JPH05109843A - Device for reducing landing error of primary electron in electron beam tester - Google Patents

Device for reducing landing error of primary electron in electron beam tester

Info

Publication number
JPH05109843A
JPH05109843A JP3272690A JP27269091A JPH05109843A JP H05109843 A JPH05109843 A JP H05109843A JP 3272690 A JP3272690 A JP 3272690A JP 27269091 A JP27269091 A JP 27269091A JP H05109843 A JPH05109843 A JP H05109843A
Authority
JP
Japan
Prior art keywords
electron beam
chip
landing error
primary
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3272690A
Other languages
Japanese (ja)
Inventor
Hitoshi Takahashi
均 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIYURUNBERUJIE KK
Original Assignee
SHIYURUNBERUJIE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIYURUNBERUJIE KK filed Critical SHIYURUNBERUJIE KK
Priority to JP3272690A priority Critical patent/JPH05109843A/en
Publication of JPH05109843A publication Critical patent/JPH05109843A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To reduce the landing error which is caused by a primary electron beam being bent by the ripple of the potential in the space on a sample, in electron beam testing. CONSTITUTION:This is one where the chip is covered with a metallic foil or a metallic plate 6 provided with an opening, excluding the section where primary electrons reach the pattern or its vicinity. Hereby, the potential distribution in the space on a chip becomes approximately parallel with the chip, and the electron beam 4 reach the objective position on the pattern accurately without being bent, and the landing error can be removed. Moreover, the metallic foil 6 is constituted of two sheets of L-shaped parts, and the aperture area can be changed by shifting it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子ビームテスティン
グ装置における一次電子の着地誤差低減装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a primary electron landing error reducing device in an electron beam testing device.

【0002】[0002]

【従来技術】電子ビームテスティングには、ストロボS
EM(走査型電子顕微鏡)として電位コントラスト像観
察と非接触プロービングによる電圧波形測定とがある。
通常のSEMとしての像観察では、一次電子の着地点は
電界或いは磁界によって影響を受ける。しかし、一定の
電界或いは磁界の場合、その量が十分小さければ補正が
できるので問題は殆どない。LSI(大規模集積回路)
動作時の像観察のように試料の電位が変化する場合にお
いては、一次電子の軌道が試料表面の電位変化の影響を
受けて曲げられ、しかも電位が時間と共に変化するため
に一次電子の着地点が一様に定まらない場合がある。こ
れを一次電子着地誤差と呼ぶ。
2. Description of the Related Art A strobe S is used for electron beam testing.
EM (scanning electron microscope) includes potential contrast image observation and voltage waveform measurement by non-contact probing.
In image observation as a normal SEM, the landing point of primary electrons is affected by an electric field or a magnetic field. However, in the case of a constant electric field or magnetic field, if the amount is sufficiently small, the correction can be made and there is almost no problem. LSI (Large scale integrated circuit)
When the potential of the sample changes, such as when observing an image during operation, the trajectories of the primary electrons are bent under the influence of the potential change on the sample surface, and the potential changes with time. May not be uniformly determined. This is called a primary electron landing error.

【0003】LSIの場合、チップ内部のパターン電位
が反転電位(H/L)を持ちパターンの作る電界が試料
上面の小さな領域しか影響を及ぼさない場合が多い。し
かし、ボンディングパッドなどプロービング点から離れ
ているが面積が大きい場合、その作る電界は数ミリオー
ダーの領域で一次電子の軌道に影響を与える。電界強度
を一定とする横方向の電界が電子軌道に与える影響は一
次電子が電界内を通過する時間のほぼ2乗に比例して大
きくなる。即ち、プロービング点から離れていても、大
きい面積の偏った電位分布による電界によって一次電子
は大きな影響をうける。又論理回路の場合でも一度にチ
ップ内部の電位分布が変化する場合、その影響は大きく
なる。
In the case of an LSI, the pattern potential inside the chip has an inversion potential (H / L), and the electric field created by the pattern affects only a small area on the upper surface of the sample in many cases. However, when the area is large, such as the bonding pad, which is far from the probing point, the electric field created affects the orbits of the primary electrons in a region of a few millimeters. The influence of a lateral electric field having a constant electric field strength on the electron orbit increases in proportion to almost the square of the time taken for the primary electrons to pass through the electric field. That is, even if it is far from the probing point, the primary electrons are greatly affected by the electric field due to the biased potential distribution over a large area. Further, even in the case of a logic circuit, if the potential distribution inside the chip changes at one time, its influence becomes large.

【0004】LSIの上面図を示す図1を参照すると、
チップ(1)に設けられているボンディングパッド
(2)と外部端子との間がボンディングワイヤ(3)に
よって接続されている。図2を参照すると、例えば左側
のボンディングパッドに5V、右側のボンディングパッ
ドに0Vを印加し、チップのパターンに電子ビーム
(4)を照射して、そこから放出される二次電子によっ
てパターンを検査するときに、パターンに入力されるテ
スト信号や入出力による内部電位の変動によって、図示
のように電位分布(5)が形成される。従って、一次電
子はこの電位分布の作る電界により曲げられて、目的位
置に正確に到達することができない。このため一次電子
の着地誤差が発生することが避けられない。
Referring to FIG. 1, which shows a top view of an LSI,
The bonding pad (2) provided on the chip (1) and the external terminal are connected by a bonding wire (3). Referring to FIG. 2, for example, 5V is applied to the left bonding pad and 0V is applied to the right bonding pad, the pattern of the chip is irradiated with an electron beam (4), and the pattern is inspected by secondary electrons emitted therefrom. In doing so, the potential distribution (5) is formed as shown by the fluctuation of the internal potential due to the test signal input to the pattern and the input / output. Therefore, the primary electrons are bent by the electric field created by this potential distribution and cannot reach the target position accurately. For this reason, the occurrence of landing error of primary electrons is unavoidable.

【0005】しかも、或る時点では左側のボンディング
パッドに0V、右側のボンディングパッドに5Vを印加
することがあるために、電子ビームが左右に振れ、着地
精度を上げることは困難である。近年、LSIの集積化
が大きくなるに伴いパターンはますます微細化している
ので、電子ビームの少しの曲がりでも大きな測定誤差を
生じさせる結果となり、一次電子着地誤差はますます大
きな問題となってきている。
Moreover, at some point, 0 V is applied to the left bonding pad and 5 V is applied to the right bonding pad, so that the electron beam sways left and right, and it is difficult to improve landing accuracy. In recent years, as the integration of LSIs has increased, the patterns have become finer and finer, so even a slight bending of the electron beam results in a large measurement error, and the primary electron landing error becomes an even greater problem. There is.

【0006】従来、一次電子着地誤差の補正方法として
は、(1)フレームスキャンコイルにLSM(Logic St
ate Mapping)像から作った補正用信号を加算する方法、
(2)引き出し電極を試料表面近くに置く方法、(3)
強い引き出し電界を試料表面近くに置く方法、(4)L
SI製造時にチップ表面をあらかじめマスクしておき、
パッケージの外部から故障箇所を何らかの方法(X線な
ど)で診断し、その箇所に穴を開けてチップ面を露出さ
せ検査する方法等がある。
Conventionally, as a method of correcting the primary electron landing error, (1) the LSM (Logic St
ate Mapping) A method of adding correction signals created from images,
(2) Method of placing the extraction electrode near the sample surface, (3)
Method of placing strong extraction electric field near the sample surface, (4) L
When the SI is manufactured, the chip surface is masked in advance,
There is a method of diagnosing a failure location from outside of the package by some method (X-ray etc.), making a hole at the location and exposing the chip surface to inspect.

【0007】(1)の方法には、トリガー信号に同期さ
せたパルスビームを発生させ像を得るストロボ法と、更
にそれをフレームの縦方向のある区間で位相をずらせて
得られるLSM法がある。これらの方法では、画像認識
による補正は可能であるが、補正信号を作ってから処理
をするため実時間での補正は不可能である。またSEM
としての像観察の場合は、フレームスキャンコイルがト
リガー周波数程度の高速で動作しない限り不可能である
(ストロボ法及びLSM法では、補正信号の周波数は十
分低い)。
The method (1) includes a strobe method in which a pulse beam synchronized with a trigger signal is generated to obtain an image, and an LSM method in which the strobe method is obtained by shifting the phase in a certain vertical section of the frame. .. With these methods, correction by image recognition is possible, but since correction signals are created and then processed, real-time correction is impossible. Also SEM
In the case of image observation as above, it is impossible unless the frame scan coil operates at a high speed of about the trigger frequency (the frequency of the correction signal is sufficiently low in the strobe method and the LSM method).

【0008】(2)の方法では、作動距離(走査電子顕
微鏡の対物レンズのポールピース下面より試料位置まで
の距離)の設定範囲が小さくなりLSIのセットが難し
くなる。また測定の都合で作動距離が長くなった場合は
一次電子が影響を受け、効果が減ってしまう。 (3)の方法では、上記(2)の問題の他にパーシベー
ションなど試料表面への悪影響がでる場合がある。
In the method (2), the setting range of the working distance (distance from the lower surface of the pole piece of the objective lens of the scanning electron microscope to the sample position) becomes small, which makes it difficult to set the LSI. If the working distance becomes long due to the measurement, the primary electrons are affected and the effect is reduced. In the method of (3), in addition to the problem of (2) above, there is a case where an adverse effect on the surface of the sample, such as perivation, occurs.

【0009】更に、(4)では試料に前もって加工を施
す必要があり、一般のLSIに適用することはできな
い。
Further, in (4), it is necessary to process the sample in advance, and it cannot be applied to a general LSI.

【0010】[0010]

【発明が解決しようとする課題】従って、本発明は簡単
な構造により、一次電子ビームが試料上の空間における
電位の変動により曲げられるために生じる着地誤差を減
少することを目的としする。
SUMMARY OF THE INVENTION It is therefore an object of the present invention, with a simple structure, to reduce the landing error caused by the bending of the primary electron beam due to the fluctuation of the potential in the space above the sample.

【0011】[0011]

【課題を解決するための手段】そこで本発明は、一次電
子がパターンに到達する部分及びその近傍を除いて、開
口を有する金属箔(電界をシールドする材料であればよ
く、導電板、網などを含む)でチップを覆うことによ
り、試料上の空間に発生する電位分布を試料に平行に近
くすることが可能となる。これにより電子ビームの進行
方向に直交する電界成分は極めて少なくなり、電子ビー
ムが殆ど曲げられることなく試料上の目的位置に正確に
到達することができる。
Therefore, according to the present invention, a metal foil having an opening (a material for shielding an electric field, such as a conductive plate, a net, etc., except for a portion where a primary electron reaches a pattern and the vicinity thereof) is provided. It becomes possible to make the potential distribution generated in the space above the sample close to parallel to the sample by covering the chip with (including). As a result, the electric field component orthogonal to the traveling direction of the electron beam is extremely reduced, and the electron beam can accurately reach the target position on the sample without being bent.

【0012】更に、本発明は、金属箔の開口面積を変え
ることにより、必要最小限の開口にして電子ビームに影
響を与える電位分布の変動を抑えることができるもので
ある。
Further, according to the present invention, by changing the opening area of the metal foil, it is possible to suppress the fluctuation of the potential distribution which affects the electron beam with the necessary minimum opening.

【0013】[0013]

【実施例】本発明と従来技術との共通部分は同一の参照
番号を付してある。図3及び図4において、本発明は開
口(7)のある金属箔(6)をチップに平行に設けてパ
ターンのテストする部分及びその近傍を除いて金属箔
(6)でチップを覆ったものである。これにより、チッ
プ上の空間にできる電位分布はチップに平行になり、電
子ビームの進行方向に対し直交する方向の電界成分が殆
ど無くなる。従って、電子ビームは曲げられることなく
チップ上の目的位置に正確に到達することができるた
め、着地誤差は大幅に改善される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The parts common to the present invention and the prior art are designated by the same reference numerals. In FIGS. 3 and 4, the present invention provides a metal foil (6) having an opening (7) in parallel with the chip and covering the chip with the metal foil (6) except for a portion to be tested of a pattern and its vicinity. Is. As a result, the potential distribution formed in the space on the chip becomes parallel to the chip, and the electric field component in the direction orthogonal to the traveling direction of the electron beam almost disappears. Therefore, the electron beam can accurately reach the target position on the chip without being bent, and the landing error is greatly improved.

【0014】金属箔上側において、チップ(1)或いは
ボンディングパッド(2)に印加された電圧による電界
の電子ビームへの影響を少なくするためには、金属箔
(6)の開口(7)は必要最小限であるのがよい。その
ためには、テストするチップの大きさやパターンの種類
によって、金属箔(6)の開口(7)面積の異なるもの
を用いることも可能であるが、開口(7)面積を可変に
することが望ましい。
On the upper side of the metal foil, the opening (7) of the metal foil (6) is necessary in order to reduce the influence of the electric field due to the voltage applied to the chip (1) or the bonding pad (2) on the electron beam. It should be minimal. For that purpose, it is possible to use a metal foil (6) having a different opening (7) area depending on the size of the chip to be tested and the type of pattern, but it is desirable to make the opening (7) area variable. ..

【0015】細いパターンを測定する場合SEM像を拡
大するので、例えば1μm幅のパターン電位を測定する
場合は、像の範囲はパターンの10倍の幅10μm×1
0μm程度有ればよい。従ってこの範囲外の部分を金属
箔で覆えば他の部分のパターンによる電位分布(H/
L)が変わっても殆ど影響を受けることがない。そのた
めに、本発明は図5にしめすように、二枚のL字状金属
箔を組み合わせて用い、矢印の方向に移動することによ
って、開口面積を大きくしたり、小さくしたりすること
ができるようにしてある。
When measuring a fine pattern, the SEM image is enlarged. For example, when measuring a pattern potential having a width of 1 μm, the range of the image is 10 times the width of the pattern, 10 μm × 1.
It may be about 0 μm. Therefore, if the portion outside this range is covered with metal foil, the potential distribution (H /
Even if L) changes, it is hardly affected. Therefore, according to the present invention, as shown in FIG. 5, two L-shaped metal foils are used in combination, and the opening area can be increased or decreased by moving in the direction of the arrow. I am doing it.

【0016】この二枚のL字状金属箔の代わりに、例え
ばカメラの絞り構造のものを用いることができることは
勿論である。そしてこの金属箔(6)はチップに接近し
て配置するのが望ましく、またチップに対し、高さ方向
或いは横方向に相対的に移動することができるようにす
れば、測定範囲が制限されることなく着地誤差を少なく
することができる。
Of course, instead of these two L-shaped metal foils, for example, a camera diaphragm structure can be used. It is desirable that the metal foil (6) be arranged close to the chip, and if the metal foil (6) can be moved relative to the chip in the height direction or the lateral direction, the measuring range is limited. It is possible to reduce the landing error without doing so.

【0017】[0017]

【発明の効果】本発明は、試料上面に金属箔を設け、こ
れを定電位に保つことにより試料の表面電位の一次電子
軌道に与える区間を短くでき、一次電子着地誤差を著し
く低減できる。又金属箔により作られた開口面積を変え
ることができるようにすることにより、或いはチップに
対する相対位置を変えることにより測定範囲が制限され
ることなく着地誤差を少なくすることができる。更に、
チップの端面(ボンディングパッドを含む場合もある)
より外側だけを覆うことにより、SEM像観察において
チップ全体像を見ることもできる。
According to the present invention, by providing a metal foil on the upper surface of the sample and keeping it at a constant potential, the section given to the primary electron trajectory of the surface potential of the sample can be shortened, and the primary electron landing error can be significantly reduced. Further, by making it possible to change the opening area formed by the metal foil or changing the relative position with respect to the chip, the landing error can be reduced without limiting the measurement range. Furthermore,
End face of chip (may include bonding pad)
By covering only the outer side, the entire chip image can be seen in the SEM image observation.

【図面の簡単な説明】[Brief description of drawings]

【図1】LSIの上面図。FIG. 1 is a top view of an LSI.

【図2】従来のEBテスティングにおける電位分布と電
子ビームの曲がりを説明する図。
FIG. 2 is a diagram for explaining potential distribution and bending of an electron beam in conventional EB testing.

【図3】本発明の金属箔をLSI上に配置した上面図。FIG. 3 is a top view in which the metal foil of the present invention is arranged on an LSI.

【図4】本発明の金属箔をLSI上に配置した場合の電
位分布と電子ビームの曲がりを示した図。
FIG. 4 is a diagram showing a potential distribution and a bending of an electron beam when a metal foil of the present invention is arranged on an LSI.

【図5】本発明の金属箔における開口を可変にするため
の構成図で、(a)は開口を拡げた図、(b)は開口を
狭めた図。
5A and 5B are configuration diagrams for making the opening variable in the metal foil of the present invention, in which FIG. 5A is an enlarged view and FIG. 5B is a narrowed view.

【符号の説明】[Explanation of symbols]

1 チップ 2 ボンディングパッド 3 ボンディングワイヤ 4 電子ビーム 5 電位分布 6 金属箔或いは金属板 7 開口 1 Chip 2 Bonding Pad 3 Bonding Wire 4 Electron Beam 5 Potential Distribution 6 Metal Foil or Metal Plate 7 Opening

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電子ビームテスティング装置において、
試料の上側に開口を有する金属箔を設けたことを特徴と
する一次電子の着地誤差低減装置。
1. In an electron beam testing apparatus,
A primary-electron landing error reduction device, characterized in that a metal foil having an opening is provided above the sample.
【請求項2】 前記金属箔の開口面積が可変であること
を特徴とする請求項1に記載の一次電子の着地誤差低減
装置。
2. The primary electron landing error reduction device according to claim 1, wherein the opening area of the metal foil is variable.
【請求項3】 前記金属箔の位置は試料に対して相対的
位置が可変であることを特徴とする請求項1に記載の一
次電子の着地誤差低減装置。
3. The primary electron landing error reduction device according to claim 1, wherein the position of the metal foil is variable relative to the sample.
JP3272690A 1991-10-21 1991-10-21 Device for reducing landing error of primary electron in electron beam tester Pending JPH05109843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3272690A JPH05109843A (en) 1991-10-21 1991-10-21 Device for reducing landing error of primary electron in electron beam tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3272690A JPH05109843A (en) 1991-10-21 1991-10-21 Device for reducing landing error of primary electron in electron beam tester

Publications (1)

Publication Number Publication Date
JPH05109843A true JPH05109843A (en) 1993-04-30

Family

ID=17517440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3272690A Pending JPH05109843A (en) 1991-10-21 1991-10-21 Device for reducing landing error of primary electron in electron beam tester

Country Status (1)

Country Link
JP (1) JPH05109843A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168565A (en) * 2008-01-15 2009-07-30 Toshiba Corp Sample stage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009168565A (en) * 2008-01-15 2009-07-30 Toshiba Corp Sample stage

Similar Documents

Publication Publication Date Title
US7791022B2 (en) Scanning electron microscope with length measurement function and dimension length measurement method
JP5202071B2 (en) Charged particle microscope apparatus and image processing method using the same
US6614244B2 (en) Semiconductor device inspecting apparatus
US7652248B2 (en) Inspection apparatus and inspection method
JPH11108864A (en) Method and apparatus for inspecting pattern flaw
DE19720708A1 (en) High-speed monitor for study of pattern defect on semiconductor wafer
US8026491B2 (en) Charged particle beam apparatus and method for charged particle beam adjustment
US9324540B2 (en) Charged particle beam device
WO2010076136A1 (en) Nanoprobing an integrated circuit device structure
DE112016002818T5 (en) l.adungsteilchenstrahlvorrichtung
JP2007200595A (en) Charged particle beam device, focus adjusting method of charged particle beam, measuring method of fine structure, inspection method of fine structure, and manufacturing method of semiconductor device
WO2013027644A1 (en) Charged particle beam device
JP3151670B2 (en) Ion beam apparatus and method for measuring potential using ion beam
JP2000286310A (en) Method and apparatus for inspecting pattern defects
JP6632863B2 (en) Electron beam diameter control method and electron beam diameter control device for electron beam inspection / length measurement device, and electron beam inspection / length measurement device
JPH05109843A (en) Device for reducing landing error of primary electron in electron beam tester
US8309922B2 (en) Semiconductor inspection method and device that consider the effects of electron beams
DE112017007825B4 (en) Electron gun and electron beam application device
JPH0467550A (en) Electron beam device and image extracting method thereof
JP2519512B2 (en) Focused ion beam device
JPH03254053A (en) Correction method for primary electron landing error
JPS63142825A (en) Auxiliary evaluation method for ic operation
JPS60165733A (en) Strobe scan type electron microscope
JP2001185592A (en) Inspection apparatus and method of inspection
US20040016881A1 (en) Image compensation device for a scanning electron microscope