JPH0510976B2 - - Google Patents

Info

Publication number
JPH0510976B2
JPH0510976B2 JP59256605A JP25660584A JPH0510976B2 JP H0510976 B2 JPH0510976 B2 JP H0510976B2 JP 59256605 A JP59256605 A JP 59256605A JP 25660584 A JP25660584 A JP 25660584A JP H0510976 B2 JPH0510976 B2 JP H0510976B2
Authority
JP
Japan
Prior art keywords
catalyst
palladium
propylene
oxidation
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59256605A
Other languages
Japanese (ja)
Other versions
JPS60139341A (en
Inventor
Ii Raionzu Jeemuzu
Surudo Jooji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAN RIFUAININGU ANDO MAAKETEINGU CO
Original Assignee
SAN RIFUAININGU ANDO MAAKETEINGU CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAN RIFUAININGU ANDO MAAKETEINGU CO filed Critical SAN RIFUAININGU ANDO MAAKETEINGU CO
Publication of JPS60139341A publication Critical patent/JPS60139341A/en
Publication of JPH0510976B2 publication Critical patent/JPH0510976B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明はαβ−䞍飜和カルボン酞を生成する
ためのオレフむンの酞化方法に䜿甚する觊媒に関
する。より詳しくは本方法では新芏なオレフむン
掻性化パラゞりム觊媒の補法であり、その䜿甚に
より枩和な反応条件䞋でプロピレンを段階で酞
化しお高収率か぀高遞択性でアクリル酞を生成す
る改良方法が提䟛される。 同様な方法でむ゜ブチレン及びブテン−が
倫々メタクリル酞及びクロトン酞に酞化できる。 本発明は曎に䞊蚘新芏な掻性化パラゞりム觊媒
自䜓及びこれを補造する方法にも関するものであ
る。 関連する出願 本願は以䞋の同時提出の出願ず関連する。 ラむオン等の「オレフむンのαβ−䞍飜和カ
ルボン酞ぞの酞化に斌ける増加した遞択性」、ゞ
゚ヌムス、むヌ、ラむオンによる「オレフむンの
αβ−䞍飜和カルボン酞ぞの酞化に斌ける増加
した遞択性」 又、他の酞化方法に歀に蚘茉の觊媒系を䜿甚し
た以䞋の同日提出の出願ずも関連する。ラむオン
等、「プロピレンの酢酞アリルぞの觊媒による酞
化」、ラむオン等「ブテンを線圢アセテヌト類に
酞化する方法」。 埓来の技術 カヌボンブラツク䞊に支持されたパラゞり金属
觊媒を甚いる段階に斌けるプロピレンのアクリ
ル酞ぞの酞化は、米囜特蚱3624147に蚘茉されお
いる。しかしながらこの方法は倉換されたプロピ
レンの量に基づき60又はそれ以䞋の収量を特城
ずし、運転枩床は䞀般に90℃を越え、そしお高圧
で行なわれる。しかも実質的な量のCO2が望たれ
ない副生物ずしお報告され、たた䜎い反応速床が
報告されおいる。 同様の方法が、J.Catal.1731972にシヌマン
等によ぀お報告されおおり、ここでパラゞりムブ
ラツク及びパラゞりム掻性化朚炭がプロピレンを
アクリル酞に倉換するのに䜿甚されおいた。しか
しパラゞりム金属を基にしお化孊量論的非觊媒倉
換のみが教瀺されおおり、埓぀お䞊蚘米囜特蚱よ
りも曎に効果の少ない方法を䞎えおいる。 曎に䟋えば氎玠、䜎玚アルコヌル類、ヒドラゞ
ン、又は皮々のオレフむンなどの還元剀を甚い
る、䟋えばパラゞりム塩の還元による支持された
パラゞりム金属觊媒の慣甚の調補方法が幟぀かの
特蚱に蚘茉されおいる。䟋えば米囜特蚱3275680
Holzrichter又は4435598Hinnenkampを参
照。これらは氎玠又はヒドラゞンでパラゞりム塩
を還元するこずを教えおいる。米囜特蚱4016200
Onodaは同様にパラゞりム化合物がホルマリ
ン、ヒドラゞン、氎玠、メタノヌル、又ぱチレ
ン、プロピレン、ブテンなどのオレフむンを還元
剀ずしお甚いおパラゞりム化合物をパラゞりム金
属に還元出来るこずを教えおいる。同様に、米囜
特蚱3970713Soharfeはこれもたた氎玠、アル
コヌル、オレフむンなどを還元剀ずしお甚いおパ
ラゞりム及び他の金属塩を金属觊媒に還元するこ
ずを教えおいる。しかしながらこれらの匕甚䟋の
䜕れも独特の時間及び枩床条件の基でオレフむン
により高床に掻性化されたパラゞりム金属皮の調
補を教瀺しおおらず、たたこれらの觊媒がこれた
で可胜であ぀たよりもより枩和な運転条件䞋でオ
レフむンをαβ䞍飜和酞に酞化するための方法
に驚くほど効果的であるこずを教えおいない。最
埌にF.R.Hartley「ザケミストリヌオブプラチナ
アンドパラゞりム」りむリヌアンドサンズ380−
390頁及び412−417頁1973はパラゞりムクロ
ラむドずの゚チレンの錯䜓の圢成を開瀺しおおり
パラゞりム+2金属觊媒を䞎えおいる。しかしなが
ら以䞋に蚘茉されるように゚チレン又はクロラむ
ドの䜿甚及びパラゞりム+2金属觊媒の圢成はここ
に特蚱請求された望たれる生成物の圢成の目的の
為には本発明の觊媒を脱掻性化するこずが分か぀
た。 〔課題を解決する手段〕 本発明の目的はこのように報告されおいる先行
技術の方法ず比范しお高い収率及び遞択性でプロ
ピレンなどのオレフむンをアクリル酞などのα
β−䞍飜和カルボン酞ぞ段階で倉換する改良方
法を提䟛するものである。 本発明の目的は曎に同様な方法でむ゜ブチレン
をメタクリル酞にそしおブテン−をクロトン酞
に酞化するこずである。 曎に本発明の目的は䞊蚘の目的を達成するのに
有甚な新芏なパラゞりム觊媒、及び䞊蚘觊媒の補
法を提䟛するこずである。 本発明の他の目的は以䞋に述べる蚘茉ず実斜䟋
から明らかである。 本発明に埓぀お炭玠又はアルミナ䞊に支持され
た掻性化パラゞりム觊媒が䜿甚されるずきは、プ
ロピレンなどのオレフむンが空気又は酞玠で、
段階で液盞䞭でか぀枩和な反応条件䞋で酞化され
おアクリル酞などのαβ−䞍飜和カルボン酞を
高収率䞔぀高遞択性で生成できるこずが分か぀
た。ここで、䞊蚘支持されたパラゞりム金属觊媒
は先ずオレフむン、奜たしくは酞化されるべきも
のに察応したオレフむンで以䞋に詳现に蚘される
条件䞋で䞊蚘酞化前に掻性化される。本来ならば
60℃以䞋の枩床では䞍掻性なはずの、この独特な
郜合のよい觊媒はず぀ず䜎い枩床で掻性であるの
みならずこれらは少なくずも90に近いアクリル
酞に察するモル遞択性をあたえ、埓぀お事実䞊望
たれないCO2の生成を無くする。 同じ觊媒系が同様にむ゜ブチレンをメタクリル
酞にそしおブテン−をクロトン酞に酞化するの
に効果がある。 このように乃至玄個の炭玠原子を有するオ
レフむンが本発明の方法で造られる觊媒によ぀お
酞化できる。 プロピレンをアクリル酞に酞化する䞀般的な方
法は、先行技術に適切に蚘茉されおおりここに詳
现に述べる必芁はない。以䞋に詳现に議論される
新芏な方法によ぀お補造される觊媒を䜿甚しお、
プロピレンのアクリル酞ぞの酞化反応を玄25〜
120℃の範囲の枩床で〜100気圧の圧力に斌いお
独特に実斜するこずが出来るずいうこずで十分で
ある。米囜特蚱3624147に䜿甚したず぀ず苛酷な
条件ず察比しお、奜たしくは25〜80℃の枩床及び
〜10気圧の圧力を䜿甚できる。そのうえこの新
芏な觊媒の結果、反応速床、遞択性、及び埓぀お
収率が以䞋の実斜䟋に瀺されるように觊媒のみの
䜿甚によりも有意矩に増加される。 本方法の䞀぀の奜たしい具䜓䟋に斌いお、反応
速床を増加させそしお同時に反応噚容量を枛少さ
せるために反応を液䜓反応媒䜓が固定觊媒床を䞋
方に通過させられアクリル酞生成物が底から回収
される现流床反応噚䞭で反応を実斜するのが有利
であるこずが分か぀た。別の方法ずしおは酞化反
応はガス及び溶媒を埪環し぀぀、゚ビナレヌテむ
ング床觊媒を䜿甚しお実斜するこずが出来る。 本発明の觊媒が補造される出発物質は炭玠又は
より奜たしくないものずしおアルミナ等の支持䜓
䞊の金属状態の任意の现分割されたパラゞりム、
䟋えば゚ンゲルハルドむンダストリヌズ又はゞペ
ン゜ン マセむむンコヌポレヌテツドなどの暙準
の觊媒業者から入手出来る垂販されおいる、
10、20の炭玠䞊パラゞりムである。「パラゞ
りム金属觊媒」又は「金属状態のパラゞりム」ず
いう甚語は商業的に、又はシダフレ等の米囜特蚱
3970713又はホルツリヒタヌ等米囜特蚱3275680な
どに瀺されるものによ぀おのいずれかの既知還元
手段で、それらの塩から造られたパラゞりム觊媒
であ぀お埌に普通の工皋手順に斌いお倧気に晒さ
れおいたパラゞりム觊媒を意味する。出願人は特
に理論によ぀お瞛られるこずを意図しないがパラ
ゞりムの還元に続く先行技術の還元された觊媒を
取り扱い䜿甚する通垞の過皋に斌いお、倧気に察
する露出のおかげで、パラゞりム衚面皮の或る割
合が酞化するようになる。出願人の新芏なオレフ
むン掻性化觊媒の調補に出発物質ずしお䜿甚され
るのはこの空気に晒されたパラゞりム觊媒であ
る。「衚面皮」ずは觊媒技術に斌いお圓業者によ
り認められおいるように觊媒自身の衚面に芋いだ
されおいる任意のパラゞりムの皮を意味する。 又出願人はいかなる特定の理論によ぀お瞛られ
るこずを意図しないが、この郚分的に酞化された
䞊蚘のパラゞりム衚面が出願人の発明に埓぀おプ
ロピレンず接觊されるずきこれはたず䟡を有す
る高床に掻性のパラゞりム金属䜍眮にたず倉換さ
れ、そしお次にプロピレンが本発明の掻性化され
た觊媒である新芏な衚面掻性皮を圢成するのはこ
れらの䜍眮ず共に行なわれるのである。 垂販の還元されたパラゞりムが䟋えば空気に察
する通垞の取り扱い及び露出の䞋で再酞化される
ずいう蚌拠ずしお本発明の新芏掻性化觊媒に斌い
お、䟋えば商業的に還元されたパラゞりム金属觊
媒で出発し、以䞋に蚘す酞玠のない条件䞋で觊媒
を掻性化するのに䜿われる郚のプロピレンが
郚のアセトン及び郚の掻性觊媒皮を生じる。 䞊に定矩された炭玠又はアルミナ支持パラゞり
ム金属觊媒をプロピレン又は類䌌のオレフむン類
により本発明で䜿甚される掻性化された酞化觊媒
を調補する堎合に斌いお、この掻性化凊理が少な
くずも玄60℃、150℃たでの枩床、奜たしくは玄
65〜95℃の枩床で少なくずも玄10分〜玄120分、
奜たしくは少なくずも玄30〜60分、以䞋に蚘茉さ
れる酞玠のない条件䞋で実斜されるこずが必須で
ある。これは䞀般に少なくずも玄気圧、玄100
気圧迄のプロピレンの圧力に斌いお実斜されるが
玄−20が奜たしい。これらの觊媒がこのように
掻性化された炭玠䞊パラゞりムである時にこれは
プロピレンを酞化する目的で玄60℃以䞋でそうで
ないならはず぀ず反応性の䜎いものであるのにこ
こでは玄25℃以䞊で驚くほど掻性である。前に述
べたようにアクリル酞に察する速床ず遞択性はこ
の凊理によ぀おかなり改良される。埓぀お「掻性
化されたパラゞりム金属觊媒」ずいう甚語は本発
明の目的には䞊の方法に埓぀お造られた觊媒であ
぀お、支持された既知の支持パラゞりム觊媒より
もより速くか぀より䜎い枩床で、プロピレンをア
クリル酞に酞化するこずが出来る觊媒を意味す
る。 䞊に述べた觊媒の調補の間には觊媒から最倧の
掻性を導き出すためには、掻性化が酞玠の実質的
な非存圚䞋に斌いお、そしお奜たしくは本質的に
酞玠のない条件䞋に実斜されるこずが必芁であ
る。圓業者によ぀お容易に決定される皋床の小量
の酞玠の存圚は、䞊蚘の垂販の觊媒よりも幟らか
より枩和な条件䞋で性胜を発揮する觊媒を生じる
こずが出来るけれども、本発明の最倧限の完党な
利点は觊媒を少なくずも商業的に可胜な氎準内に
斌いお出来るだけ酞玠のない条件䞋で掻性化する
こずによ぀お導き出される。 これらの酞玠のない条件は既知の方法、䟋えば
脱気氎、又は溶媒及び玔粋なオレフむンガスを觊
媒の掻性化の間に䜿甚するこずによ぀お達成され
る。脱気は液䜓を真空䞋でそれが沞隰するたでお
くか又は望むオレフむンを酞玠が最早眮き換えら
れなくなるたで液䜓に泡立たせお通すこずによ぀
お容易に達成される。玔粋なオレフむンは商業的
に皮々の等玚で埗られ䟋えば化孊的に玔粋な、研
究に玔粋な等玚、又は重合䜓等玚などで埗られ、
埌者の぀は玄99.7を越えるそれらの高い玔床
のために奜たしい埌者二぀は䟋えば
Matheson、Division of Searle Medical
Products、及びSun Co.から倫々入手可胜であ
る。 䞀旊出願人の觊媒が圢成されれば、少なくずも
やや過剰のオレフむンがいかなる脱掻性化も防ぐ
為に、そしお望たしくは酞化段階の間に反応噚の
酞玠がオレフむンをアクリル酞に酞化する化孊量
論量よりも倚くない量で保持されるこずが奜たし
い。本発明の觊媒を調補するにあた぀お觊媒を毒
するか又は倉化させるかもしれないこれらの金属
又は金属塩の存圚が避けられるべきであるこずが
理解される。䟋えば鉄、マンガン、銅、及びロゞ
りム塩、クロラむド、ベンゟキノン、ヘテロポリ
酞の酞化した圢のもの、䞊びにパラゞりムをパラ
ゞりム+2に酞化させるであろう他の党おの詊薬が
そうである。他のそのような害のあるそのような
物質は決たり切぀たやり方で圓業者が決定するこ
ずができる。䟋えばこれにくわえお、アミン類、
ヒドラゞン、及び゚チレンなどの物質が本発明の
觊媒を調補及び䜿甚する時に害があり避けるべき
こずが芋いだされおいる。しかもこの觊媒を調補
する為に氎玠を䜿甚する詊みは觊媒が次にO2プ
ロピレン混合物に晒された時に爆発を生じ埗るの
で避けるべきであるこずが分か぀た。 本発明の觊媒は酞玠のない倧気䞭に保たれるの
であれば、別々に調補されそしお掻性状態に保た
れるこずが出来るが、より奜郜合には本発明はプ
ロピレン酞化に䜿甚されるのず同じ反応噚䞭で調
補が実斜されるこずがよい。これは䟋えば垂販さ
れおいる掻性炭䞊の埮粉砕されたパラゞりムを密
封された反応噚䞭の氎性媒䜓䞭に加え系をプロピ
レンガスでフラツシナし、混合物をプロピレン圧
力䞋で次に觊媒調補に望たれる枩床に達するたで
加熱しこの時間に再床酞玠の非存圚䞋でそしお望
たしくはややオレフむンの過剰の存圚䞋で混合物
をその枩床で少なくずも30分間撹はんするこずに
よ぀お郜合よく達成できる。 觊媒の調補の埌プロピレンはプロピレンず酞玠
の混合物で眮き換えられるが、奜たしくは酞玠は
ほが觊媒の脱掻性化を避けるためにほが化孊量論
で存圚し、酞化反応が玄〜10気圧の圧力で実斜
される。圧力は望むプロピレン倉換率が達成され
る迄時々ガス混合物を曎に加えるこずによ぀お保
たれる。酞玠の代わりに空気を䜿甚できるがこの
堎合はプロピレンの量はその比率に合わせお調補
されなければならない。 觊媒の掻性化剀は奜たしくはプロピレンである
がもし望たれるならばアリル氎玠及び〜個の
炭玠原子を含有しおいる他の軜オレフむン類、奜
たしくは酞化されるオレフむンに察応するものを
代わりに䜿甚するこずが出来る。最も奜たしくは
プロピレンの他にはブテン−、ブテン−、又
はむ゜ブチレンである。 オレフむン掻性化觊媒は、少なくずも小量の受
け入れられるオレフむンが存圚する限り長時間そ
の掻性を保぀。埓぀お、氎溶液を通じおプロピレ
ン酞玠又は空気反応混合物を垞にたき散らすこ
ずによ぀お反応を行なうこずが有利であるこずが
分か぀た。この方法によ぀おプロピレンは過剰に
保たれ、觊媒は高床に掻性のたたでありそれによ
぀お高い遞択性及び他の䞊蚘の利点を保぀。 酞化をバツチ匏で実斜するずきは、反応媒䜓に
察する觊媒の比率は望たしくは反応䜓リツトル圓
たりパラゞりムの玄0.05〜玄5.0グラム原子、奜
たしくは玄0.1〜1.0グラム原子の範囲である。䟋
えば固定床反応噚を䜿甚する連続的な方法に斌い
おは、反応は反応䜓の容量及び觊媒ずの接觊時間
を高収率及びここに蚘茉した遞択性を達成する䞀
般に知られた方法で倉化させるこずによ぀お、効
果的に実斜できる。 次の実斜䟋は本発明を説明するためのものであ
る。 実斜䟋〜及び比范䟋〜 次の実斜䟋〜に斌いお幟぀かの反応が次の
䞀般手順によ぀お行なわれた。 炭玠むンゲルハヌドむンダストリヌズ䞊の
10パラゞりム金属を85mlのフむツシダヌポ
ヌタヌ゚ロゟルチナヌブに加えた。次に30mlの脱
気した蒞留氎を加えフむツシダヌポヌタヌチナヌ
ブを圧力マニナホルドに取付けた。混合物を玔粋
なプロピレンガス研究玔床等玚で50psiに斌
いお回フラツシナした。次に撹はんしながらこ
の玔粋なプロピレンの50psi䞋に斌いお望たれる
掻性化枩床に達するたで混合物を撹はんしながら
加熱し、そこで混合物を30分撹はんした。撹はん
した混合物を次に望たれる反応枩床にし、プロピ
レンを600240玔床C3H6の組成を育するガ
ス混合物で党圧100psi迄眮き換えた。殆どの堎
合に反応は即座に進行し圧力が萜ちた。党圧が
80psiに達した時O2C3H6ガス混合物を党圧を
100psiにするために入れた。これを実隓の過皋
に斌いお必芁がある床に繰り返した。枬定した反
応時間の埌混合物を冷华しガスをずらえ分析しそ
しお混合物をろ過した。觊媒は有機及び氎性の溶
液の䞡方で掗぀お衚面に保たれた少量のアクリル
酞を陀いた。ろ液を暙準のガスクロマトグラフむ
ヌで分析した生成物組成を決定した。 䞋の衚に瀺されるように觊媒を補造する為の
及びプロピレンを酞化するための条件は、本発明
の範囲をより良く説明するために実隓によ぀お倉
えた。アセトン、アクロレむン、酢酞、CO2など
の副生物の少量も報告した。 衚の結果から、65〜80℃の枩床を䜿甚するこ
ずは、40又は50℃で掻性の觊媒を生じるこずが分
かる。40〜50℃の同様の凊理はこれらの枩床に斌
いお䞍掻性な觊媒を䞎える。たた80℃で生じた觊
媒はより䜎い枩床での酞化に察し65℃で生じたも
のよりも遞択性がある。65℃で実斜された反応は
同等の掻性化枩床での50℃で行なわれたものより
もより速く䞔぀遞択的であ぀た。80℃で凊理され
た觊媒は30℃での酞化に察し掻性であ぀たがアク
リル酞ぞの速床及び遞択性は65℃に斌けるよりも
䜎か぀た。 これず察比しお比范䟋〜は䞊に蚘された掻
性化凊理に垂販の觊媒が䟛されない時は収量ず遞
択性が無芖できるものであるこずを瀺しおいる。
(Industrial Field of Application) The present invention relates to a catalyst used in a process for oxidizing olefins to produce α,β-unsaturated carboxylic acids. More specifically, this method is a method for producing a novel olefin-activated palladium catalyst, and its use provides an improved method for oxidizing propylene in one step under mild reaction conditions to produce acrylic acid in high yield and high selectivity. is provided. In a similar manner, isobutylene and butene-1 can be oxidized to methacrylic acid and crotonic acid, respectively. The invention further relates to the novel activated palladium catalyst itself and the method for producing the same. (Related applications) This application is related to the following simultaneously filed applications. ``Increased selectivity in the oxidation of olefins to α,β-unsaturated carboxylic acids'' by James, E. and Lyon, ``Increased selectivity in the oxidation of olefins to α,β-unsaturated carboxylic acids'' by Lyon et al. Also related are the following applications filed on the same date using the catalyst system described herein in other oxidation processes. Lion et al., “Catalytic Oxidation of Propylene to Allyl Acetate,” Lion et al., “Method for the Oxidation of Butenes to Linear Acetates.” BACKGROUND OF THE INVENTION The oxidation of propylene to acrylic acid in one step using a palladium metal catalyst supported on carbon black is described in US Pat. No. 3,624,147. However, this process is characterized by yields of 60% or less based on the amount of propylene converted, the operating temperature is generally above 90° C., and it is carried out at high pressure. Moreover, substantial amounts of CO 2 are reported as unwanted by-products and low reaction rates are reported. A similar method was reported by Seeman et al. in J. Catal. 173 (1972), where palladium black and palladium activated charcoal were used to convert propylene to acrylic acid. However, only stoichiometric, non-catalytic conversions based on palladium metal are taught, thus providing an even less efficient process than the above US patent. Furthermore, several patents describe conventional methods for the preparation of supported palladium metal catalysts, for example by reduction of palladium salts, using reducing agents such as hydrogen, lower alcohols, hydrazine, or various olefins. For example US Patent 3275680
(Holzrichter) or 4435598 (Hinnenkamp). These teach the reduction of palladium salts with hydrogen or hydrazine. US Patent 4016200
(Onoda) also teaches that palladium compounds can be reduced to palladium metal using formalin, hydrazine, hydrogen, methanol, or olefins such as ethylene, propylene, butenes as reducing agents. Similarly, US Pat. No. 3,970,713 (Soharfe) also teaches the reduction of palladium and other metal salts to metal catalysts using hydrogen, alcohols, olefins, etc. as reducing agents. However, none of these references teach the preparation of highly activated palladium metal species with olefins under unique time and temperature conditions, nor do these catalysts teach the preparation of highly activated palladium metal species than was previously possible. It does not teach a surprisingly effective method for oxidizing olefins to alpha, beta unsaturated acids under mild operating conditions. Finally, FR Hartley “The Chemistry of Platinum and Palladium” Willie and Sons 380−
390 and 412-417 (1973) discloses the formation of complexes of ethylene with palladium chloride to give palladium +2 metal catalysts. However, as described below, the use of ethylene or chloride and the formation of a palladium +2 metal catalyst deactivates the catalyst of the present invention for the purpose of forming the desired product claimed herein. I understand. [Means for Solving the Problems] The object of the present invention is to convert olefins such as propylene to α, acrylic acid, etc. with higher yield and selectivity than the reported prior art methods.
An improved method for converting to β-unsaturated carboxylic acids in one step is provided. It is a further object of the present invention to oxidize isobutylene to methacrylic acid and butene-1 to crotonic acid in a similar manner. A further object of the present invention is to provide a novel palladium catalyst useful for achieving the above objects, and a method for producing the catalyst. Other objects of the invention will become apparent from the description and examples given below. When an activated palladium catalyst supported on carbon or alumina is used in accordance with the present invention, an olefin such as propylene is
It has been found that α,β-unsaturated carboxylic acids such as acrylic acid can be produced in high yield and with high selectivity by oxidation in the liquid phase under mild reaction conditions. Here, the supported palladium metal catalyst is first activated with an olefin, preferably an olefin corresponding to that to be oxidized, under conditions detailed below, before the oxidation. Originally
This uniquely advantageous catalyst, which should be inactive at temperatures below 60°C, is not only active at much lower temperatures, but they give a molar selectivity to acrylic acid of at least close to 90%, thus demonstrating the fact that Eliminate the production of unwanted CO 2 . The same catalyst system is also effective in oxidizing isobutylene to methacrylic acid and butene-1 to crotonic acid. Thus, olefins having from 3 to about 4 carbon atoms can be oxidized by the catalysts prepared by the process of this invention. General methods for oxidizing propylene to acrylic acid are well described in the prior art and need not be described in detail here. Using a catalyst produced by a novel method discussed in detail below,
The oxidation reaction of propylene to acrylic acid is about 25~
Suffice it to say that it can be carried out uniquely at temperatures in the range of 120 DEG C. and pressures of 1 to 100 atmospheres. Preferably temperatures of 25 to 80°C and pressures of 1 to 10 atmospheres can be used, in contrast to the harsh conditions used in US Pat. No. 3,624,147. Moreover, as a result of this new catalyst, the reaction rate, selectivity, and thus yield are significantly increased over the use of catalyst alone, as shown in the examples below. In one preferred embodiment of the process, the liquid reaction medium is passed downwardly through a fixed catalyst bed to increase the reaction rate and simultaneously reduce the reactor volume, and the acrylic acid product is recovered from the bottom. It has been found to be advantageous to carry out the reaction in a trickle-bed reactor. Alternatively, the oxidation reaction can be carried out using an elaborating bed catalyst with circulating gas and solvent. The starting material from which the catalyst of the invention is prepared is any finely divided palladium in the metallic state on a support such as carbon or, less preferably, alumina;
Commercially available 5%, available from standard catalyst suppliers such as Engelhard Industries or Johnson Massey, Inc.
10% and 20% palladium on carbon. The term "palladium metal catalyst" or "palladium in the metallic state" is used commercially or in the US patent of Schiffre et al.
3,970,713 or by any known reduction means such as that shown in Holzlichter et al. U.S. Pat. means a palladium catalyst. While not specifically intending to be bound by theory, Applicants believe that in the normal course of handling and using prior art reduced catalysts following reduction of palladium, due to exposure to the atmosphere, some of the palladium surface species oxidation. It is this air-exposed palladium catalyst that is used as a starting material in the preparation of Applicants' new olefin-activated catalysts. ("Surface species" means any palladium species found on the surface of the catalyst itself, as recognized by those skilled in the catalysis art.) Without intending to be bound by this, when this partially oxidized palladium surface described above is contacted with propylene in accordance with Applicant's invention, it is It is with these positions that the propylene is converted and then forms the novel surface active species that are the activated catalysts of the present invention. Starting with, for example, a commercially reduced palladium metal catalyst, in the novel activated catalyst of the present invention, as evidence that commercially available reduced palladium is reoxidized under normal handling and exposure to air, for example, Two parts of propylene are used to activate the catalyst under oxygen-free conditions as described below.
1 part acetone and 1 part active catalyst species. In preparing the activated oxidation catalyst for use in the present invention using a carbon or alumina supported palladium metal catalyst as defined above with propylene or similar olefins, the activation treatment is carried out at a temperature of at least about 60°C. Temperatures up to 150℃, preferably approx.
At least about 10 minutes to about 120 minutes at a temperature of 65-95℃,
It is essential that the reaction be carried out under oxygen-free conditions as described below, preferably for at least about 30-60 minutes. This is generally at least about 1 atm, about 100
It is carried out at propylene pressures up to about 2-20 atmospheres, preferably about 2-20 degrees. When these catalysts are palladium on carbon activated in this way, it is used for the purpose of oxidizing propylene below about 60°C, which would otherwise be relatively unreactive, but here at about 25°C. It is surprisingly active. As mentioned previously, the speed and selectivity towards acrylic acid are considerably improved by this treatment. The term "activated palladium metal catalyst" is therefore used for the purposes of the present invention to refer to catalysts made according to the above process which are supported at higher speeds and at lower temperatures than known supported palladium catalysts. , meaning a catalyst that can oxidize propylene to acrylic acid. During the preparation of the catalysts described above, activation is carried out in the substantial absence of oxygen and preferably under essentially oxygen-free conditions in order to derive maximum activity from the catalyst. It is necessary to do so. Although the presence of small amounts of oxygen, to the extent readily determined by one skilled in the art, can result in a catalyst that performs under somewhat milder conditions than the commercially available catalysts described above, The fullest and most complete benefits are derived by activating the catalyst under conditions as free of oxygen as possible, at least within commercially possible levels. These oxygen-free conditions are achieved by known methods, such as by using degassed water, or a solvent and pure olefin gas during activation of the catalyst. Degassing is easily accomplished by holding the liquid under vacuum until it boils or by bubbling the desired olefin through the liquid until oxygen can no longer be replaced. Pure olefins are commercially available in various grades, such as chemically pure, research pure, or polymeric grades;
The latter two are preferred due to their high purity of over about 99.7% (the latter two are e.g.
Matheson, Division of Searle Medical
Products, and Sun Co., respectively). Once Applicant's catalyst is formed, at least a slight excess of olefin is added to prevent any deactivation, and preferably during the oxidation step a stoichiometric amount of reactor oxygen to oxidize the olefin to acrylic acid. Preferably, it is retained in an amount no greater than. It is understood that the presence of those metals or metal salts that may poison or alter the catalyst should be avoided in preparing the catalyst of the present invention. Examples include iron, manganese, copper, and oxidized forms of rhodium salts, chlorides, benzoquinones, heteropolyacids, and all other reagents that will oxidize palladium to palladium +2 . Other such harmful substances can be determined in a routine manner by those skilled in the art. For example, in addition to this, amines,
Materials such as hydrazine and ethylene have been found to be harmful and should be avoided when preparing and using the catalysts of the present invention. Moreover, it has been found that attempts to use hydrogen to prepare this catalyst should be avoided as it can cause an explosion when the catalyst is then exposed to the O 2 propylene mixture. Although the catalyst of the invention can be prepared separately and kept in an active state provided it is kept in an oxygen-free atmosphere, more conveniently the catalyst of the invention is the same as that used for propylene oxidation. Preparation may be carried out in a reactor. This can be done, for example, by adding commercially available finely ground palladium on activated carbon to an aqueous medium in a sealed reactor, flushing the system with propylene gas, and then transferring the mixture under propylene pressure to the desired temperature for catalyst preparation. This can be conveniently accomplished by heating the mixture at that temperature for at least 30 minutes, again in the absence of oxygen and preferably in the presence of a slight excess of olefin. After preparation of the catalyst, the propylene is replaced by a mixture of propylene and oxygen, preferably the oxygen is present in near stoichiometric proportions to avoid deactivation of the catalyst, and the oxidation reaction is carried out at a pressure of about 1 to 10 atmospheres. Implemented. The pressure is maintained by adding additional gas mixture from time to time until the desired propylene conversion is achieved. Air can be used instead of oxygen, but in this case the amount of propylene must be adjusted accordingly. The activator of the catalyst is preferably propylene, but if desired it can be replaced by allylic hydrogen and other light olefins containing from 3 to 6 carbon atoms, preferably corresponding to the olefin to be oxidized. It can be used for. Most preferred are butene-1, butene-2, or isobutylene in addition to propylene. Olefin-activated catalysts remain active for extended periods of time as long as at least a small amount of acceptable olefin is present. It has therefore proved advantageous to carry out the reaction by constantly sparging the propylene/oxygen or air reaction mixture through the aqueous solution. By this method propylene is kept in excess and the catalyst remains highly active thereby preserving high selectivity and other advantages mentioned above. When the oxidation is carried out in batches, the ratio of catalyst to reaction medium desirably ranges from about 0.05 to about 5.0, preferably from about 0.1 to 1.0, gram atoms of palladium per liter of reactant. In a continuous process using, for example, a fixed bed reactor, the reaction is varied in a manner known in the art to achieve the high yields and selectivities described herein. It can be implemented effectively by The following examples are intended to illustrate the invention. Examples 1-6 and Comparative Examples 1-3 In the following Examples 1-9, several reactions were carried out according to the following general procedure. on carbon (Ingelhard Industries)
One gram of 10% palladium metal was added to an 85 ml Fisher Porter Aerosol tube. Next, 30 ml of degassed distilled water was added and the filter tube was attached to the pressure manifold. The mixture was flushed three times with pure propylene gas (research purity grade) at 50 psi. The mixture was then heated with stirring under 50 psi of pure propylene until the desired activation temperature was reached, whereupon the mixture was stirred for 30 minutes. The stirred mixture was then brought to the desired reaction temperature and the propylene was replaced with a gas mixture developing a composition of 60% 0 2 /40% pure C 3 H 6 to a total pressure of 100 psig. In most cases the reaction proceeded immediately and the pressure dropped. The total pressure
Bring the O 2 /C 3 H 6 gas mixture to total pressure when 80 psig is reached.
I put it in to make it 100 psig. This was repeated as often as necessary during the course of the experiment. After the measured reaction time, the mixture was cooled, the gas was captured and analyzed, and the mixture was filtered. The catalyst was washed with both organic and aqueous solutions to remove small amounts of acrylic acid retained on the surface. The filtrate was analyzed by standard gas chromatography to determine the product composition. The conditions for making the catalyst and for oxidizing propylene as shown in Table 1 below were varied experimentally to better illustrate the scope of the invention. Small amounts of by-products such as acetone, acrolein, acetic acid, and CO2 were also reported. The results in Table 1 show that using temperatures between 65 and 80°C results in catalysts that are active at 40 or 50°C. A similar treatment at 40-50°C gives an inactive catalyst at these temperatures. Catalysts produced at 80°C are also more selective for oxidation at lower temperatures than those produced at 65°C. Reactions carried out at 65°C were faster and more selective than those carried out at 50°C at equivalent activation temperatures. The catalyst treated at 80°C was active for oxidation at 30°C, but the rate and selectivity to acrylic acid was lower than at 65°C. In contrast, Comparative Examples 1-3 demonstrate that yield and selectivity are negligible when commercially available catalysts are not subjected to the activation process described above.

【衚】【table】

【衚】 で実隓された。
次の実斜䟋〜は前の実斜䟋の手順を䜿甚し
たむ゜ブチレンずブテン−の酞化を説明する。 実斜䟋  反応を実斜䟋の手順に埓぀お行なうが䜆しプ
ロピレンをむ゜ブチレンに眮き換えお䞻芁生成物
ずしおメタクリル酞がおよそ65の高収率で埗ら
れた。 実斜䟋  反応を実斜䟋の手順に埓぀お行なうが䜆しプ
ロピレンをむ゜ブチレンに眮き換えお䞻芁生成物
ずしおメタクリル酞がおよそ65の高収率で埗ら
れた。 実斜䟋  反応を実斜䟋の手順に埓぀お行なうが䜆しプ
ロピレンをブテン−に眮き換えお䞻芁生成物ず
しおクロトン酞がおよそ55の高収率で埗られ
た。 実斜䟋 10 実斜䟋の条件䞋で炭玠䞊10のパラゞりムを
プロピレンで掻性化しプロピレンを同様の方法で
酞化するが、䜆し反応枩床を30℃ずしたずき、ア
クリル酞が䞻芁生成物ずしお生成した。
[Table] was tested.
The following Examples 7-9 illustrate the oxidation of isobutylene and butene-1 using the procedures of the previous examples. Example 7 The reaction was carried out according to the procedure of Example 2 except that propylene was replaced by isobutylene and methacrylic acid was obtained as the main product in a high yield of approximately 65%. Example 8 The reaction was carried out according to the procedure of Example 4, except that propylene was replaced by isobutylene, giving methacrylic acid as the main product in a high yield of approximately 65%. Example 9 The reaction was carried out according to the procedure of Example 2 except that propylene was replaced by butene-1 and crotonic acid was obtained as the major product in a high yield of approximately 55%. Example 10 When 10% palladium on carbon was activated with propylene under the conditions of Example 6 and the propylene was oxidized in a similar manner, but at a reaction temperature of 30°C, acrylic acid was formed as the main product. .

Claims (1)

【特蚱請求の範囲】  支持されたパラゞりム金属觊媒を氎性液䜓媒
䜓䞭で、C3〜C6オレフむンず、少なくずも60℃
の枩床で少なくずも10分間酞玠の非存圚䞋に斌い
お接觊させるこずからなる、C3〜C4オレフむン
をαβ−䞍飜和カルボン酞に酞化するための掻
性化パラゞりム金属觊媒を補造する方法。  觊媒が䞊蚘オレフむンで60℃〜150℃の枩床
で少なくずも10〜120分間接觊される特蚱請求の
範囲第項に蚘茉の方法。  觊媒が䞊蚘オレフむンの〜100気圧の圧力
䞋に接觊される特蚱請求の範囲第項に蚘茉の方
法。
Claims: 1. A supported palladium metal catalyst in an aqueous liquid medium with a C3 - C6 olefin at a temperature of at least 60°C.
A method for preparing an activated palladium metal catalyst for the oxidation of C3 - C4 olefins to α,β-unsaturated carboxylic acids, comprising contacting in the absence of oxygen for at least 10 minutes at a temperature of . 2. The method of claim 1, wherein the catalyst is contacted with the olefin at a temperature of 60°C to 150°C for at least 10 to 120 minutes. 3. The method of claim 1, wherein the catalyst is contacted with the olefin under a pressure of 1 to 100 atmospheres.
JP59256605A 1983-12-07 1984-12-06 Oxidation to alpha, beta-unsaturated carboxylic acid of olefin by catalyst Granted JPS60139341A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US55905783A 1983-12-07 1983-12-07
US664563 1984-10-29
US559057 1995-11-16

Publications (2)

Publication Number Publication Date
JPS60139341A JPS60139341A (en) 1985-07-24
JPH0510976B2 true JPH0510976B2 (en) 1993-02-12

Family

ID=24232113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59256605A Granted JPS60139341A (en) 1983-12-07 1984-12-06 Oxidation to alpha, beta-unsaturated carboxylic acid of olefin by catalyst

Country Status (1)

Country Link
JP (1) JPS60139341A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4571809B2 (en) * 2004-02-05 2010-10-27 䞉菱レむペン株匏䌚瀟 Method for producing noble metal-containing catalyst
US7498462B2 (en) 2004-02-09 2009-03-03 Mitsubishi Rayon Co., Ltd. Process for producing α,β-unsaturated carboxylic acid
KR101154764B1 (en) 2004-02-10 2012-06-18 믞잠비시 레읎옚 가부시킀가읎샀 Catalyst for producing ?,?-unsaturated carboxylic acid and method for preparation thereof, and method for producing ?,?-unsaturated carboxylic acid
JP4507247B2 (en) * 2004-04-19 2010-07-21 䞉菱レむペン株匏䌚瀟 Catalyst for production of α, β-unsaturated aldehyde and / or α, β-unsaturated carboxylic acid, production method thereof and use thereof
JP5001543B2 (en) * 2004-11-17 2012-08-15 䞉菱レむペン株匏䌚瀟 Method for producing palladium-containing supported catalyst

Also Published As

Publication number Publication date
JPS60139341A (en) 1985-07-24

Similar Documents

Publication Publication Date Title
JP4955886B2 (en) Method for producing aliphatic carboxylic acid from aldehyde
US4425277A (en) Method for the preparation of alkenyl esters of carboxylic acids
JPH07196553A (en) Preparation of tert- butyl alcohol from tert- butyl hydroperoxide using supported rhodium catalyst
JP3852972B2 (en) Method for producing saturated ester
JPH0510976B2 (en)
EP0145467B1 (en) Catalytic oxidation of olefins to alpha, beta-unsaturated carboxylic acids
US4121039A (en) Process for producing an unsaturated glycol diester using a catalyst comprising palladium containing thorium as a promotor
JPS58246A (en) Catalyst for carbonylation of alcohol
US3993593A (en) Catalysts for the production of carbonyl compounds
EP0145469B1 (en) Increased selectivities in the oxidation of olefins to alpha, beta-unsaturated carboxylic acids
US3804902A (en) Process for producing acetone
JPS60155148A (en) Increased selectivity for oxidation of olefin to alpha, beta-unsaturated carboxylic acid
US4242525A (en) Process for producing salts of pyruvic acid
US4732883A (en) Catalytic oxidation of propylene to allyl acetate
JPS60139643A (en) Improved selectivity of olefin oxidation to alpha, beta-unsaturated carboxylic carboxylic acid
EP0144251B1 (en) Catalytic oxidation of propylene to allyl acetate
US4602104A (en) Catalytic oxidation of propylene to allyl acetate
US4602103A (en) Process for the oxidation of butenes to linear acetates
CA1238052A (en) INCREASED SELECTIVITIES IN THE OXIDATION OF OLEFINS TO .alpha.,.beta.-UNSATURATED CARBOXYLIC ACIDS
JPS60139647A (en) Oxidation to allyl propyrene acetate with catalyst
EP0144252B1 (en) Process for the oxyacylation of butenes to linear acetates
JPH07196552A (en) Preparation of tert- butyl alcohol from tert- butyl hydroperoxide using titania or zirconia
JPS5924984B2 (en) Production method of 4-butyrolactone
JPS6160621A (en) Production of carbonyl compound
US4801755A (en) Isobutane oxidation in the presence of a soluble propylene glycol/vanadium catalyst