JPH05109641A - Ion-implantation method - Google Patents

Ion-implantation method

Info

Publication number
JPH05109641A
JPH05109641A JP27149491A JP27149491A JPH05109641A JP H05109641 A JPH05109641 A JP H05109641A JP 27149491 A JP27149491 A JP 27149491A JP 27149491 A JP27149491 A JP 27149491A JP H05109641 A JPH05109641 A JP H05109641A
Authority
JP
Japan
Prior art keywords
ion implantation
wafer
poly
ion
discharge channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP27149491A
Other languages
Japanese (ja)
Inventor
Yasushi Nakamura
恭 仲村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP27149491A priority Critical patent/JPH05109641A/en
Publication of JPH05109641A publication Critical patent/JPH05109641A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable ion implantation to be made without any need for a troublesome maintenance and causing reverse electrification by providing a conductive channel for dissipating electric charge at a scribe region of a semiconductor substrate and performing ion implantation by connecting it to a ground potential. CONSTITUTION:A poly Si layer where impurities are doped is deposited on a surface of a wafer 3, a poly Si layer which is 10-20 mum wide is left at a center of a scribe region between chips 1 by photolithography, and then the rest is eliminated by etching. An obtained lattice-shaped poly Si layer becomes 2 discharge channel 2. The poly Si discharge channel 2 is higher than the chip region 1. When this wafer 3 is fitted to a substrate-retention device of an ion- implantation device, the discharge channel 2 contacts a metal of a tool for fixing; the wafer 3 and the discharge channel is connected to a ground potential, thus enabling an electric charge which is on the wafer surface by ion implantation to be discharged and hence electrostatic breakdown due to accumulation of electric charge to be avoided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はイオン注入方法に関わ
り、特に絶縁物で被覆された基板にイオン注入を施す際
の静電破壊防止技術に関わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion implantation method, and more particularly to a technique for preventing electrostatic breakdown when performing ion implantation on a substrate covered with an insulating material.

【0002】半導体装置の製造にイオン注入法を利用す
ることは今日では常態となっており、注入装置も大電流
化や注入面積の拡大といった方向で改善が進められてい
る。大電流注入では短時間に多量の電荷が被注入基板に
送り込まれるので、基板の放電能力が低いと電荷の滞留
時間と蓄積量が増し、絶縁破壊等の障害が起こり易くな
る。
Utilization of an ion implantation method for manufacturing a semiconductor device has become a normal condition today, and the implantation device is being improved in the direction of increasing the current and expanding the implantation area. Since a large amount of charges are sent to the substrate to be injected in a short time in the high current injection, if the discharge capability of the substrate is low, the retention time and accumulated amount of the charges are increased, and troubles such as dielectric breakdown easily occur.

【0003】また、半導体装置の製造工程ではイオン注
入は様々な段階で行われるのであるが、素子形成が或る
程度進むと基板表面には導電体や絶縁体が入り組んで存
在する状態になるため、イオン注入に伴って生ずる静電
界に対する絶縁耐力が不均一となり、電荷が平均的に分
布する場合よりも耐圧は低下する。
Ion implantation is carried out at various stages in the process of manufacturing a semiconductor device. However, if element formation progresses to a certain degree, conductors and insulators will be intricately present on the substrate surface. The dielectric strength against the electrostatic field generated by the ion implantation becomes non-uniform, and the breakdown voltage becomes lower than that in the case where the charges are evenly distributed.

【0004】更に、選択イオン注入でレジストパターン
のような絶縁体をマスクに用いると、レジストに蓄積さ
れた電荷によって導電体の電荷の分極が起こり、イオン
の注入深さを越えた部分で静電界が生じることもある。
Further, when an insulator such as a resist pattern is used as a mask in the selective ion implantation, the electric charge accumulated in the resist causes polarization of the electric charge of the conductor, and an electrostatic field is generated in a portion beyond the ion implantation depth. May occur.

【0005】例えばMOS型の集積回路(IC)の場合、
ゲート電極は形成されているが未接続であって電気的に
フローティングという時期には、ゲート酸化膜の絶縁破
壊が生じ易く、その他にS/D領域とフィールド酸化膜
の境界でも絶縁破壊が起こり易い。これ等の現象は注入
された電荷が特定個所に集中するために起こると考えら
れる。
For example, in the case of a MOS type integrated circuit (IC),
When the gate electrode is formed but is not connected and is electrically floating, dielectric breakdown of the gate oxide film is likely to occur, and also dielectric breakdown is likely to occur at the boundary between the S / D region and the field oxide film. . It is considered that these phenomena occur because the injected charges are concentrated in a specific place.

【0006】このような事情から、イオン注入を行うに
当たって電荷の蓄積を如何にして軽減するかが一つの技
術課題として存在する。
Under these circumstances, one technical problem is how to reduce the accumulation of electric charges when performing ion implantation.

【0007】[0007]

【従来の技術】イオン注入に於ける帯電解消技術の一つ
にエレクトロンシャワーを利用するものがある。これ
は、注入イオンが正電荷を持つことから、イオン照射と
同時に電子線照射を行い、イオンビームを中性化して基
板に注入するものである。
2. Description of the Related Art One of the techniques for eliminating static charge in ion implantation is to use an electron shower. In this method, since the implanted ions have a positive charge, electron beam irradiation is performed at the same time as the ion irradiation to neutralize the ion beam and inject it into the substrate.

【0008】[0008]

【発明が解決しようとする課題】エレクトロンシャワー
による中和方式は装置が複雑になる上に、メンテナンス
のために休止する時間が長く、注入装置の稼働率が上が
らないという難点がある。また、中性化のためのシャワ
ー電流の制御も困難であり、エレクトロンシャワーが強
すぎて基板が負に帯電する、いわゆる逆帯電の問題も新
たに生じる。
The electron shower neutralization method has a drawback in that the apparatus is complicated and the maintenance time of the injection apparatus is long, so that the operating rate of the injection apparatus cannot be increased. In addition, it is difficult to control the shower current for neutralization, and a problem of so-called reverse charging, in which the electron shower is too strong and the substrate is negatively charged, newly occurs.

【0009】本発明の目的はメンテナンスが煩瑣でな
く、逆帯電の問題も起きないイオン注入方法を提供する
ことである。
An object of the present invention is to provide an ion implantation method in which maintenance is not troublesome and the problem of reverse charging does not occur.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明のイオン注入方法では、複数のチップ領域が
配列された半導体基板にイオン注入を行うに際し、該チ
ップ領域間に設けられたスクライブ領域に帯状の導電体
を被着形成し、該導電体を該イオン注入装置の基板保持
装置に電気的に接続した状態に保持してイオンを照射す
ることが行われる。
In order to achieve the above object, according to the ion implantation method of the present invention, when ion implantation is performed on a semiconductor substrate in which a plurality of chip regions are arranged, scribes provided between the chip regions are provided. A band-shaped conductor is deposited on the region, the conductor is held in a state of being electrically connected to the substrate holding device of the ion implantation apparatus, and ions are irradiated.

【0011】また本発明の好ましい実施例では、このス
クライブ領域に設けられる帯状導電体は高不純物濃度の
ポリSi層により形成される。
Further, in a preferred embodiment of the present invention, the strip conductor provided in the scribe region is formed of a poly-Si layer having a high impurity concentration.

【0012】[0012]

【作用】現在実用に供されているイオン注入装置では、
図2に示すようにイオンビームの照射領域(ビームスポ
ット4)は4〜5cm平方と広く、通常のサイズのICチ
ップ数十個に対して一度に注入が行われる。このように
広い範囲に一時に荷電ビームが照射されると、絶縁物上
に生じた電荷の放散が遅くなるばかりでなく、隣接チッ
プに電荷が移動して特定のチップに静電破壊が発生する
ことにもなる。
[Function] In the ion implantation apparatus currently in practical use,
As shown in FIG. 2, the irradiation area (beam spot 4) of the ion beam is as wide as 4 to 5 cm square, and several tens of IC chips of normal size are implanted at one time. When the charged beam is irradiated to such a wide area at once, not only the diffusion of the charges generated on the insulator is delayed, but also the charges move to the adjacent chip to cause electrostatic breakdown in a specific chip. It will also happen.

【0013】少し詳しく説明すると、素子形成の状況の
僅か不均一のために、各チップには電荷の溜まり易さに
僅かな差が生じており、隣接チップからの電荷の移動の
ため、溜まり易いチップに電荷が集中することで静電破
壊を起こし易くなる。即ち、電流密度が同じであって
も、細いイオンビームより太いイオンビームを用いる方
が静電耐圧が低下し易いのである。
Explaining in more detail, due to a slight non-uniformity of the condition of element formation, there is a slight difference in the easiness of accumulating charges in each chip, and the easiness of accumulating due to the movement of charges from an adjacent chip. The concentration of electric charges on the chip facilitates electrostatic breakdown. That is, even if the current densities are the same, the electrostatic withstand voltage is more likely to decrease when a thick ion beam is used rather than a thin ion beam.

【0014】このように、発生する静電界はイオン電流
が大であるほど高電圧となる。しかし、電荷の放散が速
やかであればさほど高くなることはないので、本発明の
如くチップ領域の周囲に導電路を設けてこれを接地電位
などに接続しておけば、注入された電荷がスクライブ領
域を横切って移動しなくなることは勿論、各チップ領域
に送り込まれた電荷も、集中する傾向より放散する傾向
が優先することになり、高圧の静電界をもたらす電荷集
中も抑制されることになる。
As described above, the generated electrostatic field has a higher voltage as the ion current is larger. However, if the dissipation of the charge is rapid, it will not be so high. Therefore, if a conductive path is provided around the chip region and is connected to the ground potential as in the present invention, the injected charge is scribed. Not only will it not move across the area, but the tendency of the charge sent into each chip area to dissipate will be prioritized over the tendency to concentrate, and the concentration of charge that will cause a high-voltage electrostatic field will also be suppressed. .

【0015】[0015]

【実施例】イオン注入を実施する段階までプロセスが進
行したウエハの表面に、CVD法によって不純物をドー
プしたポリSi層を約3μmの厚さに堆積する。通常の
フォトリソグラフィ処理により、チップ間のスクライブ
領域の中央に10〜20μmの幅のポリSi層を残し、他は
エッチング除去する。この状態が、図1に模式的に示さ
れている。同図の(a)は平面図であり、(b)は断面図であ
る。格子状のポリSi層が放電路2であり、1はチップ
領域、3がウエハである。
EXAMPLE A poly-Si layer doped with impurities is deposited to a thickness of about 3 μm by the CVD method on the surface of a wafer which has been processed up to the stage of performing ion implantation. By a normal photolithography process, a poly-Si layer having a width of 10 to 20 μm is left in the center of the scribe region between the chips, and the others are removed by etching. This state is schematically shown in FIG. In the figure, (a) is a plan view and (b) is a sectional view. The lattice-shaped poly-Si layer is the discharge path 2, 1 is a chip region, and 3 is a wafer.

【0016】同図(b)から分かるように、ポリSi放電
路はチップ領域より高くなるように形成されており、こ
のウエハをイオン注入装置の基板保持装置に装着すると
放電路はウエハ固定用の治具に接触することになる。こ
の種の治具は金属製が通常であるから、放電路は接地電
位に接続されたことになり、イオン注入によってウエハ
表面に生じた電荷は、矢印で示されるように放電する。
As can be seen from FIG. 1B, the poly-Si discharge path is formed so as to be higher than the chip area. When this wafer is mounted on the substrate holding device of the ion implantation apparatus, the discharge path is used for fixing the wafer. It will come into contact with the jig. Since this kind of jig is usually made of metal, the discharge path is connected to the ground potential, and the charges generated on the wafer surface by the ion implantation are discharged as shown by the arrow.

【0017】或る程度ウエハプロセスが進行したウエハ
表面には凹凸が生じており、チップ領域はスクライブ領
域より若干高くなっているのが通常である。上記のよう
に、ポリSi層の厚さを3μmとすれば、スクライブ領
域に形成される放電路の上面はチップ領域より高くな
り、基板保持装置に装着するだけで放電路の接地が実現
することになる。
Irregularities are generated on the surface of the wafer after the wafer process has progressed to some extent, and the chip area is usually slightly higher than the scribe area. As described above, if the thickness of the poly-Si layer is 3 μm, the upper surface of the discharge path formed in the scribe area is higher than the chip area, and the discharge path can be grounded only by mounting it on the substrate holding device. become.

【0018】このポリSi放電路は、通常の場合、後続
工程で除去されるが、残しておいても構わない。また、
ポリではなくAlのような金属で形成してもよい。Al
皮膜は蒸着で形成されることが多いが、その際、ウエハ
裏面にも廻り込むようにようにしておき、放電路のパタ
ーニングの時にも残すようにしておけば、保持装置に装
着するだけで接地電位とし得る簡便さは残される。
This poly-Si discharge path is usually removed in a subsequent step, but it may be left. Also,
It may be formed of a metal such as Al instead of poly. Al
In many cases, the film is formed by vapor deposition. At this time, if it is set so as to wrap around the back surface of the wafer and leave it when patterning the discharge path, it can be grounded simply by mounting it on a holding device. The simplicity of potentials remains.

【0019】[0019]

【発明の効果】以上説明したように、半導体基板のスク
ライブ領域に電荷放散用の導電路を設け、これを接地電
位等の安定電位に接続してイオン注入を行えば、基板表
面の電荷滞留が著しく低減され、電荷蓄積による静電破
壊を避けることができる。その結果、単に製造歩留まり
が向上するだけでなく、大電流の注入装置を使用するこ
とが可能になり、イオン注入工程のスループットも向上
する。
As described above, if a conductive path for dissipating charges is provided in the scribe region of the semiconductor substrate and this is connected to a stable potential such as ground potential for ion implantation, the charge retention on the surface of the substrate will be reduced. It is significantly reduced, and electrostatic breakdown due to charge accumulation can be avoided. As a result, not only the manufacturing yield is improved, but also a high current implanter can be used, and the throughput of the ion implantation process is also improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例を模式的に示す図FIG. 1 is a diagram schematically showing an embodiment of the present invention.

【図2】 ビームスポットとチップ領域の関係を示す図FIG. 2 is a diagram showing a relationship between a beam spot and a chip area.

【符号の説明】[Explanation of symbols]

1 チップ領域 2 放電路 3 ウエハ 4 ビームスポット 1 chip area 2 discharge path 3 wafer 4 beam spot

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数のチップ領域(1)が配列された半導
体基板(3)にイオン注入を行うに際し、 該チップ領域間に設けられたスクライブ領域に帯状の導
電体(2)を被着形成し、該導電体を該イオン注入装置の
基板保持装置に電気的に接続した状態でイオンビームを
照射することを特徴とするイオン注入方法。
1. When a semiconductor substrate (3) having a plurality of chip regions (1) arranged therein is ion-implanted, a band-shaped conductor (2) is formed on a scribe region provided between the chip regions. And irradiating the ion beam with the conductor electrically connected to the substrate holding device of the ion implantation device.
【請求項2】 請求項1のイオン注入方法であって、 スクライブ領域に設ける帯状導電体は高不純物濃度の多
結晶シリコン層から成るものであることを特徴とするイ
オン注入方法。
2. The ion implantation method according to claim 1, wherein the strip-shaped conductor provided in the scribe region is made of a polycrystalline silicon layer having a high impurity concentration.
JP27149491A 1991-10-18 1991-10-18 Ion-implantation method Withdrawn JPH05109641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27149491A JPH05109641A (en) 1991-10-18 1991-10-18 Ion-implantation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27149491A JPH05109641A (en) 1991-10-18 1991-10-18 Ion-implantation method

Publications (1)

Publication Number Publication Date
JPH05109641A true JPH05109641A (en) 1993-04-30

Family

ID=17500840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27149491A Withdrawn JPH05109641A (en) 1991-10-18 1991-10-18 Ion-implantation method

Country Status (1)

Country Link
JP (1) JPH05109641A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0601652A2 (en) * 1992-12-11 1994-06-15 Philips Electronics Uk Limited Electronic device manufacture using ion implantation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0601652A2 (en) * 1992-12-11 1994-06-15 Philips Electronics Uk Limited Electronic device manufacture using ion implantation
EP0601652A3 (en) * 1992-12-11 1998-02-25 Philips Electronics Uk Limited Electronic device manufacture using ion implantation

Similar Documents

Publication Publication Date Title
US4224733A (en) Ion implantation method
KR940008569B1 (en) Semiconductor device with reduced time-dependent dielectric failures
US4258465A (en) Method for fabrication of offset gate MIS device
JPH033388B2 (en)
TW201703158A (en) Transistor with contacted deep well region
KR20000067772A (en) Electrostatic Discharge Protection Device
CN110634948B (en) LDMOS device and forming method thereof
US3688389A (en) Insulated gate type field effect semiconductor device having narrow channel and method of fabricating same
KR0142118B1 (en) Manufacturing mehtod of semiconductor device
JPH05109641A (en) Ion-implantation method
US6037599A (en) Ion implantation apparatus and fabrication method for semiconductor device
US20210288045A1 (en) Systems and Methods for Protecting a Semiconductor Device
US4076558A (en) Method of high current ion implantation and charge reduction by simultaneous kerf implant
US6187639B1 (en) Method to prevent gate oxide damage by post poly definition implantation
US6028005A (en) Methods for reducing electric fields during the fabrication of integrated circuit devices
KR100575613B1 (en) Preventing method of gate oxide damage in a semiconductor device
US20060270071A1 (en) Method of reducing charging damage to integrated circuits during semiconductor manufacturing
KR100267758B1 (en) Semiconductor device ion implantation method
JPH04322423A (en) Manufacture of semiconductor device
US7066390B2 (en) Method for manufacturing semiconductor device
KR940002780B1 (en) Structure and manufacturing for high voltage tr
KR100302600B1 (en) Manufacturing method for semiconductor device
US6069074A (en) Method of forming conductor shielding to prevent arcing effect during contact implant process
JPH07221042A (en) Ion implanter
JPS60133757A (en) Manufacture of thin film transistor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990107