plurality of members divided in the axial direction.

【0028】[0028]

【発明の効果】本発明によれば、レーザ光が多重反射す
る部分を熱伝導性の良好な材料で形成された冷却筒で囲
うようにした結果、レーザ光が多重反射する部分でのレ
ーザ媒質ガスの温度が均一化され、レーザ媒質ガスの密
度均一化を通して、レーザ光の屈折が防止される。
According to the present invention, the portion where multiple reflections of laser light are surrounded by the cooling cylinder formed of a material having good thermal conductivity results in the laser medium in the portion where multiple reflections of laser light occur. The temperature of the gas is made uniform, and the refraction of the laser light is prevented by making the density of the laser medium gas uniform.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るラマンレーザ装置の断
面図である。
FIG. 1 is a cross-sectional view of a Raman laser device according to an embodiment of the present invention.

【図2】レーザ光の多重反射を説明する斜視図である。FIG. 2 is a perspective view illustrating multiple reflection of laser light.

【図3】本発明の一実施例の温度測定個所を表す図であ
る。
FIG. 3 is a diagram showing a temperature measurement point according to an embodiment of the present invention.

【図4】従来の技術に係るラマンレーザ装置の断面図で
ある。
FIG. 4 is a cross-sectional view of a Raman laser device according to a conventional technique.

【符号の説明】[Explanation of symbols]

1,2 凹面鏡 3 内側円筒 4,5 窓 6 外側円筒 7 ジャケット 8 冷却筒 9 レーザ媒質ガス 24 多重反射部分 30,31 レーザ光 1, 2 concave mirror 3 inner cylinder 4,5 window 6 outer cylinder 7 jacket 8 cooling cylinder 9 laser medium gas 24 multiple reflection part 30, 31 laser light

───────────────────────────────────────────────────── フロントページの続き (72)発明者 萩原 正義 茨城県那珂郡東海村大字村松4番地33 動 力炉・核燃料開発事業団東海事業所内 (72)発明者 長谷川 信 茨城県那珂郡東海村大字村松4番地33 動 力炉・核燃料開発事業団東海事業所内 (72)発明者 井上 雄文 茨城県那珂郡東海村大字村松4番地33 動 力炉・核燃料開発事業団東海事業所内 (72)発明者 矢戸 弓雄 茨城県那珂郡東海村大字村松4番地33 動 力炉・核燃料開発事業団東海事業所内 (72)発明者 田代 英夫 埼玉県和光市広沢2番1号 理化学研究所 内 (72)発明者 吉村 敬二 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Masayoshi Hagiwara Masayoshi Hagiwara, Tokai-mura, Naka-gun, Ibaraki Prefecture 4-3 Muramatsu, Tokai Plant, Reactor and Nuclear Fuel Development Corporation (72) Shin Hasegawa Tokai-mura, Naka-gun, Ibaraki Prefecture Muramatsu No.33 33 Reactor / Nuclear Fuel Development Corporation Tokai Works (72) Inventor Yufumi Inoue Tokai-mura Naka-gun, Ibaraki Prefecture Muramatsu No.33 33 Reactor / Nuclear Fuel Development Corporation Tokai Works (72) Inventor Yado Yumio 33 Muramatsu, Tokai-mura, Naka-gun, Ibaraki Prefecture 33 Muramatsu, Power Reactor and Nuclear Fuel Development Corporation Tokai Works (72) Inventor Hideo Tashiro 2-1, Hirosawa, Wako City, Saitama Prefecture (72) Inventor Keiji Yoshimura 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries Ltd. Hiroshima Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 外周側より冷却される筒状をした容器内
の両端部に一対の凹面鏡を設け、これら凹面鏡の間でレ
ーザ光を多重反射させるラマンレーザ装置において、レ
ーザ光を多重反射する部分を囲い且つ熱伝導性の良好な
材質で形成された冷却筒を前記容器内に取付けたことを
特徴とするラマンレーザ装置。
1. In a Raman laser device in which a pair of concave mirrors are provided at both ends in a cylindrical container cooled from the outer peripheral side and the laser light is multiply reflected between the concave mirrors, a portion for multiple reflection of laser light is provided. A Raman laser device characterized in that a cooling cylinder formed of a material having good heat conductivity is attached to the inside of the container.
JP26954191A 1991-10-17 1991-10-17 Raman laser device Pending JPH05110166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26954191A JPH05110166A (en) 1991-10-17 1991-10-17 Raman laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26954191A JPH05110166A (en) 1991-10-17 1991-10-17 Raman laser device

Publications (1)

Publication Number Publication Date
JPH05110166A true JPH05110166A (en) 1993-04-30

Family

ID=17473819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26954191A Pending JPH05110166A (en) 1991-10-17 1991-10-17 Raman laser device

Country Status (1)

Country Link
JP (1) JPH05110166A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028631A1 (en) * 1998-11-10 2000-05-18 Tokyo Denshi Kabushiki Kaisha Apparatus for photoreaction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028631A1 (en) * 1998-11-10 2000-05-18 Tokyo Denshi Kabushiki Kaisha Apparatus for photoreaction
US6487003B1 (en) 1998-11-10 2002-11-26 Tokyo Denshi Kabushiki Kaisha Optical interaction device

Similar Documents

Publication Publication Date Title
EP0614084B1 (en) Laser ultrasonic flaw detection method and apparatus
RU2320958C2 (en) Method and device for detecting surface defects of rod
EP0348742A2 (en) Method for detecting thinned out portion of inner surface or outer surface of pipe
JPS60102608A (en) Remote visual inspector for radioactive object
JPH05110166A (en) Raman laser device
US5268944A (en) Nuclear reactor having a polyhedral primary shield and removable vessel insulation
US4287881A (en) Solar energy absorber for use with a linear optical concentrating system
US3817606A (en) Mirror for high power lasers and method of fabricating same
EP0440990A1 (en) Optical collimating, laser ray target position indicating and laser ray absorbing device of a laser system
Kraus Optical spectral radiometric method for measurement of weld-pool surface temperatures
Bevans et al. Apparatus for the determination of the band absorption of gases at elevated pressures and temperatures
Fukuda Experimental confirmation of the design to minimize vibration and wear in 61-pin wire-spaced EBR-II subassemblies
Golombok et al. Emissivity of layered fibrous materials
Millar et al. A Fast, Electro-Optical, Hot-Gas Pyrometer
US4240706A (en) Optical probe
De Witt et al. Measurement of high temperatures in furnaces and processes
JP2578279B2 (en) Raman laser device
Klindt Analysis of ultrasonic inspection data for Pilgrim 1 Reactor Nozzle N-2B
JPS6271682A (en) Led array head cooling device of led printer
RU2025706C1 (en) Plant for specimen thermomechanical testing
Wesbecher Interim JTN-11 Radiator Description and Specifications
Rhodes COXPRO-II: a computer program for calculating radiation and conduction heat transfer in irradiated fuel assemblies
Cook Evaluation of a fossil fuel fired ceramic regenerative heat exchanger. Interim report for the period October 1973--August 1974
Gallagher ALTERNATE CORE AND REFLECTOR DESIGNS FOR THE APPR
CA1154980A (en) Method of measuring temperature of molten metal in metallurgical vessel and light guide for transmitting thermal radiation for carrying out same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980127