JPH05109722A - Wiring - Google Patents

Wiring

Info

Publication number
JPH05109722A
JPH05109722A JP3269450A JP26945091A JPH05109722A JP H05109722 A JPH05109722 A JP H05109722A JP 3269450 A JP3269450 A JP 3269450A JP 26945091 A JP26945091 A JP 26945091A JP H05109722 A JPH05109722 A JP H05109722A
Authority
JP
Japan
Prior art keywords
wiring
protein
electron transfer
molecular film
molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3269450A
Other languages
Japanese (ja)
Inventor
Tomotsugu Kamiyama
智嗣 上山
Satoru Isoda
悟 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3269450A priority Critical patent/JPH05109722A/en
Publication of JPH05109722A publication Critical patent/JPH05109722A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To eliminate conductivity and make a desired part conductive to form wiring, by forming a molecular film composed of protein molecules holding function groups having electron transferring function in molecules, and denaturing the protein molecules except the desired part of the molecular film. CONSTITUTION:A molecular film composed of protein molecules 1 holding a plurality of function groups having electron transferring function in molecules is formed. In the molecular film except a desired part, the protein molecules are denatured la. Thereby conductivity is eliminated, and the desired part is made conductive to form wiring 5. Hence wiring of molecular scale whose line width is smaller than or equal to 0.1mum is obtained, so that construction of a very high density element circuit is enabled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電子伝達機能を有す
るタンパク質が分子レベルの大きさ(数十〜数百オング
ストローム)で電子移動を行なうことを利用した超高密
度集積回路の構築が可能な配線に関するものである。
INDUSTRIAL APPLICABILITY The present invention makes it possible to construct an ultra-high density integrated circuit by utilizing the fact that a protein having an electron transfer function carries out electron transfer at a molecular size (tens to hundreds of angstroms). It is about wiring.

【0002】[0002]

【従来の技術】従来、配線として、例えば、柳井久義、
永田穣共著“集積回路工学(1)プロセス・デバイス技
術編”コロナ社発行p.135−137に示される金属
蒸着膜を用いる方法があった。
2. Description of the Related Art Conventionally, as wiring, for example, Hisayoshi Yanai,
Minoru Nagata, “Integrated Circuit Engineering (1) Process / Device Technology”, published by Corona Publishing Co. p. There was a method using a metal vapor deposition film shown in 135-137.

【0003】金属蒸着による配線を以下に説明する。図
3は集積回路上の配線構造を示す模式斜視図で、7はア
ルミ配線、8はシリコン素子である。即ち、シリコン素
子8の形状に合わせたマスクを用いてアルミを素子8上
に蒸着、アルミ配線7を形成する。
Wiring formed by metal vapor deposition will be described below. FIG. 3 is a schematic perspective view showing a wiring structure on an integrated circuit, where 7 is an aluminum wiring and 8 is a silicon element. That is, aluminum is vapor-deposited on the element 8 using a mask matching the shape of the silicon element 8 to form the aluminum wiring 7.

【0004】[0004]

【発明が解決しようとする課題】従来の配線は、基本的
に金属からなり、結晶であるので、電子移動制御範囲
が、0.1ミクロンと言われており、線幅に限界があ
る。
Since the conventional wiring is basically made of metal and is crystalline, the electron transfer control range is said to be 0.1 micron, and the line width is limited.

【0005】この発明は上記のような課題を解消するた
めになされたもので、分子中の機能団によって電子移動
を起こすタンパク質を用いて、分子スケールで電子移動
制御がなされることにより、0.1ミクロン以下の線幅
の超高密度素子回路の構築を可能にする配線を提供する
ことを目的とする。
The present invention has been made in order to solve the above problems, and by controlling the electron transfer on a molecular scale using a protein that causes electron transfer by a functional group in the molecule, It is an object of the present invention to provide a wiring that enables the construction of an ultra high density device circuit having a line width of 1 micron or less.

【0006】[0006]

【課題を解決するための手段】この発明の配線は、分子
内に電子伝達機能を有する機能団を保持するタンパク質
分子からなる分子膜を形成し、この分子膜の所望部分を
除いて上記タンパク質分子を変性させることにより導電
性を失わせ、上記所望部分を導電性として形成したもの
である。
Means for Solving the Problems The wiring of the present invention forms a molecular film composed of a protein molecule having a functional group having an electron transfer function in the molecule, and the above-mentioned protein molecule is removed except for a desired portion of the molecular film. By denatured, the electroconductivity is lost, and the desired portion is made electroconductive.

【0007】[0007]

【作用】この発明においては、電子伝達機能団を例えば
複数個有するタンパク質分子が、分子レベルの極微小空
間で電子移動を行なうので、超高密度の集積回路の製造
のために必要な分子スケールの線幅の配線が得られる。
In the present invention, since a protein molecule having a plurality of electron transfer functional groups, for example, carries out electron transfer in a very small space at the molecular level, the molecular scale required for the production of an ultra-high density integrated circuit can be obtained. A wiring having a line width can be obtained.

【0008】[0008]

【実施例】実施例1.以下、この発明の一実施例につい
て具体的に説明する。図1(a)〜(c)はこの発明の一実
施例の配線の製造方法を工程順に示す模式図で、(a)は
分子内に電子伝達機能団を有するタンパク質、この場合
は電子伝達機能団としてヘムを4個有するチトクローム
c3の単分子膜を、(b)はこの単分子膜の一部の分子を
走査型トンネル顕微鏡(以下STMと記す)により変性
させ、導電性を失わせている様子を、(c)は得られた配
線を示している。図中、1は分子内に電子伝達機能団を
有するタンパク質のチトクロームc3、2はフォスファ
チジルコリン、3はマイカ、4はSTMチップ、1aは
変性した、即ち導電性をなくしたチトクロームc3、5
は非変性のチトクロームc3,1からなる配線である
EXAMPLES Example 1. An embodiment of the present invention will be specifically described below. 1 (a) to 1 (c) are schematic views showing a method of manufacturing a wiring according to an embodiment of the present invention in the order of steps. (A) is a protein having an electron transfer functional group in the molecule, (B) shows that a part of the monolayer of cytochrome c3 having four hemes as a group is denatured by a scanning tunneling microscope (hereinafter referred to as STM) to lose the conductivity. The state is shown in (c). In the figure, 1 is cytochrome c3, which is a protein having an electron transfer functional group in the molecule, 2 is phosphatidylcholine, 3 is mica, 4 is an STM chip, 1a is denatured, that is, cytochrome c3, 5 with no conductivity.
Is a wiring consisting of non-denatured cytochrome c3,1

【0009】まず、脂質のフォスファチジルコリン2の
クロロフォルム溶液(濃度1mg/mL)を水面上に展
開する。この水を、分子内に電子伝達機能団としてヘム
を4個有する約30オングストロームの大きさの電子伝
達タンパク質である硫酸還元菌のチトクロームc3の
0.1mM水溶液とポンプで徐々に置換する。さらに3
0分後にもう一度水で置換することによりチトクローム
c3,1の単分子膜を形成した。この2次元結晶を、マ
イカ3上にLangmuir−Blodgett法で移
し取った。このようにして図1(a)に示すマイカ上のチ
トクロームc3,1の単分子膜を作製した。
First, a solution of lipid phosphatidylcholine 2 in chloroform (concentration 1 mg / mL) is spread on the water surface. This water is gradually replaced by a pump with a 0.1 mM aqueous solution of cytochrome c3 of sulfate-reducing bacteria, which is an electron transfer protein having a size of about 30 angstrom and having four hemes as electron transfer functional groups in the molecule. 3 more
After 0 minutes, the membrane was replaced with water again to form a monomolecular film of cytochrome c3,1. The two-dimensional crystal was transferred onto mica 3 by the Langmuir-Blodgett method. Thus, a monomolecular film of cytochrome c3,1 on mica shown in FIG. 1 (a) was prepared.

【0010】次に、図1(b)に示すように、配線となる
所望部分を除く単分子膜の一部の分子をSTMにより変
性させて導電性を失わせる。即ちタンパク質の単分子膜
を観察し、特定のタンパク質分子をアクセスした状態
で、観察している電圧より大きい電圧パルスを印加す
る。例えば、この場合は5Vの電圧パルスをSTMチッ
プ5で印加することによって、任意の分子を変性させ、
図1(c)に示す配線を得た。非変性チトクロームc3
1 の部分が配線である。このようにして得た配線は分
子スケール、0.1ミクロン以下の線幅であり、超高密
度素子回路の構築を可能にする。
Next, as shown in FIG. 1B, a part of the molecules of the monomolecular film excluding a desired portion to be a wiring is denatured by STM to lose the conductivity. That is, a monolayer film of a protein is observed, and a voltage pulse larger than the observed voltage is applied in a state where a specific protein molecule is accessed. For example, in this case, by applying a voltage pulse of 5 V with the STM chip 5, any molecule is denatured,
The wiring shown in FIG. 1 (c) was obtained. Non-denatured cytochrome c3
The part 1 is a wiring. The wiring thus obtained has a molecular scale and a line width of 0.1 micron or less, which enables the construction of an ultra high density device circuit.

【0011】なお、タンパク質を2次元結晶化する方法
として、水面上の単分子膜に吸着させる方法があり、上
記実施例では、フォスファチジルコリンを脂質として用
い、脂質単分子膜に吸着させる場合について示したが、
LB膜を形成するものであればすべて用いることができ
る。例えば、アラキジン酸やステアリン酸などの脂肪酸
を用いることができる。
As a method for two-dimensionally crystallizing a protein, there is a method of adsorbing it on a monolayer on the surface of water. In the above-mentioned example, when phosphatidylcholine is used as a lipid and adsorbed on a lipid monolayer. About,
Any material that forms an LB film can be used. For example, fatty acids such as arachidic acid and stearic acid can be used.

【0012】実施例2.タンパク質を直接マイカに吸着
させることによって単分子膜を作製することも可能であ
る。まず、マイカを硝酸と水で洗浄した後、これを、チ
トクロームc3の0.1mM水溶液中に5分浸漬した後
に、水洗すればよい。実施例1と同様に配線として機能
することが確認された。
Example 2. It is also possible to produce a monomolecular film by directly adsorbing a protein on mica. First, mica may be washed with nitric acid and water, then immersed in a 0.1 mM aqueous solution of cytochrome c3 for 5 minutes, and then washed with water. It was confirmed that the wiring functions as in the first embodiment.

【0013】実施例3.図2はこの発明の他の実施例の
配線を示す模式図で、1bは変性度合を少なくしたチト
クロームc3、6は抵抗素子である。この実施例の場
合、タンパク質分子の一部の変性の度合を少なく、即ち
導電性をなくすのではなく低下させ、この部分を分子ス
ケールの抵抗素子6として用いることができるようにし
ている。
Embodiment 3. FIG. 2 is a schematic view showing the wiring of another embodiment of the present invention. 1b is a cytochrome c3, 6 with a reduced degree of modification, and 6 is a resistance element. In the case of this embodiment, the degree of denaturation of a part of the protein molecule is reduced, that is, the conductivity is reduced rather than lost, and this part can be used as the molecular-scale resistance element 6.

【0014】なお、特定1分子のタンパク質を変性させ
る方法として、上記実施例では走査型トンネル顕微鏡
(STM)を用い、特定のタンパク質分子をアクセスし
た状態で電圧パルスを印加する場合について示したが、
X線、または電子線などの高エネルギービームをマスク
を用いて特定タンパク質分子に照射するようにしてもよ
い。
As a method for denaturing a specific single molecule of protein, a scanning tunneling microscope (STM) was used in the above-described embodiment to apply a voltage pulse with a specific protein molecule being accessed.
A specific protein molecule may be irradiated with a high-energy beam such as X-rays or electron beams using a mask.

【0015】また、電子伝達機能団を有するタンパク質
として、上記実施例では、電子伝達機能団のヘムを4個
有する天然の硫酸還元菌チトクロームc3を用いたが、
他のチトクロームc3でもよい。また、他の天然の電子
伝達タンパク質でもよいし、フラビンやヘムなどの電子
伝達機能団を人工的にタンパク質に付与した人工タンパ
ク質を用いてもよい。さらに、電子伝達機能団は複数、
望ましくは多数個有するものがよい。
Further, as the protein having an electron transfer function group, in the above-mentioned example, a natural sulfate-reducing bacterium cytochrome c3 having four heme electron transfer function groups was used.
Other cytochrome c3 may be used. Further, other natural electron transfer protein may be used, or an artificial protein in which an electron transfer functional group such as flavin or heme is artificially added to the protein may be used. In addition, there are multiple electron transfer function groups,
It is desirable to have a large number.

【0016】[0016]

【発明の効果】この発明は以上説明したように、分子内
に電子伝達機能を有する機能団を保持するタンパク質分
子から成る分子膜を形成し、この分子膜の所望部分を除
いて上記タンパク質分子を変性させることにより導電性
を失わせ、上記所望部分を導電性として配線を形成した
ので、0.1ミクロン以下の線幅の分子スケールの配線
が得られ、超高密度素子回路の構築が可能となる効果が
ある。
INDUSTRIAL APPLICABILITY As described above, the present invention forms a molecular film composed of a protein molecule having a functional group having an electron transfer function in the molecule, and removes the above-mentioned protein molecule except a desired portion of the molecular film. Conductivity was lost by denaturation, and wiring was formed by making the above-mentioned desired portion conductive so that a molecular scale wiring having a line width of 0.1 micron or less can be obtained, and an ultra-high-density device circuit can be constructed. There is an effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例の配線の製造方法を工程順
に示す模式図である。
FIG. 1 is a schematic view showing a method of manufacturing a wiring according to an embodiment of the present invention in the order of steps.

【図2】この発明の他の実施例の抵抗素子を形成した配
線を示す模式図である。
FIG. 2 is a schematic view showing a wiring formed with a resistance element according to another embodiment of the present invention.

【図3】従来の金属蒸着膜からなる配線を示す図であ
る。
FIG. 3 is a diagram showing a wiring formed of a conventional metal vapor deposition film.

【符号の説明】[Explanation of symbols]

1 電子伝達機能団を有するタンパク質のチトクローム
c3 1a 変性タンパク質の変性チトクロームc3 5 配線
1 Cytochrome c3 1a of protein having electron transfer functional group Denatured cytochrome c3 5 of denatured protein Wiring

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 分子内に電子伝達機能を有する機能団を
保持するタンパク質分子から成る分子膜を形成し、この
分子膜の所望部分を除いて上記タンパク質分子を変性さ
せることにより導電性を失わせ、上記所望部分を導電性
として形成される配線。
1. A conductive film is formed by forming a molecular film composed of a protein molecule having a functional group having an electron transfer function in the molecule and denaturing the protein molecule except for a desired portion of the molecular film. , A wiring formed by making the desired portion conductive.
JP3269450A 1991-10-17 1991-10-17 Wiring Pending JPH05109722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3269450A JPH05109722A (en) 1991-10-17 1991-10-17 Wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3269450A JPH05109722A (en) 1991-10-17 1991-10-17 Wiring

Publications (1)

Publication Number Publication Date
JPH05109722A true JPH05109722A (en) 1993-04-30

Family

ID=17472604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3269450A Pending JPH05109722A (en) 1991-10-17 1991-10-17 Wiring

Country Status (1)

Country Link
JP (1) JPH05109722A (en)

Similar Documents

Publication Publication Date Title
US4802951A (en) Method for parallel fabrication of nanometer scale multi-device structures
US6486489B2 (en) Transistor
Prokes et al. Novel methods of nanoscale wire formation
US7763552B2 (en) Method of interconnect formation using focused beams
Joachim et al. Multiple atomic scale solid surface interconnects for atom circuits and molecule logic gates
Allara et al. Evolution of Strategies for Self‐Assembly and Hookup of Molecule‐Based Devices
US6562633B2 (en) Assembling arrays of small particles using an atomic force microscope to define ferroelectric domains
Janes et al. Electronic conduction through 2D arrays of nanometer diameter metal clusters
Nicolini Molecular bioelectronics
JP2001181842A (en) Carbon nanotube
Zhou et al. Microtubule‐based gold nanowires and nanowire arrays
JP4501339B2 (en) Method for manufacturing pn junction element
JPH05109722A (en) Wiring
JP4755827B2 (en) Circuits and self-organized structures
JP3166623B2 (en) Bio-related polymer immobilization device
US20050069645A1 (en) Method of electrolytically depositing materials in a pattern directed by surfactant distribution
US6383286B1 (en) Method of making semiconductor super-atom and aggregate thereof
JPH0810774B2 (en) Transistor element
Uchihashi et al. Nanostencil-fabricated electrodes for electron transport measurements of atomically thin nanowires in ultrahigh vacuum
JP3284242B2 (en) Preparation method of fine pattern of organic thin film
JPS6319855A (en) Bioelectric element
US20230107661A1 (en) Method and device for storing free atoms, molecules and ions in a contact-less, albeit well-defined near surface arrangement
DE102004015069B4 (en) A method for generating a regular structure of matter building blocks and a structure comprising such a structure
JPH0691241B2 (en) Transistor element
Xhie et al. Scanning tunneling microscopy study of the interaction between adsorbed clusters and graphite substrates