JPH0510955A - Dynamic state analysis method and device for medicines and substrate - Google Patents

Dynamic state analysis method and device for medicines and substrate

Info

Publication number
JPH0510955A
JPH0510955A JP18380491A JP18380491A JPH0510955A JP H0510955 A JPH0510955 A JP H0510955A JP 18380491 A JP18380491 A JP 18380491A JP 18380491 A JP18380491 A JP 18380491A JP H0510955 A JPH0510955 A JP H0510955A
Authority
JP
Japan
Prior art keywords
function
radioactivity
time
constant
constants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18380491A
Other languages
Japanese (ja)
Other versions
JPH07117544B2 (en
Inventor
Akiyo Shigematsu
昭世 重松
Akiko Hatori
晶子 羽鳥
Hiroko Momose
裕子 百瀬
Akimichi Shigematsu
映理 重松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seitai Kagaku Kenkyusho KK
Original Assignee
Seitai Kagaku Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seitai Kagaku Kenkyusho KK filed Critical Seitai Kagaku Kenkyusho KK
Priority to JP3183804A priority Critical patent/JPH07117544B2/en
Publication of JPH0510955A publication Critical patent/JPH0510955A/en
Publication of JPH07117544B2 publication Critical patent/JPH07117544B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To enable a dynamic state of medicines or the other substrates to be analyzed by comparing a change with time of radioactivity within a respiration air or blood of a living organism where a radioactive labeled substance is dosed with a function having a specific constant which is expressed by a specific expression and then tracing radiorespirometry or a labeled concentration within blood at a lapse of time. CONSTITUTION:A time t after dosing a radioactive carbon label substance and a radioactive strength y within respiration air or blood at each time are plotted in anti-logarithm scale at abscissa and ordinate respectively. Then, assuming that an expression can be established approximately for the radioactivity within respiration air and blood, constants a. b, and c which are most suitable as a result of experiment are obtained. Then, the constants a, b, and c are optimized, a change of radioactivity with time is approximately expressed by a function with the compensated constants a, b, and c, the constant b is used as a measure of a metabolic pool forming a rate-determining step of metabolic path of the labeled substance, and the constant c is used as a measure of release speed of a related metabolic substance from the metabolic pool.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薬物および基質の動態
解析方法および装置に関するもので、特に、放射性標識
物質の代謝経路の律速段階となる代謝プールの大きさの
情報を得ることができる、薬物および基質の動態解析方
法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for analyzing kinetics of drugs and substrates, and in particular, it is possible to obtain information on the size of a metabolic pool which is the rate-determining step of the metabolic pathway of radiolabeled substances. The present invention relates to a drug and substrate kinetic analysis method and device.

【0002】[0002]

【従来の技術】炭素の放射性同位体C14で標識した燃焼
基質物質を生物に投与し、呼気中に二酸化炭素として排
出されるC14の放射能を測定するラジオレスピロメトリ
は、生物体内での代謝の解析に有用な技法の一つとして
利用されている。
2. Description of the Related Art Radio respirometry, in which a combustion substrate substance labeled with the carbon isotope C 14 is administered to an organism and the activity of C 14 exhausted as carbon dioxide in the exhaled breath is measured, is an organism. It is used as one of the useful techniques for the analysis of the metabolism of.

【0003】ラジオレスピロメトリの結果の解析には、
投与後の時間の真数を横軸に、呼気中の放射能強度の対
数を縦軸にプロットしたグラフを作ると、多くの場合、
比較的急な立上がりとそれに続く右下がりの部分(以
下、減衰領域と言う)が得られ、減衰領域は一つか二つ
以上の直線部分を含むので、この部分の勾配等を利用し
ていた。経口投与によるラジオレスピロメトリでは、代
謝プールがあると、図5−Aに示すように、立上がり部
分の傾斜が若干緩くなり、直線を含む減衰領域は右にシ
フトして、傾斜も緩くなり、二つ以上の直線部分が含ま
れるので、これに基づいて代謝プールの存在を推定する
ことができる。
To analyze the results of radiorespirometry,
In many cases, if you make a graph in which the abscissa of the time after administration is plotted on the abscissa and the logarithm of the radioactivity intensity during exhalation is plotted on the ordinate,
A relatively steep rise and a subsequent downward sloping portion (hereinafter referred to as the attenuation region) were obtained, and the attenuation region includes one or more straight line portions, so the slope of this portion was used. In radiorespirometry by oral administration, when there is a metabolic pool, as shown in FIG. 5-A, the slope of the rising part becomes slightly gentle, the attenuation region including the straight line shifts to the right, and the slope becomes gentle, Since two or more linear parts are included, the presence of the metabolic pool can be estimated based on this.

【0004】静脈注射による投与の場合には、ラジオレ
スピロメトリの記録波形の立上がりは垂直に近くなる
が、代謝経路にプールがあると、図5−Bに示すよう
に、減衰領域に二つ以上の直線部が現れる。これを利用
して、代謝プールの存在を推定する。
In the case of administration by intravenous injection, the rise of the recorded waveform of radiorespirometry is close to vertical, but if there is a pool in the metabolic pathway, it appears in the decay region as shown in FIG. 5-B. The above straight line appears. Utilizing this, the existence of the metabolic pool is estimated.

【0005】燃焼基質でない外来性成分、特に体外に呼
気CO2 としての排出が少ない薬物や毒物の経口投与の
場合、標識濃度の追跡は血液について行われ、図6に示
すように、減衰を表す片対数グラフが二つ以上の直線部
から成ることを利用して、代謝プールの存在を推定す
る。
In the case of oral administration of an exogenous component which is not a combustion substrate, particularly a drug or toxic substance which is exhaled as exhaled CO 2 outside the body, the labeling concentration is traced with blood, and as shown in FIG. The existence of the metabolic pool is estimated by utilizing the fact that the semi-log graph is composed of two or more linear parts.

【0006】このような取扱いは、線形コンパートメン
トモデルと呼ばれ、薬物等を投与した後の血中濃度Cp
の時間的変化が次の式で表されることを前提としてい
る。 Cp =C1 exp(−λ1 t)+C2 exp(−λ2 t)+C3 exp(−λ3 t)+・・・ (C1 ,C2 ,C3 ,λ1 ,λ2 ,λ3 等はそれぞれ定
数) 単純な場合として、 Cp =C1 exp(−λ1 t)+C2 exp(−λ2 t) λ1 >λ2 とすると、tが大きい領域では近似的に Cp =C2 exp(−λ2 t) tが小さい領域では近似的に lnCp −λ1 t=lnC1 が成り立ち、それぞれグラフ(片対数)の直線の傾斜か
らλ2 あるいはλ1 、切片あるいは延長の切片からC2
あるいはC1 が求められる。
[0006] This kind of handling is called a linear compartment model, and the blood concentration Cp after administration of a drug etc.
It is assumed that the temporal change of is expressed by the following equation. Cp = C 1 exp (−λ 1 t) + C 2 exp (−λ 2 t) + C 3 exp (−λ 3 t) + ... (C 1 , C 2 , C 3 , λ 1 , λ 2 , λ as each case three such constants) simple, Cp = C 1 exp (-λ 1 t) + C 2 exp ( if -λ 2 t) λ 1> λ 2 that, in approximately a t large area Cp = C In the region where 2 exp (−λ 2 t) t is small, lnCp −λ 1 t = lnC 1 is approximately established, and from the slope of the straight line of the graph (semi-logarithm), λ 2 or λ 1 , or the intercept or the intercept of extension. C 2
Alternatively, C 1 is required.

【0007】[0007]

【発明が解決しようとする課題】しかし、従来のこのよ
うな解析方法では、代謝プールの存在は検出できても、
その大きさに関しては定性的に知ることができるだけで
あり、定量的な情報を得ることができなかった。
However, even if the presence of the metabolic pool can be detected by the conventional analysis method as described above,
We could only qualitatively know its size, and we could not obtain quantitative information.

【0008】すなわち、前記の半対数グラフを利用する
線形コンパートメントモデルでは、λ1 、λ2 等の減衰
定数やC1 ,C2 等の係数が求められても、代謝系に関
するその物理的意味は明らかでなく、代謝経路中のプー
ルの大きさを定量的に表すものではない。
That is, in the linear compartment model using the semilogarithmic graph, even if the damping constants such as λ 1 and λ 2 and the coefficients such as C 1 and C 2 are obtained, the physical meaning of the metabolic system is It is not clear and does not quantitatively represent the size of the pool in the metabolic pathway.

【0009】それ故、ラジオレスピロメトリまたは血液
中標識物濃度の追跡により、代謝プールの大きさに関し
て定量的な情報を得る方法が強く要望されている。
Therefore, there is a strong demand for a method of obtaining quantitative information on the size of the metabolic pool by tracking the radiorespirometry or the concentration of the labeled substance in blood.

【0010】本発明の第一の目的は、代謝プールの大き
さが定量できる、ラジオレスピロメトリまたは血液中標
識濃度の時間的追跡により薬物またはそれ以外の基質の
動態を解析する方法を実現することにある。
A first object of the present invention is to realize a method for analyzing the kinetics of a drug or other substrate by temporally tracking the concentration of radiorespirometry or labeling in blood, which can quantify the size of the metabolic pool. Especially.

【0011】本発明の第二の目的は、代謝プールの大き
さが定量できる、ラジオレスピロメトリまたは血液中標
識濃度の時間的追跡により薬物またはそれ以外の基質の
動態を解析する装置を実現することにある。
The second object of the present invention is to realize an apparatus for analyzing the kinetics of a drug or other substrate by temporally tracking the concentration of radiorespirometry or blood labeling, which can quantify the size of the metabolic pool. Especially.

【0012】[0012]

【課題を解決するための手段】本発明の上記第一の目的
は、放射性炭素標識物質の投与後の時間tを横軸に、各
時間における呼気または血液中の放射能強度yを縦軸
に、いずれも真数スケールでプロットし、呼気または血
液中放射能について下記式(I)が近似的に成立するも
のとして、 y=a(1−e-bt )e-ct (I) 実験結果に最も適合する定数a,b,cを求めることに
より、達成される。
The first object of the present invention is to set the time t after administration of a radiocarbon labeling substance as the abscissa and the radioactivity intensity y in exhaled air or blood at each time as the ordinate. both plots in antilogarithm scale, as the following formula for breath or blood radioactivity (I) is satisfied approximately, to y = a (1-e -bt ) e -ct (I) Test results This is achieved by finding the best matching constants a, b, c.

【0013】実験結果に対する式の最適化は、各測定時
点におけるデータと、式による数値の、差の二乗の和
(またはその平方根、すなわち標準偏差)を最小にすR
ように、いわゆる最小二乗法の原理により行う。定数
a,b,cの最適化は少なくとも二段階で行う。具体的
には、まず立上がり部分について定数a,bの最適化を
行い、その後に減衰部分について定数cの最適値を求め
(第一段階)、このcの値に対して、さらにb(必要に
応じてaも)の値の最適化を再び行う。この補正された
bの値に対してcの値の補正を行うことが、より好まし
い。定数bとcの間で互に数値の補正を繰り返してもよ
い。
The optimization of the formula with respect to the experimental result is carried out by minimizing the sum of squares of differences (or its square root, that is, standard deviation) between the data at each measurement time point and the numerical values according to the formula R.
As described above, the principle of the so-called least squares method is used. Optimization of the constants a, b, and c is performed in at least two stages. Specifically, first, the constants a and b are optimized for the rising portion, and then the optimum value of the constant c is calculated for the damping portion (first step). Accordingly, the value of (a) is optimized again. It is more preferable to correct the value of c to the corrected value of b. Numerical correction may be repeated between the constants b and c.

【0014】式(I)の第一因子aは、パルス的に通常
投与される放射性標識物質の投与料に大きく依存する。
しかし、呼気または血液以外への排出の割合にも依存す
る。
The first factor a of the formula (I) largely depends on the dose of the radiolabeled substance which is usually administered in a pulsed manner.
However, it also depends on the rate of exhalation or excluding blood.

【0015】定数bが小さいことは、呼気中放射能の立
上がりが緩やかなことに対応し、代謝経路中で律速段階
となる代謝プール(以下、単に代謝プールと言う)のサ
イズが大きいことを示す。すなわち、代謝プールの相対
的サイズをVで表すと、次のように表すことができる。 b=r/V (rは定数) (III) 従って、定数rを決定すれば、ラジオレスピロメトリの
結果から代謝プールのサイズVを定めることができる。
定数rの具体的な値を定めなくても、bの値によって代
謝プールの相対的な大きさを比較することができる。
A small constant b corresponds to a slow rise of the radioactivity in the breath, and indicates that the size of the metabolic pool (hereinafter simply referred to as the metabolic pool), which is the rate-determining step in the metabolic pathway, is large. . That is, when the relative size of the metabolic pool is represented by V, it can be represented as follows. b = r / V (r is a constant) (III) Therefore, if the constant r is determined, the size V of the metabolic pool can be determined from the result of radiorespirometry.
Even if the specific value of the constant r is not determined, the relative size of the metabolic pools can be compared by the value of b.

【0016】放射能の立上がりの後、極大点以降の減衰
は式(I)の第三の因子e-ct 、従って定数cにより主
に決定される。定数cは、満たされた代謝プールからの
C14の放出(拡散)の速さに対応する。式(I)でa=
1に基準化し、k=c/bとおいて、式(I)を書き換
えれば式(IV)が得られる。 Y=(1−e-bt )e-kbt (IV) 呼気中(または血中)放射能変化に最もよく適合する式
(IV)のb,kの値を求めれば、式(III)により代謝プ
ールの相対的サイズVを求め、また代謝プールからの拡
散の相対的速さをkとして求めることができる。
After the rise of radioactivity, the attenuation after the maximum is mainly determined by the third factor e -ct of equation (I), and thus the constant c. The constant c corresponds to the rate of C14 release (diffusion) from the filled metabolic pool. In the formula (I), a =
By normalizing to 1 and setting k = c / b, the formula (I) is rewritten to obtain the formula (IV). Y = (1−e −bt ) e −kbt (IV) If the values of b and k in the formula (IV) that best fit the changes in radioactivity in the breath (or in the blood) are determined, the metabolism according to the formula (III) is obtained. The relative size V of the pool can be determined and the relative rate of diffusion from the metabolic pool can be determined as k.

【0017】C14のプールへの供給の開始が若干遅れる
ことも考えられる。遅れをdとすれば、立上がり領域で
の放射能の変化yは t>d: y=a(1−e-b(t-d) ) で表される。
It may be possible that the supply of C 14 to the pool is slightly delayed. If the delay is d, the change in radioactivity y in the rising region is represented by t> d: y = a (1-e- b (td) ).

【0018】また、代謝プールが充分満たされた後でな
いと、C14のプールからの放出が始まらない場合がある
とすれば、式(I)の第三因子の寄与はt=dから始ま
るのでなく、さらに若干遅れると考えられる。プールか
らの放出の遅れをeとすれば、ラジオレスピロメトリで
の放射能の変化yまたはYは、より厳密には式(II)ま
たは(V)で表されるであろう。 t≦d+e: y=a(1−e-b(t-d) ) t>d+e: y=a(1−e-b(t-d) )e-c(t-d-e) (II) (tは投与後の時間を、yは呼気または血液中の放射能
を、a,b,cは各々正の定数を、d,eは0または正
の定数を表す)Y=y/a, c=kbとすると、 t≦d+e: Y=(1−e-b(t-d) ) t>d+e: Y=(1−e-b(t-d) )e-kb(t-d-e) (V) 式(I)または(IV)による定数cの適合度を十分高め
ることができない場合には、式(II)または(V)と適
当なd,eの値を用いることにより、適合度を高めるこ
とができる。
Further, if the release of C 14 from the pool may not start until the metabolic pool is sufficiently filled, the contribution of the third factor of the formula (I) starts from t = d. It seems that there will be no delay, and there will be a slight delay. The radioactivity change y or Y on radiorespirometry will be more precisely represented by formula (II) or (V), where e is the delay in release from the pool. t≤d + e: y = a (1-e- b (td) ) t> d + e: y = a (1-e- b (td) ) e- c (tde) (II) (t is the time after administration) , Y is the radioactivity in exhaled air or blood, a, b and c are positive constants, and d and e are 0 or positive constants) Y = y / a, c = kb <= D + e: Y = (1-e- b (td) ) t> d + e: Y = (1-e- b (td) ) e- kb (tde) (V) The constant by Formula (I) or (IV). When the goodness of fit of c cannot be sufficiently increased, the goodness of fit can be increased by using the formula (II) or (V) and appropriate values of d and e.

【0019】薬物や毒物のように燃焼基質でない外来性
成分についても、上記と同様代謝経路の律速段階となる
代謝プールの大きさの情報を得ることができる。特に体
外に呼気CO2 としての排出が少ない薬物や毒物の経口
投与の場合には、標識濃度の追跡は血液について行う。
標識物質を投与後の所定時間毎に採血した血液中の放射
能濃度を測定し、縦軸に放射能濃度を取り、横軸に投与
後の時間を取って、グラフ化すれば、前述のラジオレス
ピロメトリ記録波形と近似の曲線が得られ、上述と同様
の解析方法を適用することができる。
Information on the size of the metabolic pool, which is the rate-determining step of the metabolic pathway, can be obtained for foreign components that are not combustion substrates, such as drugs and poisons. Particularly, in the case of oral administration of a drug or toxic substance that emits little exhaled CO 2 outside the body, tracking of the labeling concentration is performed on blood.
Measure the radioactivity concentration in the blood collected every predetermined time after administration of the labeling substance, take the radioactivity concentration on the vertical axis, and take the time after administration on the horizontal axis. A curve similar to the respirometry recording waveform is obtained, and the same analysis method as described above can be applied.

【0020】上記第二の目的を達成するため、本発明で
は、薬物および基質の動態解析装置を、放射性標識物質
を投与された生物の呼気または血液中の放射能の時間的
に変化する測定値を入力する入力手段と、所定の複数の
関数を記憶する記憶手段と、入力された放射能測定値の
時間的変化と記憶された関数を比較する比較手段と、比
較により得た放射能測定値の時間的変化と関数との差異
を演算し、この差異が最小となる関数を選択し、選択さ
れた関数を上記差異が減少するように補正する演算手段
と、補正された関数を表示する表示手段から成るものと
する。
In order to achieve the above second object, in the present invention, a drug and substrate kinetic analyzer is used to measure a time-dependent measurement of radioactivity in the breath or blood of an organism to which a radiolabeled substance is administered. Input means for inputting, storage means for storing a plurality of predetermined functions, comparing means for comparing the stored function with the time change of the input radioactivity measurement value, and the radioactivity measurement value obtained by the comparison Of the difference between the time change and the function, select the function that minimizes this difference, and correct the selected function so that the difference decreases, and a display that displays the corrected function. It shall consist of means.

【0021】[0021]

【実施例】以下に実施例を示し、本発明のさらに具体的
な説明とする。 [実施例1]ラジオレスピロメトリを実施する前に16
ビットパーソナルコンピュータ(以下、コンピュータと
言う)に、前述の式(II)による関数の定数a,bおよ
びcに関してそれぞれ有効数字1から999999ま
で、10進桁0.000001から1000000ま
で、dについては0から0.5おきに20までを記憶さ
せておく。10mCi/mmolのC14でU−位(ユニ
バーサル)に標識したD−グルコース0.1μmolを
含む溶液0.1ccを、体重120〜140gのウィス
ター系雄ラットに経口投与し、投与後約90分間、連続
的に呼気中放射能をラジオレスピロメータで測定した。
測定結果をコンピュータに入力し、メモリに記憶させ
る。入力、記憶された測定結果は表1の通りである。
EXAMPLES The following examples are given to further illustrate the present invention. [Example 1] 16 before carrying out radiorespirometry
In a bit personal computer (hereinafter referred to as a computer), significant numbers 1 to 999999, decimal digits 0.000001 to 1000000, and d 0 for the constants a, b, and c of the function according to the above-mentioned formula (II), respectively. To every 0.5 to 20 are stored. 0.1 cc of a solution containing 0.1 μmol of D-glucose labeled at the U-position (universal) with 10 mCi / mmol of C 14 was orally administered to Wistar male rats weighing 120 to 140 g, and about 90 minutes after the administration, Radioactivity in the breath was continuously measured by a radio respirometer.
The measurement result is input to the computer and stored in the memory. Table 1 shows the input and stored measurement results.

【0022】記憶されたラジオレスピロメトリの立上が
り部のデータを反復して出力させながら、コンピュータ
のメモリから定数cを0とした関数を呼び出して比較
し、測定データと差の小さいものを3個選んだ。
While repeatedly outputting the stored data of the rising portion of the radiorespirometry, a function in which the constant c is 0 is called from the memory of the computer and compared, and three data having a small difference from the measured data are compared. I chose.

【0023】定数dを0とし、選ばれた定数aとbの組
合せに、記憶された範囲の定数cを組合せた関数を、減
衰領域の測定データと比較し、差の小さくなる定数cを
3個選択した。cの値のそれぞれについて選択された各
関数の定数aとbを、1段階ずつ増減させながら、測定
データと関数の差を小さくするように調節して、差を最
も小さくした。選ばれた値は a=5.33 ,b=0.185 ,c=0.02 であった。
A function in which the constant d is set to 0 and the selected combination of the constants a and b is combined with the constant c in the stored range is compared with the measured data in the attenuation region, and the constant c having a small difference is 3 I selected one. The constants a and b of each function selected for each value of c were increased / decreased by one step, and adjusted to reduce the difference between the measured data and the function to minimize the difference. The values chosen were a = 5.33, b = 0.185, c = 0.02.

【0024】しかし、減衰領域でのデータとの差が充分
小さくならない(相対誤差の二乗の平均値の平方根を1
から差引いた値の100倍を適合度αと定義した場合、
80%であった)。そこで定数dを2として、定数cの
選択とそれに対応する定数a,bの調節を再び行ったと
ころ、 a=8.450, b=0.0600, c=0.02
60 とすると、適合度αが改善され、ほぼ100%となっ
た。定数dを3、あるいは定数eを1として同じ調節を
行うと、適合度αはかえって低下した(d=3とした場
合、αは84%となった)。
However, the difference from the data in the attenuation region is not sufficiently small (the square root of the mean value of the square of the relative error is 1
When the goodness of fit α is defined as 100 times the value subtracted from
80%). Therefore, when the constant d is set to 2 and the constant c is selected and the corresponding constants a and b are adjusted again, a = 8.450, b = 0.0600, c = 0.02
At 60, the goodness of fit α was improved to almost 100%. When the same adjustment was performed with the constant d set to 3 or the constant e set to 1, the goodness of fit α decreased rather (when d = 3, α became 84%).

【0025】 表 1 時間(分) 放射能 時間(分) 放射能 1 0.200 28 3.225 2 0.375 29 3.325 3 0.575 30 3.163 5 1.100 31 3.175 7 1.600 32 3.125 9 2.375 34 3.050 11 2.625 37 2.950 12 2.813 40 2.825 13 2.900 43 2.625 14 3.125 46 2.263 15 3.300 49 2.050 15.5 3.350 52 2.037 16 3.450 53 1.963 16.5 3.362 54 1.950 17 3.400 55 1.838 17.5 3.375 56 1.838 18 3.413 57 1.785 19 3.425 58 1.738 20 3.525 60 1.688 21 3.710 65 1.675 22 3.725 70 1.550 23 3.700 75 1.438 24 3.675 80 1.150 25 3.538 85 1.150 26 3.400 90 1.075 27 3.313 [0025]                           Table 1   Time (minutes) Radioactivity Time (minutes) Radioactivity       1 0.200 28 3.225       2 0.375 29 3.325       3 0.575 30 3.163       5 1.100 31 3.175       7 1.600 32 3.125       9 2.375 34 3.050     11 2.625 37 2.950     12 2.813 40 2.825     13 2.900 43 2.625     14 3.125 46 2.263     15 3.300 49 2.050     15.5 3.350 52 2.037     16 3.450 53 1.963     16.5 3.362 54 1.950     17 3.400 55 1.838     17.5 3.375 56 1.838     18 3.413 57 1.785     19 3.425 58 1.738     20 3.525 60 1.688     21 3.710 65 1.675     22 3.725 70 1.550     23 3.700 75 1.438     24 3.675 80 1.150     25 3.538 85 1.150     26 3.400 90 1.075     27 3.313

【0026】以上により、 a=8.450,b=0.
0600,c=0.0260,d=2 に決定した。す
なわち、測定データに最も適合する関数は、t>2にお
いて y=8.450(1−e-0.06(t-2))e-0.026(t-2) または Y=(1−e-bt )e-kbt b=0.0600,k=0.0260/0.0600=0.433 であった。この関数とラジオレスピロメトリ測定値のグ
ラフを図1に示す。
From the above, a = 8.450, b = 0.
It was determined to be 0600, c = 0.0260 and d = 2. That is, the function that best fits the measured data is y = 8.450 (1-e- 0.06 (t-2) ) e- 0.026 (t-2) or Y = (1-e- bt ) at t> 2. e- kbt b = 0.0600, k = 0.0260 / 0.0600 = 0.433. A graph of this function and radiorespirometry measurements is shown in FIG.

【0027】[実施例2]実施例1におけるD−グルコ
ースの代りに、58mCi/mmolのC14でカルボキ
シル基を標識したメチオニン3μCi相当量を、体重1
20ー140gのウィスター系雄ラットに経口投与し、
実施例1と同様にラジオレスピロメトリを行った。測定
結果は表2の通りである。
Example 2 Instead of D-glucose in Example 1, 3 μCi of methionine having a carboxyl group labeled with 58 mCi / mmol of C 14 was added to a body weight of 1
Orally administered to Wistar male rats weighing 20-140 g,
Radio respirometry was performed in the same manner as in Example 1. The measurement results are shown in Table 2.

【0028】 表 2 時間(分) 放射能 時間(分) 放射能 1 0.875 21 2.625 3 1.913 22 2.588 4 2.450 23 2.525 5 2.575 24 2.488 5.5 2.630 25 2.338 6 2.800 26 2.200 6.5 2.890 27 2.100 7 2.975 28 2.063 8 2.988 29 2.013 9 3.025 30 1.963 10 3.063 31 1.913 10.5 3.100 32 1.825 11 3.125 34 1.700 12 3.100 36 1.575 13 3.050 38 1.475 14 3.187 40 1.400 15 3.038 42 1.738 16 3.050 45 1.213 18 2.850 50 1.050 20 2.675 55 0.938 60 0.838[0028]                           Table 2   Time (minutes) Radioactivity Time (minutes) Radioactivity       1 0.875 21 2.625       3 1.913 22 2.588       4 2.450 23 2.525       5 2.575 24 2.488       5.5 2.630 25 2.338       6 2.800 26 2.200       6.5 2.890 27 2.100       7 2.975 28 2.063       8 2.988 29 2.013       9 3.025 30 1.963     10 3.063 31 1.913     10.5 3.100 32 1.825     11 3.125 34 1.700     12 3.100 36 1.575     13 3.050 38 1.475     14 3.187 40 1.400     15 3.038 42 1.738     16 3.050 45 1.213     18 2.850 50 1.050     20 2.675 55 0.938                                   60 0.838

【0029】実施例1と同様立上がり領域のデータに適
合する定数a,bを選択し、それに対して減衰領域のデ
ータに適合する定数cを選択し、測定データ全体に最も
適合する関数を決定した。dについて考慮する必要はな
かった。得られた関数は y=a(1−e-bt )e-ct a=5.053,b=0.185,c=0.0311 Y=(1−e-bt )e-kbt b=0.185,k=0.0311/0.185=0.
17 であった。この関数とラジオレスピロメトリ測定値のグ
ラフを図2に示す。
Similar to the first embodiment, the constants a and b that fit the data in the rising region are selected, and the constant c that fits the data in the damping region is selected to determine the function that best fits the entire measured data. . There was no need to consider d. The resulting function y = a (1-e -bt ) e -ct a = 5.053, b = 0.185, c = 0.0311 Y = (1-e -bt) e -kbt b = 0 .185, k = 0.0311 / 0.185 = 0.
It was 17. A graph of this function and radiorespirometry measurements is shown in FIG.

【0030】[実施例3]実施例2におけるC14標識の
位置をメチオニンのメチル基に変更した以外は、実施例
2と同様にラジオレスピロメトリの解析を行った。測定
結果は表3の通りであった。
[Example 3] Radiorespirometry was analyzed in the same manner as in Example 2 except that the position of the C 14 label in Example 2 was changed to the methyl group of methionine. The measurement results are shown in Table 3.

【0031】得られた関数は、t>1.5において y=a(1−e-b(t-1.5) )e-c(t-1.5) a=2.831,b=0.0994,c=0.049
5,d=1.5 または Y=(1−e-b(t-1.5) )e-kb(t-1.5) Y=y/2.831,b=0.994,k=0.049 であった。この関数とラジオレスピロメトリ測定値のグ
ラフを図3に示す。
The obtained function is y = a (1-e- b (t-1.5) ) e- c (t-1.5) a = 2.831, b = 0.0994 at t> 1.5. c = 0.049
5, d = 1.5 or Y = (1-e- b (t-1.5) ) e- kb (t-1.5) Y = y / 2.831, b = 0.994, k = 0.049 there were. A graph of this function and radiorespirometry measurements is shown in FIG.

【0032】同じメチオニンでも標識位置がメチル基の
場合には、カルボキシル基標識の場合よりbの値が小さ
く、メチオニンのメチル基を含む部分の代謝プールがカ
ルボキシル基(またはそれを含む部分)のプールよりも
大きいことを示している。
When the labeling position is a methyl group even with the same methionine, the value of b is smaller than that in the case of labeling with a carboxyl group, and the metabolic pool of the portion containing the methyl group of methionine is the pool of the carboxyl group (or the portion containing it). Is greater than.

【0033】 表 3 時間(分) 放射能 時間(分) 放射能 1 0.075 24 0.825 2 0.200 25 0.800 3 0.413 26 0.750 4 0.575 27 0.688 5 0.625 28 0.650 6 0.788 29 0.625 7 0.913 30 0.613 8 0.975 31 0.588 8.5 1.012 32 0.575 9 1.025 33 0.563 9.5 1.070 34 0.525 10 1.075 36 0.513 10.5 1.100 38 0.475 11 1.125 40 0.438 12 1.155 45 0.388 13 1.150 50 0.338 14 1.137 55 0.238 15 1.113 60 0.175 16 1.088 65 0.163 18 1.025 70 0.163 20 0.950 75 0.125 22 0.900 80 0.113[0033]                           Table 3   Time (minutes) Radioactivity Time (minutes) Radioactivity       1 0.075 24 0.825       2 0.200 25 0.800       3 0.413 26 0.750       4 0.575 27 0.688       5 0.625 28 0.650       6 0.788 29 0.625       7 0.913 30 0.613       8 0.975 31 0.588       8.5 1.012 32 0.575       9 1.025 33 0.563       9.5 1.070 34 0.525     10 1.075 36 0.513     10.5 1.100 38 0.475     11 1.125 40 0.438     12 1.155 45 0.388     13 1.150 50 0.338     14 1.137 55 0.238     15 1.113 60 0.175     16 1.088 65 0.163     18 1.025 70 0.163     20 0.950 75 0.125     22 0.900 80 0.113

【0034】[実施例4]図4に示すように、パーソナ
ルコンピュータを利用して薬物および基質の動態解析装
置を構成した。放射性標識物質を投与された生物の呼気
または血液中の放射能の時間的に変化する測定値を入力
する入力手段として、パーソナルコンピュータ1のキー
ボード2を利用し、所定の複数の関数を記憶する記憶手
段としてパーソナルコンピュータ1のメモリ3を利用
し、パーソナルコンピュータ1の演算部4を、入力され
た放射能測定値の時間的変化と記憶された関数を比較す
る比較手段として、また比較により得た放射能測定値の
時間的変化と関数との差異を演算し、この差異が最小と
なる関数を選択し、選択された関数を上記差異が減少す
るように補正する演算手段として利用し、補正された関
数を表示する表示手段としてパーソナルコンピュータ1
の表示部5(例えばCRT)を利用する。
[Example 4] As shown in Fig. 4, a drug and substrate kinetic analysis apparatus was constructed using a personal computer. A memory for storing a plurality of predetermined functions by using the keyboard 2 of the personal computer 1 as an input means for inputting a time-varying measurement value of the radioactivity in the breath or blood of the organism to which the radiolabeled substance is administered. The memory 3 of the personal computer 1 is used as a means, and the calculation unit 4 of the personal computer 1 is used as a comparing means for comparing the temporal change of the input radioactivity measurement value with the stored function, and the radiation obtained by the comparison. The difference between the function change over time and the function is calculated, the function that minimizes this difference is selected, and the selected function is used as a calculation unit that corrects the difference so that it is corrected. Personal computer 1 as display means for displaying functions
The display unit 5 (for example, CRT) is used.

【0035】[0035]

【発明の効果】本発明の薬物または基質の動態解析方法
によると、ラジオレスピロメトリまたは血液中標識濃度
の時間的変化から、薬物またはそれ以外の基質につい
て、その体内代謝経路における代謝プールの大きさを、
少なくとも相対的に定量できる。
According to the drug or substrate kinetic analysis method of the present invention, the size of the metabolic pool of the drug or other substrate in the metabolic pathway of the drug can be determined from the time course of the radiorespirometry or the labeling concentration in blood. Sa
At least it can be quantified relatively.

【0036】本発明の薬物または基質の動態解析装置
は、ラジオレスピロメトリまたは血液中標識濃度の時間
的追跡により、薬物またはそれ以外の基質について代謝
プールの大きさの少なくとも相対的な定量を可能にす
る。
The drug or substrate kinetic analysis apparatus of the present invention enables at least relative quantification of the size of the metabolic pool for a drug or other substrate by temporally tracking the radiorespirometry or the labeling concentration in blood. To

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明による薬物または基質の動態解
析方法の一実施例で得られた、ラジオレスピロメトリ測
定値と関数を示すグラフである。
FIG. 1 is a graph showing measured values of radiorespirometry and functions obtained by an example of the method for analyzing the kinetics of a drug or substrate according to the present invention.

【図2】図2は、本発明による薬物または基質の動態解
析方法の他の実施例で得られた、ラジオレスピロメトリ
測定値と関数を示すグラフである。
FIG. 2 is a graph showing measured values and functions of radiorespirometry obtained in another example of the method for analyzing the kinetics of a drug or substrate according to the present invention.

【図3】図3は、本発明による薬物または基質の動態解
析方法の第三の実施例で得られた、ラジオレスピロメト
リ測定値と関数を示すグラフである。
FIG. 3 is a graph showing measured values of radiorespirometry and functions obtained in the third example of the method for analyzing the kinetics of a drug or substrate according to the present invention.

【図4】図4は、本発明による薬物または基質の動態解
析装置の一実施例を示す説明図である。
FIG. 4 is an explanatory view showing an embodiment of a drug or substrate kinetic analysis device according to the present invention.

【図5】図5Aおよび5Bは、従来の薬物または基質の
動態解析方法で用いる、ラジオレスピロメトリ測定値と
時間の関係を示す片対数グラフである。
5A and 5B are semilogarithmic graphs showing the relationship between radiorespirometry measurement values and time used in a conventional drug or substrate kinetic analysis method.

【図6】図6は、従来の薬物または基質の動態解析方法
で用いる、血中濃度測定値と時間の関係を示す片対数グ
ラフである。
FIG. 6 is a semi-logarithmic graph showing the relationship between the blood concentration measurement value and time, which is used in a conventional drug or substrate kinetic analysis method.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 放射性標識物質を投与された生物の呼気
または血液中の放射能の時間的変化と、下記式(I)で
表される、所定の定数を有する関数を比較し、 前記放射能の時間的変化に最も適合する前記関数を選択
し、 前記関数の単調増加領域について定数aおよびbを、前
記放射能の時間的変化と前記関数の適合が改善されるよ
うに補正し、 前記関数の単調減少領域について定数cを、前記適合が
改善されるように補正し、 補正された定数a,b,cを有する前記関数で前記放射
能の時間的変化が近似的に表されるものとして、前記定
数bを、前記標識物質の代謝経路の律速段階をなす代謝
プールの大きさの尺度とし、 前記定数cを、前記代謝経路における前記代謝プールか
らの関連代謝物質の放出速度の尺度とすることを特徴と
する、薬物または基質の動態解析方法。 y=a(1−e-bt )e-ct (I) (tは投与後の時間を、yは呼気または血液中の放射能
を、a,b,cは各々正の定数を表す)
1. The radioactivity in the breath or blood of an organism administered with a radiolabeled substance is compared with time, and a function having a predetermined constant represented by the following formula (I) is compared to obtain the radioactivity. Selecting the function that best fits the temporal change of the function, correcting the constants a and b for the monotonically increasing region of the function so as to improve the fit of the function with the time change of the radioactivity, Assuming that the function c with corrected constants a, b, c is approximately represented by the function with corrected constants c for the monotonically decreasing region of , The constant b is a measure of the size of the metabolic pool that forms the rate-determining step of the metabolic pathway of the labeling substance, and the constant c is a measure of the release rate of the related metabolite from the metabolic pool in the metabolic pathway. Characterized by that Kinetic analysis method of the object or substrate. y = a (1-e -bt ) e -ct (I) (t is the time after administration, y is the radioactivity in exhaled breath or blood, and a, b, and c are positive constants, respectively)
【請求項2】 放射性標識物質を投与された生物の呼気
または血液中の放射能の時間的変化と、下記式(II)で
表される、所定の定数を有する関数を比較し、 前記放射能の時間的変化に最も適合する前記関数を選択
し、 前記関数の単調増加領域について定数a,bおよびd
を、前記放射能の時間的変化と前記関数の適合が改善さ
れるように補正し、 前記関数の単調減少領域について定数cおよびeを、前
記適合が改善されるように補正し、 補正された定数a,b,c,dおよびeを有する前記関
数で前記放射能の時間的変化が近似的に表されるものと
して、前記定数bを、前記標識物質の代謝経路の律速段
階をなす代謝プールの大きさの尺度とし、 前記定数cを、前記代謝経路における前記代謝プールか
らの関連代謝物質の放出速度の尺度とし、 前記定数eを、前記代謝プールが充満するまでの時間と
することを特徴とする、薬物または基質の動態解析方
法。 t≦d+e: y=a(1−e-b(t-d) ) t>d+e: y=a(1−e-b(t-d) )e-c(t-d-e) (II) (tは投与後の時間を、yは呼気または血液中の放射能
を、a,b,cは各々正の定数を、d,eは0または正
の定数を表す)
2. The radioactivity in the breath or blood of an organism administered with a radiolabeled substance is compared with time, and a function having a predetermined constant represented by the following formula (II) is compared to obtain the radioactivity. The function that best fits the time variation of is selected, and the constants a, b and d for the monotonically increasing region of the function are selected.
Were corrected to improve the fit of the function with the change of the radioactivity over time, the constants c and e for the monotonically decreasing region of the function were corrected to improve the fit, and Assuming that the function having the constants a, b, c, d and e approximately represents the temporal change of the radioactivity, the constant b is a metabolic pool that forms a rate-determining step of the metabolic pathway of the labeling substance. The constant c is a measure of the rate of release of related metabolites from the metabolic pool in the metabolic pathway, and the constant e is the time until the metabolic pool is full. The method for analyzing the kinetics of a drug or substrate. t≤d + e: y = a (1-e- b (td) ) t> d + e: y = a (1-e- b (td) ) e- c (tde) (II) (t is the time after administration) , Y represents radioactivity in exhaled air or blood, a, b, and c each represent a positive constant, and d and e represent 0 or a positive constant.)
【請求項3】 放射性標識物質を投与された生物の呼気
または血液中の放射能の時間的に変化する測定値を入力
する入力手段と、 所定の複数の関数を記憶する記憶手段と、 前記入力された放射能測定値の時間的変化と前記関数を
比較する比較手段と、 前記比較による前記時間的変化と前記関数との差異を演
算し、この差異が最小となる前記関数を選択し、選択さ
れた前記関数を前記差異が減少するように補正する演算
手段と、 前記補正された関数を表示する表示手段から成ることを
特徴とする、薬物および基質の動態解析装置。
3. Input means for inputting a time-varying measured value of radioactivity in the breath or blood of an organism to which a radiolabeled substance has been administered; storage means for storing a plurality of predetermined functions; Comparing means for comparing the time change of the measured radioactivity with the function, and calculating the difference between the time change and the function by the comparison, selecting the function that minimizes this difference, select A drug and substrate kinetic analysis device comprising: a computing unit that corrects the corrected function so as to reduce the difference; and a display unit that displays the corrected function.
【請求項4】 前記関数が時間に関する指数関数を含
み、前記関数の前記選択および前記補正が、前記指数関
数に含まれる少なくとも二つの定数に関して行われる、
請求項3の薬物および基質の動態解析装置。
4. The function comprises an exponential function with respect to time, the selection of the function and the correction being performed with respect to at least two constants included in the exponential function.
The drug and substrate kinetic analysis device according to claim 3.
【請求項5】 前記関数が下記式(II)で表される、請
求項4の薬物および基質の動態解析装置。 t≦d+e: y=a(1−e-b(t-d) ) t>d+e: y=a(1−e-b(t-d) )e-c(t-d-e) (II) (tは投与後の時間を、yは呼気または血液中の放射能
を、a,b,cは各々正の定数を、d,eは0または正
の定数を表す)
5. The drug and substrate kinetic analysis device according to claim 4, wherein the function is represented by the following formula (II). t≤d + e: y = a (1-e- b (td) ) t> d + e: y = a (1-e- b (td) ) e- c (tde) (II) (t is the time after administration) , Y represents radioactivity in exhaled air or blood, a, b, and c each represent a positive constant, and d and e represent 0 or a positive constant.)
JP3183804A 1991-06-28 1991-06-28 Method and device for analyzing kinetics of drug or substrate Expired - Lifetime JPH07117544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3183804A JPH07117544B2 (en) 1991-06-28 1991-06-28 Method and device for analyzing kinetics of drug or substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3183804A JPH07117544B2 (en) 1991-06-28 1991-06-28 Method and device for analyzing kinetics of drug or substrate

Publications (2)

Publication Number Publication Date
JPH0510955A true JPH0510955A (en) 1993-01-19
JPH07117544B2 JPH07117544B2 (en) 1995-12-18

Family

ID=16142189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3183804A Expired - Lifetime JPH07117544B2 (en) 1991-06-28 1991-06-28 Method and device for analyzing kinetics of drug or substrate

Country Status (1)

Country Link
JP (1) JPH07117544B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001075439A3 (en) * 2000-04-04 2002-07-04 Oridion Medical 1987 Ltd Breath test apparatus and methods
US6656127B1 (en) 1999-06-08 2003-12-02 Oridion Breathid Ltd. Breath test apparatus and methods
US10060654B2 (en) 2014-10-16 2018-08-28 Sanden Holdings Corporation Heat pump type heating apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342889A (en) * 1976-09-30 1978-04-18 Nippon Bunko Kogyo Kk Measuring method of methabolism function of organ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5342889A (en) * 1976-09-30 1978-04-18 Nippon Bunko Kogyo Kk Measuring method of methabolism function of organ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6656127B1 (en) 1999-06-08 2003-12-02 Oridion Breathid Ltd. Breath test apparatus and methods
US7488229B2 (en) 1999-06-08 2009-02-10 Oridion Medical (1987) Ltd. Spectrally stable infra red discharge lamps
WO2001075439A3 (en) * 2000-04-04 2002-07-04 Oridion Medical 1987 Ltd Breath test apparatus and methods
US10060654B2 (en) 2014-10-16 2018-08-28 Sanden Holdings Corporation Heat pump type heating apparatus

Also Published As

Publication number Publication date
JPH07117544B2 (en) 1995-12-18

Similar Documents

Publication Publication Date Title
Bleiholder et al. A novel projection approximation algorithm for the fast and accurate computation of molecular collision cross sections (II). Model parameterization and definition of empirical shape factors for proteins
Behrends et al. Γ (b→ ulν)/Γ (b→ clν) from the end point of the lepton momentum spectrum in semileptonic B decay
Yoshida et al. Coronary flow and flow reserve by PET simplified for clinical applications using rubidium-82 or nitrogen-13-ammonia
Alpert et al. Estimation of the local statistical noise in emission computed tomography
Barker et al. Critical power in adolescents: physiological bases and assessment using all-out exercise
McNally et al. Reconstruction of Exposure to m‐Xylene from Human Biomonitoring Data Using PBPK Modelling, Bayesian Inference, and Markov Chain Monte Carlo Simulation
Carlo et al. Algorithms, modelling and kinetics
US20190038252A1 (en) Isotope Specific Calibration of a Dose Calibrator for Quantitative Functional Imaging
Del Frari et al. Propranolol pharmacokinetics in infants treated for Infantile Hemangiomas requiring systemic therapy: Modeling and dosing regimen recommendations
JPH0510955A (en) Dynamic state analysis method and device for medicines and substrate
Shaw et al. Detection of alcoholism relapse: comparative diagnostic value of MCV, GGTP, and AANB
Petkov et al. Lifetime analysis using the Doppler-shift attenuation method with a gate on feeding transition
McKelvie et al. Measurement of cardiac output by CO2 rebreathing in unsteady state exercise
JPWO2006043674A1 (en) Apparatus and method for quantifying image by PET imaging
van Bree et al. Application of sparse sampling approaches in rodent toxicokinetics: a prospective view
Simon Combining physiologically based pharmacokinetic modeling with Monte Carlo simulation to derive an acute inhalation guidance value for trichloroethylene
Gonzalez et al. For flux sake: isotopic tracer methods of monitoring human carbohydrate metabolism during exercise
Kateman et al. Weighting in the interpretation of data for potentiometric acid—base titrations by non-linear regression
Sahasrabudhe et al. Population pharmacokinetic analysis of N‐acetylcysteine in pediatric patients with inherited metabolic disorders undergoing hematopoietic stem cell transplant
Diniz Behn et al. Advances in stable isotope tracer methodology part 1: hepatic metabolism via isotopomer analysis and postprandial lipolysis modeling
Thomaseth et al. Model-based assessment of insulin sensitivity of glucose disposal and endogenous glucose production from double-tracer oral glucose tolerance test
Alves et al. Dual time-point imaging for post-dose binding potential estimation applied to a [11C] raclopride PET dose occupancy study
JPH08129002A (en) Chromatrograph mass spectrometer using sim method
EP2696757B1 (en) Method for determining the metabolic capacity of at least one enzyme
Sandhu et al. The differing physiology of nitrogen and tracer gas multiple-breath washout techniques