JPH05109040A - Vertical magnetic recording medium - Google Patents

Vertical magnetic recording medium

Info

Publication number
JPH05109040A
JPH05109040A JP26735591A JP26735591A JPH05109040A JP H05109040 A JPH05109040 A JP H05109040A JP 26735591 A JP26735591 A JP 26735591A JP 26735591 A JP26735591 A JP 26735591A JP H05109040 A JPH05109040 A JP H05109040A
Authority
JP
Japan
Prior art keywords
film
magnetic recording
recording medium
coercive force
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26735591A
Other languages
Japanese (ja)
Inventor
Hiroyuki Omori
広之 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP26735591A priority Critical patent/JPH05109040A/en
Publication of JPH05109040A publication Critical patent/JPH05109040A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the vertical magnetic recording medium whose noise is small by a method wherein a substratum film which is laminated on a nonmagnetic support body is formed so as to have a prescribed composition. CONSTITUTION:The vertical magnetic recording medium is constituted by sequentially laminating a substratum film and a vertical magnetization film on a nonmagnetic support body; the substratum film is set as in Formula I. In Formula I, M represents at least one kind selected from Co, Fe, Ni and Mn, and L represents at least one kind out of elements in Formula II. In addition, N represents nitrogen, O represents oxygen, (x), (y), (z) and (w) represent respective ratios in terms of atomic % of the individual elements and the ratios are set to values within ranges indicated in Formula III. Thereby, the substratum thin film can be obtained in a fine crystal state, and a coercive force can be controlled by means of oxygen to be added. As a result, it is possible to obtain the vertical magnetic recording medium which is provided with a proper coercive force and whose noise is small.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非磁性支持体上に下地
膜及び垂直磁化膜を順次積層した垂直磁気記録媒体に関
し、更に詳しくは磁気記録媒体の下地膜に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a perpendicular magnetic recording medium in which a base film and a perpendicular magnetization film are sequentially laminated on a non-magnetic support, and more particularly to a base film for a magnetic recording medium.

【0002】[0002]

【従来の技術】例えば、磁気記録再生装置においては、
記録密度等を向上させるため磁気記録媒体の改良が進ん
でいるが、より高密度化するためには磁気記録媒体を膜
面に対して垂直な方向に磁化させる垂直磁気記録方式が
有効であることが知られている。垂直磁気記録用の媒体
としてはたとえばCoCr等の薄膜媒体が検討されてい
る。しかし、垂直磁気記録媒体を用いて従来のリング型
の磁気ヘッドを用いて記録再生した場合、再生信号がダ
イパルス信号になり信号処理上不都合である。この問題
を解決するために垂直磁気記録媒体の下地層所謂裏打ち
層にNiFe等のの軟磁性層を配置することが検討され
ている。また、垂直磁気記録用の磁気ヘッドとして単磁
極ヘッドを用いる場合でも記録効率、再生効率を改善す
るために同様の下地膜を必要とする。しかし、NiFe
等の軟磁性膜を下地膜に用いた場合軟磁性材料特有の磁
区による雑音が発生し記録再生を行う上で問題になり、
下地膜の磁気特性としてはある程度の保磁力を持った半
硬質磁性材料が良いことが報告されている。しかしなが
ら、結晶粒径の大きな膜では結晶粒界で雑音が発生し好
ましくない。しかし、垂直磁気記録媒体用の下地膜とし
て最適な材料は現在のところなく、NiFe膜やCoP
鍍金膜等により検討されている。
2. Description of the Related Art For example, in a magnetic recording / reproducing apparatus,
Magnetic recording media are being improved in order to improve recording density, etc., but in order to achieve higher densities, it is effective to use a perpendicular magnetic recording method in which the magnetic recording medium is magnetized in a direction perpendicular to the film surface. It has been known. As a medium for perpendicular magnetic recording, a thin film medium such as CoCr is under study. However, when recording / reproducing is performed by using a conventional ring type magnetic head using a perpendicular magnetic recording medium, the reproduced signal becomes a dipulse signal, which is inconvenient for signal processing. In order to solve this problem, it has been studied to arrange a soft magnetic layer such as NiFe in the underlayer of the perpendicular magnetic recording medium, that is, the so-called backing layer. Further, even when a single magnetic pole head is used as a magnetic head for perpendicular magnetic recording, a similar underlayer film is required to improve recording efficiency and reproducing efficiency. However, NiFe
When a soft magnetic film such as is used as the underlayer, noise is generated due to magnetic domains peculiar to the soft magnetic material, which causes a problem in recording and reproduction.
It has been reported that a semi-hard magnetic material having a certain coercive force is preferable as the magnetic property of the underlayer. However, a film having a large crystal grain size is not preferable because noise is generated at the crystal grain boundary. However, at present, there is no optimum material for a base film for a perpendicular magnetic recording medium, and a NiFe film or a CoP film is used.
It is being studied by using a plating film.

【0003】[0003]

【発明が解決しようとする課題】ところで、垂直磁気記
録媒体においては、前記のように適当な保磁力をもち雑
音を発生しない下地膜が求められている。結晶粒界によ
るノイズを少なくするためには非晶質が好ましいが、適
当な保磁力を待たせることがむずかしい。ところが、近
年非常に結晶粒径が小さい微結晶材料が軟磁性材料とし
て注目されているが、微結晶材料は結晶粒径が結晶質の
パーマロイと比べるとはるかに小さく、垂直磁気記録媒
体の下地膜として使用した場合雑音の発生が少ないと考
えられる。さらに、結晶性を制御することによって保磁
力をが制御可能であると考えられる。そこで、本発明
は、かかる従来の事情に鑑みて提案されたものであっ
て、下地膜として適当な保磁力を持ち、かつ雑音の発生
が少ない垂直磁気記録媒体を提供することを目的とす
る。
By the way, in the perpendicular magnetic recording medium, there is a demand for an underlayer film having an appropriate coercive force and generating no noise as described above. Amorphous is preferable in order to reduce noise due to crystal grain boundaries, but it is difficult to wait an appropriate coercive force. However, in recent years, a microcrystalline material having a very small crystal grain size has been attracting attention as a soft magnetic material. However, the crystallite size of the microcrystalline material is much smaller than that of crystalline permalloy, and the underlayer film of the perpendicular magnetic recording medium is When used as, it is considered that the generation of noise is small. Furthermore, it is considered that the coercive force can be controlled by controlling the crystallinity. Therefore, the present invention has been proposed in view of such conventional circumstances, and an object of the present invention is to provide a perpendicular magnetic recording medium having an appropriate coercive force as an underlayer and less noise.

【0004】[0004]

【課題を解決するための手段】本発明者は、前述の目的
を達成せんものと鋭意研究を重ねた結果、Co、Fe、
Ni、Mnの磁性元素の少なくとも1種と特定元素と窒
素からなる微結晶磁性膜に酸素を添加することによって
微結晶状態を保持したまま保磁力を制御することが可能
であることを見いだした。
The present inventor has conducted intensive studies to achieve the above-mentioned object, and as a result, Co, Fe,
It was found that it is possible to control the coercive force while maintaining the microcrystalline state by adding oxygen to the microcrystalline magnetic film composed of at least one of the magnetic elements of Ni and Mn, the specific element and nitrogen.

【0005】本発明はかかる知見にもとずいて完成され
たものであって、非磁性支持体上に下地膜及び垂直磁化
膜を順次積層した垂直磁気記録媒体において、この下地
膜が、MxLyNzOw(但し、式中MはCo、Fe、
Ni、Mnより選ばれた少なくとも1種を表し、LはN
b、Zr、Ta、Hf、Y、Mo、W、Cr、Ti、
V、La、Sm、Dy、Er、Ho、Pr、Ce、E
u、Tb、Ru、Pt、Ir、Rh、Cu、Zn、S
i、Al、Sn、Ga、Ge、Pd、Ag、In、B、
Cの少なくとも1種を表し、Nは窒素、Oは酸素を表
し、x、y、z、wはそれぞれ各元素の割合を原子%で
示す。)なる一般式で表され、その組成範囲が 40<x<97 1<y<40 1<z<20 0.3<w<20 であることを特徴とする。
The present invention has been completed on the basis of such knowledge, and in a perpendicular magnetic recording medium in which a base film and a perpendicular magnetization film are sequentially laminated on a non-magnetic support, the base film is MxLyNzOw ( However, in the formula, M is Co, Fe,
Represents at least one selected from Ni and Mn, and L is N
b, Zr, Ta, Hf, Y, Mo, W, Cr, Ti,
V, La, Sm, Dy, Er, Ho, Pr, Ce, E
u, Tb, Ru, Pt, Ir, Rh, Cu, Zn, S
i, Al, Sn, Ga, Ge, Pd, Ag, In, B,
Represents at least one of C, N represents nitrogen, O represents oxygen, and x, y, z, and w each represent the ratio of each element in atomic%. ), And the composition range thereof is 40 <x <97 1 <y <40 1 <z <20 0.3 <w <20.

【0006】本発明の垂直磁気記録媒体の下地膜におい
ては、強磁性合金であるCo、Fe、Ni、Mnの少な
くとも1種と、Nb、Zr、Ta、Hf、Y、Mo、
W、Cr、Ti、V、La、Sm、Dy、Er、Ho、
Pr、Ce、Eu、Tb、Ru、Pt、Ir、Rh、C
u、Zn、Si、Al、Sn、Ga、Ge、Pd、A
g、In、B、Cの少なくとも1種と窒素によって構成
される薄膜において微結晶状態が得られる。前記の磁性
元素Mの組成xは40<x<97原子%とされ、元素L
の組成比yは1<y<40、窒素の組成zは1<z<2
0とされるとき微結晶状磁性膜が生成される。元素Lま
たは窒素Nが1%以下では微結晶状態にならず、元素L
が40%以上または窒素Nが20%以上では磁化の減少
が著しく垂直磁気記録媒体の下地膜としての効果が期待
できない。
In the underlayer film of the perpendicular magnetic recording medium of the present invention, at least one of ferromagnetic alloys Co, Fe, Ni and Mn, Nb, Zr, Ta, Hf, Y and Mo,
W, Cr, Ti, V, La, Sm, Dy, Er, Ho,
Pr, Ce, Eu, Tb, Ru, Pt, Ir, Rh, C
u, Zn, Si, Al, Sn, Ga, Ge, Pd, A
A microcrystalline state is obtained in a thin film composed of at least one of g, In, B, and C and nitrogen. The composition x of the magnetic element M is 40 <x <97 atomic%, and the element L
The composition ratio y of 1 is 1 <y <40, and the composition z of nitrogen is 1 <z <2.
When it is set to 0, a microcrystalline magnetic film is produced. When the element L or the nitrogen N is 1% or less, the state of microcrystal does not occur, and the element L
Is 40% or more or nitrogen N is 20% or more, the magnetization is remarkably reduced, and the effect as a base film of the perpendicular magnetic recording medium cannot be expected.

【0007】この微結晶状磁性膜に酸素を添加すると、
保磁力が増加する。窒素の添加量は、膜中の酸素原子の
組成比wが0.3<w<20原子%となる範囲とされ
る。酸素の添加量が少なすぎると適当な保磁力が得られ
ず、逆に多すぎても磁化の低下が大きくなる。本発明の
垂直磁気記録媒体の下地膜は、スパッタリング等の所謂
気相メッキ技術によって製造される。スパッタリング
は、所望の組成比となるように調整された合金ターゲッ
トを用いて行っても良いし、各原子のターゲットを個別
に用意し、その面積や印加出力等を調整して組成をコン
トロールするようにして行っても良い。特に前者の方法
を採用した場合、膜組成はターゲット組成によってほぼ
一意に決まるので、例えば大量生産するうえで好適であ
る。
When oxygen is added to this microcrystalline magnetic film,
The coercive force increases. The amount of nitrogen added is in the range that the composition ratio w of oxygen atoms in the film is 0.3 <w <20 atom%. If the amount of oxygen added is too small, an appropriate coercive force cannot be obtained, and conversely, if it is too large, the decrease in magnetization becomes large. The underlayer film of the perpendicular magnetic recording medium of the present invention is manufactured by a so-called vapor phase plating technique such as sputtering. Sputtering may be performed using an alloy target adjusted to have a desired composition ratio, or a target for each atom may be individually prepared, and the area and applied output may be adjusted to control the composition. You may go. In particular, when the former method is adopted, the film composition is almost uniquely determined by the target composition, which is suitable for mass production, for example.

【0008】窒素を添加する方法としては、雰囲気中に
窒素またはアンモニアガスを導入してスパッタを行う方
法等が考えられる。酸素を添加する方法としては、酸化
物のターゲットを用いるか、雰囲気中に酸素または二酸
化炭素等の酸素含有ガスを導入し成膜する方法等が考え
られる。
As a method of adding nitrogen, a method of introducing nitrogen or ammonia gas into the atmosphere and performing sputtering can be considered. As a method of adding oxygen, a method of using an oxide target or introducing oxygen-containing gas such as oxygen or carbon dioxide into the atmosphere to form a film can be considered.

【0009】[0009]

【作用】強磁性合金であるCo、Fe、Ni、Mnの少
なくとも1種と、Nb、Zr、Ta、Hf、Y、Mo、
W、Cr、Ti、V、La、Sm、Dy、Er、Ho、
Pr、Ce、Eu、Tb、Ru、Pt、Ir、Rh、C
u、Zn、Si、Al、Sn、Ga、Ge、Pd、A
g、In、B、Cの少なくとも1種と窒素によって構成
される薄膜において微結晶状態が得られる。前記の微結
晶状の膜に酸素を添加することによって保磁力を制御す
る事が出来、下地膜として適当な保磁力を持ち、雑音の
少ない垂直磁気記録媒体を得ることができる。
[Function] At least one of ferromagnetic alloys Co, Fe, Ni and Mn, and Nb, Zr, Ta, Hf, Y and Mo,
W, Cr, Ti, V, La, Sm, Dy, Er, Ho,
Pr, Ce, Eu, Tb, Ru, Pt, Ir, Rh, C
u, Zn, Si, Al, Sn, Ga, Ge, Pd, A
A microcrystalline state is obtained in a thin film composed of at least one of g, In, B, and C and nitrogen. The coercive force can be controlled by adding oxygen to the microcrystalline film, and a perpendicular magnetic recording medium having an appropriate coercive force as an underlayer and less noise can be obtained.

【0010】[0010]

【実施例】成膜は合金ターゲット(直径100mm)を
用いたRFマグネトロンスパッタにより行った、窒素の
添加はスパッタ中にAr、N2 ガス、O2 ガスの混合ガ
スを導入しながら成膜して行った。成膜時の条件は下記
の通りに行った。 −スパッタ条件− 到達真空度 2×10-4Pa Arガス圧 0.1Pa 投入電力 300W 膜厚は、厚さ1μmである。
[Examples] Film formation was carried out by RF magnetron sputtering using an alloy target (diameter 100 mm). Nitrogen addition was carried out while introducing a mixed gas of Ar, N 2 gas and O 2 gas into the sputtering. went. The conditions during film formation were as follows. —Sputtering Conditions— Ultimate Vacuum 2 × 10 −4 Pa Ar Gas Pressure 0.1 Pa Input Power 300 W Film thickness is 1 μm.

【0011】なお、保磁力HcはB−Hループトレーサ
ーと試料振動型磁力計により測定した。飽和磁束密度は
試料振動型磁力計により測定した。記録再生特性の実験
は次のとうり行った。下地膜の厚さは0.5μmで、垂
直磁化膜としては膜厚100nmのCoPtBOスパッ
タ膜を使用した。垂直磁化膜の磁気特性は垂直保磁力1
50kA/m。記録再生用ヘッドは鉄基軟磁性薄膜を用
いた単磁極ヘッドで、磁極材料の飽和磁束密度は2テス
ラである。記録再生の際の線速度は1m/secで記録
周波数は1MHzである。
The coercive force Hc was measured by a BH loop tracer and a sample vibrating magnetometer. The saturation magnetic flux density was measured by a sample vibrating magnetometer. The experiment of recording / reproducing characteristics was conducted as follows. The underlying film had a thickness of 0.5 μm, and a 100 nm thick CoPtBO sputtered film was used as the perpendicular magnetization film. The magnetic properties of the perpendicular magnetization film are perpendicular coercive force 1
50 kA / m. The recording / reproducing head is a single magnetic pole head using an iron-based soft magnetic thin film, and the saturation magnetic flux density of the magnetic pole material is 2 tesla. The linear velocity at the time of recording / reproducing is 1 m / sec, and the recording frequency is 1 MHz.

【0012】スパッタリングターゲットとしてCo85
15を用いて窒素分圧を0.01Paに固定し、酸素分
圧をかえて成膜した場合の酸素分圧と保磁力、磁気異方
性エネルギーの関係を図1に示す。酸素量が少ないとき
は異方性エネルギー、保磁力とも小さく典型的軟磁性を
示すが、酸素を増加させるにつれて異方性エネルギー、
保磁力とも増加し、酸素量によって保磁力が任意に制御
できる。また、異方性は面内に一様な垂直異方性で垂直
磁気記録媒体の下地膜としては有利である。
Co 85 Z as a sputtering target
FIG. 1 shows the relationship between the oxygen partial pressure, the coercive force, and the magnetic anisotropy energy when a film was formed by fixing the nitrogen partial pressure to 0.01 Pa using r 15 and changing the oxygen partial pressure. When the amount of oxygen is small, both anisotropic energy and coercive force are small and typical soft magnetism is exhibited, but as oxygen is increased, anisotropic energy,
The coercive force also increases, and the coercive force can be arbitrarily controlled by the amount of oxygen. Further, the anisotropy is a uniform vertical anisotropy in the plane, which is advantageous as a base film of a perpendicular magnetic recording medium.

【0013】次に、Ni80Fe20のターゲットを使いA
rガスのみの雰囲気で成膜した膜と、いくつかの合金タ
ーゲットを用いて酸素量をかえて成膜を行った。これら
の膜の組成と保磁力を表1に示す。次に、NiFe合金
薄膜を下地膜にした場合と本発明のCoZrNOからな
る薄膜を下地膜にした場合の垂直磁気記録での記録再生
特性の際の信号対雑音比(C/N)の比較を表2に示
す。
Next, using a Ni 80 Fe 20 target,
Films were formed by changing the amount of oxygen using a film formed in an atmosphere of only r gas and several alloy targets. Table 1 shows the composition and coercive force of these films. Next, a comparison of the signal-to-noise ratio (C / N) at the time of recording / reproducing characteristics in perpendicular magnetic recording when the NiFe alloy thin film is used as the underlayer and when the thin film made of CoZrNO of the present invention is used as the underlayer. It shows in Table 2.

【0014】本発明の下地膜を使用した場合、NiFe
合金を使用した場合に比べ優れた信号対雑音比を示し、
本発明の磁性材料が垂直磁気記録媒体用の下地膜材料と
して有効であることがわかる。
When the underlayer film of the present invention is used, NiFe
It shows a better signal-to-noise ratio than when using alloys,
It can be seen that the magnetic material of the present invention is effective as a base film material for a perpendicular magnetic recording medium.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【発明の効果】以上の説明からも明かなように、本発明
では、強磁性合金であるCo、Fe、Ni、Mnの少な
くとも1種と、Nb、Zr、Ta、Hf、Y、Mo、
W、Cr、Ti、V、La、Sm、Dy、Er、Ho、
Pr、Ce、Eu、Tb、Ru、Pt、Ir、Rh、C
u、Zn、Si、Al、Sn、Ga、Ge、Pd、A
g、In、B、Cの少なくとも1種と窒素によって構成
される薄膜において微結晶状態で得られ、さらに酸素を
添加することによって保磁力を制御する事が出来、垂直
磁気記録媒体の下地膜として使用する場合に適当な保磁
力を持つ雑音の少ない垂直磁気記録媒体を提供すること
ができる。
As is apparent from the above description, in the present invention, at least one of ferromagnetic alloys Co, Fe, Ni and Mn, Nb, Zr, Ta, Hf, Y and Mo,
W, Cr, Ti, V, La, Sm, Dy, Er, Ho,
Pr, Ce, Eu, Tb, Ru, Pt, Ir, Rh, C
u, Zn, Si, Al, Sn, Ga, Ge, Pd, A
It is obtained in a microcrystalline state in a thin film composed of at least one of g, In, B, and C and nitrogen, and the coercive force can be controlled by adding oxygen. It is possible to provide a perpendicular magnetic recording medium having a suitable coercive force and low noise when used.

【図面の簡単な説明】[Brief description of drawings]

【図1】Co85Zr15のターゲットをアルゴンと窒素と
酸素中で成膜したときの保磁力の酸素分圧依存性
FIG. 1 Oxygen partial pressure dependence of coercive force when a Co 85 Zr 15 target is deposited in argon, nitrogen and oxygen.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年11月21日[Submission date] November 21, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図1[Name of item to be corrected] Figure 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】非磁性支持体上に下地膜及び垂直磁化膜を
順次積層した垂直磁気記録媒体において、 該下地膜がMxLyNzOw(但し、式中MはCo、F
e、Ni、Mnより選ばれた少なくとも1種を表し、L
はNb、Zr、Ta、Hf、Y、Mo、W、Cr、T
i、V、La、Sm、Dy、Er、Ho、Pr、Ce、
Eu、Tb、Ru、Pt、Ir、Rh、Cu、Zn、S
i、Al、Sn、Ga、Ge、Pd、Ag、In、B、
Cの少なくとも1種を表し、Nは窒素、Oは酸素を表
し、x、y、z、wはそれぞれ各元素の割合を原子%で
示す。)なる一般式で表され、その組成範囲が 40<x<97 1<y<40 1<z<20 0.3<w<20 であることを特徴とする垂直磁気記録媒体。
1. A perpendicular magnetic recording medium in which a base film and a perpendicular magnetization film are sequentially laminated on a non-magnetic support, wherein the base film is MxLyNzOw (where M is Co or F).
represents at least one selected from e, Ni, and Mn, and L
Is Nb, Zr, Ta, Hf, Y, Mo, W, Cr, T
i, V, La, Sm, Dy, Er, Ho, Pr, Ce,
Eu, Tb, Ru, Pt, Ir, Rh, Cu, Zn, S
i, Al, Sn, Ga, Ge, Pd, Ag, In, B,
Represents at least one of C, N represents nitrogen, O represents oxygen, and x, y, z, and w each represent the proportion of each element in atomic%. ), The composition range is 40 <x <97 1 <y <40 1 <z <20 0.3 <w <20.
JP26735591A 1991-10-16 1991-10-16 Vertical magnetic recording medium Pending JPH05109040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26735591A JPH05109040A (en) 1991-10-16 1991-10-16 Vertical magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26735591A JPH05109040A (en) 1991-10-16 1991-10-16 Vertical magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH05109040A true JPH05109040A (en) 1993-04-30

Family

ID=17443671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26735591A Pending JPH05109040A (en) 1991-10-16 1991-10-16 Vertical magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH05109040A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282718A (en) * 2010-07-27 2010-12-16 Showa Denko Kk Magnetic recording medium
JP2017204542A (en) * 2016-05-10 2017-11-16 国立研究開発法人物質・材料研究機構 Vertical magnetization film, vertical magnetization film structure, magnetic resistance element, and vertical magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010282718A (en) * 2010-07-27 2010-12-16 Showa Denko Kk Magnetic recording medium
JP2017204542A (en) * 2016-05-10 2017-11-16 国立研究開発法人物質・材料研究機構 Vertical magnetization film, vertical magnetization film structure, magnetic resistance element, and vertical magnetic recording medium

Similar Documents

Publication Publication Date Title
JP2002025030A (en) Perpendicular magnetic recording medium, method for producing the same and magnetic recorder
JPH0533461B2 (en)
JP2002309353A (en) Soft-magnetic membrane and magnetic head for recording using the membrane
JP3612087B2 (en) Magnetic recording medium
US20020064689A1 (en) Magnetic recording medium and magnetic recording apparatus
JPS60101710A (en) Vertical magnetic recording medium
JP2692088B2 (en) Soft magnetic laminated film
GB2175013A (en) Perpendicular magnetic recording medium
JPH05109040A (en) Vertical magnetic recording medium
JPS60101709A (en) Vertical magnetic recording medium
JP2002133635A (en) Information recording medium and information recording device
JP3729763B2 (en) Magnetic recording medium and magnetic recording apparatus
JPS60132305A (en) Iron-nitrogen laminated magnetic film and magnetic head using the same
EP0438687A1 (en) Iron/iron nitride multilayer films
JPH05315135A (en) Co/ni artificial lattice film, magnetoresistance element, magnetic head and magnetic recording medium, and manufacture of co/ni artificial lattice film
JPH07192244A (en) Perpendicular magnetic recording medium and its production
JPS59228705A (en) Vertical magnetic recording medium and manufacture of the same
JPH11186033A (en) Ferromagnetic metallic compound film, its manufacture, and magnetic record medium
JPH0337724B2 (en)
KR920004220B1 (en) Magnetic media
JP2979557B2 (en) Soft magnetic film
JP3653039B2 (en) Magnetic recording / reproducing device
JP2002109714A (en) Information recording medium and information recording device
JPH05251236A (en) Soft magnetic film
JPS61110328A (en) Vertical magnetic recording medium and its production