JPH0510869A - Device and method for measuring amount to be adsorbed/ desorbed - Google Patents

Device and method for measuring amount to be adsorbed/ desorbed

Info

Publication number
JPH0510869A
JPH0510869A JP16458091A JP16458091A JPH0510869A JP H0510869 A JPH0510869 A JP H0510869A JP 16458091 A JP16458091 A JP 16458091A JP 16458091 A JP16458091 A JP 16458091A JP H0510869 A JPH0510869 A JP H0510869A
Authority
JP
Japan
Prior art keywords
gas
pressure
sample container
sample
gas reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16458091A
Other languages
Japanese (ja)
Inventor
Mutsuhiro Ito
睦弘 伊藤
Nobuki Watanabe
伸樹 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji-Davison Chemical Ltd
Original Assignee
Fuji-Davison Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji-Davison Chemical Ltd filed Critical Fuji-Davison Chemical Ltd
Priority to JP16458091A priority Critical patent/JPH0510869A/en
Publication of JPH0510869A publication Critical patent/JPH0510869A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To obtain an accurate adsorption/desorption isotherm by determining a flow value of a gas by obtaining an amount of adsorption of a solid sample based on a calculated flow rate to a sample container and a pressure within the sample container and a volume of the sample container which are measured. CONSTITUTION:A desired sample is placed into a sample container 10, a gas is introduced from a gas cylinder 13 to a gas reservoir 12, and the gas is allowed to flow out of the gas reservoir 12 into the container 10 through a control valve 11 in actuation. A pressure of the gas reservoir 12 and that of the container 10 are measured by manometers 16 and 14 at a lapse of time starting from its initial flow. The amount of gas which is discharged from the gas reservoir 12 to the container 10 is calculated accurately and constantly at an arbitrary time based on a pressure value within the gas reservoir 12 and the amount of adsorption of the sample is calculated based on pressure, etc., within the container 10 according to the amount of discharge and the manometer 14. An amount of desorption of the sample is measured by switching the measurement system oppositely, thus obtaining an absorption/desorption isotherm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体試料に吸着または
脱着される気体の量を正確に測定するために用いられる
吸脱着量測定用装置およびこの装置を用いた吸脱着量測
定方法に関する。詳しくは、固体試料の表面積,細孔径
分布,細孔容積等の算出に必要とされる固体試料の気体
吸脱着量の測定に際して使用される吸脱着量測定用装置
およびこの装置を用いた吸脱着量測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an adsorption / desorption amount measuring device used to accurately measure the amount of gas adsorbed or desorbed on a solid sample, and a method for measuring adsorption / desorption amount using this device. Specifically, the adsorption / desorption amount measuring device used for measuring the gas adsorption / desorption amount of the solid sample required for calculating the surface area, pore size distribution, pore volume, etc. of the solid sample, and adsorption / desorption using this device. Regarding quantity measurement method.

【0002】[0002]

【従来の技術】例えば、種々の固体触媒、吸着剤、イオ
ン交換体及びセラミックなどの粉粒体は、工業材料とし
て広い分野で利用されているが、これらの粉粒体はその
製造原料又は製造条件によって、比表面積、細孔容積及
び細孔径分布などの物性値が異なる。したがって、この
物性値の変化により工業材料として用いた場合の性能が
大幅に異なることが多いので、工業材料としての使用に
当たっては、比表面積細孔容積及び細孔径分布などを正
確に把握しておくことが重要である。
2. Description of the Related Art For example, various solid catalysts, adsorbents, ion exchangers, ceramics, and other powders and granules are widely used as industrial materials. Physical properties such as specific surface area, pore volume, and pore size distribution vary depending on the conditions. Therefore, since the performance when used as an industrial material often greatly changes due to changes in this physical property value, in using as an industrial material, the specific surface area pore volume and pore diameter distribution, etc. should be accurately understood. This is very important.

【0003】従来、これらの物性値の測定方法として
は、例えば、窒素ガスなどの不活性ガスを用いて、被測
定試料の物理吸着により生じた気相吸着質の圧力変化や
容積変化を捉えて試料の吸脱着量を測定する、いわゆる
気相ガス吸着法が一般に採用されている。この測定法は
一定温度における数点の吸着圧力と吸着ガス量の関係、
要するに、吸脱着等温線を求める方法である。
Conventionally, as a method of measuring these physical property values, for example, an inert gas such as nitrogen gas is used to detect a pressure change or a volume change of a gas phase adsorbate caused by physical adsorption of a sample to be measured. The so-called gas phase gas adsorption method, which measures the adsorption / desorption amount of a sample, is generally adopted. This measurement method is the relationship between the adsorption pressure at several points and the amount of adsorbed gas,
In short, it is a method of obtaining adsorption / desorption isotherms.

【0004】この測定法は、従来バッチ式の装置、即
ち、ガス容積と圧力とが測定できる定量部とこれにバル
ブを介して連結される試料容器とから基本的に構成さ
れ、その定量部に吸着ガスを供給するためのバルブと吸
着ガスを排出するためのバルブとが設けられている装置
によって行われていた。
This measuring method is basically composed of a conventional batch type apparatus, that is, a quantitative unit capable of measuring gas volume and pressure and a sample container connected to the quantitative unit through a valve. This is performed by a device provided with a valve for supplying the adsorbed gas and a valve for discharging the adsorbed gas.

【0005】この装置で測定を行なう場合には、定量部
にある量Mのガスを導入し、その後、定量部と試料容器
とを連通し、それら内部の圧力が平衡となったとき(即
ち、試料の吸着平衡が成立したとき)の圧力値を求める
一連のサイクルを繰り返し(各サイクルで上記Mを増加
していく)、求めた幾点かの圧力値や定量部の体積等か
ら吸着量を算出していた。脱着量を測定する場合は逆に
定量部を真空とし、その後、定量部と試料容器とを連通
し、それら内部の圧力が平衡となったときの圧力値を求
める一連のサイクルを繰り返し(各サイクル毎に定量部
に溜った脱着ガスを排出する)、求めた幾点かの圧力値
や定量部の体積等から脱着量を算出していた。
When performing measurement with this apparatus, a quantity M of gas is introduced into the quantification part, and then the quantification part and the sample container are communicated with each other, and when the pressures inside them are in equilibrium (ie, A series of cycles for obtaining the pressure value when the adsorption equilibrium of the sample is established is repeated (the above M is increased in each cycle), and the adsorption amount is calculated from the obtained pressure values and the volume of the fixed quantity part. It was calculated. Conversely, when measuring the desorption amount, vacuum the quantification part, then connect the quantification part and the sample container and repeat a series of cycles to obtain the pressure value when the pressure inside them becomes equilibrium (each cycle The desorption gas accumulated in the fixed quantity part is discharged every time), and the desorption amount is calculated from the obtained pressure values and the volume of the fixed quantity part.

【0006】しかし、各サイクルにおいて圧力が平衡と
なるまでに時間がかかり、一つの試料の測定に8から1
5時間以上と長時間を要し、しかもその間、測定者が吸
着ガスの導入圧力の判断あるいは溜った脱着ガスの排出
とそれに基づく各バルブの開閉を行なう必要があり測定
者の労力は多大なものであった。また、正確な導入圧力
の判断やバルブの開度の調整等に相当の熟練を要する
が、それでも、測定者によるある程度の個人差は避けら
れなかった。
However, it takes time to equilibrate the pressure in each cycle, and it takes 8 to 1 to measure one sample.
It takes a long time of 5 hours or more, and during that time, the measurer needs to judge the introduction pressure of the adsorbed gas or discharge the accumulated desorption gas and open / close each valve based on it, which is a great labor for the measurer. Met. In addition, a considerable skill is required to accurately determine the introduction pressure and adjust the opening of the valve, but still, some degree of individual difference depending on the measurer cannot be avoided.

【0007】特開昭61−102538号公報には、マ
スフローコントローラを使用した吸脱着量測定方法が開
示されている。この方法は、上記バッチ式装置を使用し
た方法とは異なるものであって、気体を,その流量を実
質一定に保持しつつ真空の試料容器内へ小量ずつマスフ
ローコントローラによって流入し続け、その流入中の気
体流量と測定された試料容器内の圧力変化とに基づい
て、試料の気体吸脱着量を算出し、それによって、吸脱
着等温線を求める方法である。この方法では、気体の試
料容器への導入の間は、試料容器内の試料は吸着平衡の
状態を保持し続けているとして、気体の導入開始から導
入終了までに幾点かの圧力を求めるので、圧力を求める
のに時間を要さず、比較的に短時間で吸脱着等温線が得
られる。
Japanese Unexamined Patent Publication No. 61-102538 discloses a method for measuring adsorption / desorption amount using a mass flow controller. This method is different from the method using the above batch type apparatus, in which the gas is continuously flowed in small amounts into the vacuum sample container by the mass flow controller while keeping the flow rate substantially constant, This is a method of calculating the gas adsorption / desorption amount of the sample based on the gas flow rate inside and the measured pressure change in the sample container, and thereby obtaining the adsorption / desorption isotherm. In this method, while the gas in the sample container is being introduced, it is assumed that the sample in the sample container continues to hold the adsorption equilibrium state, and therefore some pressures are obtained from the start of gas introduction to the end of introduction. The adsorption / desorption isotherm can be obtained in a relatively short time without requiring time to obtain the pressure.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記公
報開示の方法では、試料の吸着量は、マスフローコント
ローラによって実質一定値(目標値)とされている気体
流量値を用いて所定の式によって算出される。そのた
め、その算出値の精度維持が最重要となり、気体流量値
が上記目標値からずれないように、マスフローコントロ
ーラをかなり頻繁に調節して流量を校正する必要があっ
た。それでも、実際の気体の流量の一定化は困難であ
り、しばしば上記目標値からずれるために、正確な吸着
量が求められないという問題があった。また、マスフロ
ーコントローラの流量検出部分には熱伝導度検出器が用
いられており、吸脱着量測定用装置の構成が複雑・高価
となるといった問題があった。
However, in the method disclosed in the above publication, the adsorption amount of the sample is calculated by a predetermined equation using the gas flow rate value which is substantially constant value (target value) by the mass flow controller. It Therefore, maintaining the accuracy of the calculated value is of the utmost importance, and it has been necessary to adjust the flow rate by adjusting the mass flow controller quite frequently so that the gas flow rate value does not deviate from the target value. Even so, it is difficult to make the actual flow rate of the gas constant, and since it often deviates from the target value, there is a problem that an accurate adsorption amount cannot be obtained. Further, since the thermal conductivity detector is used in the flow rate detecting portion of the mass flow controller, there is a problem that the structure of the adsorption / desorption amount measuring device becomes complicated and expensive.

【0009】本発明は上記課題を解決し、容易に気体の
正確な流量値が決定でき、もって正確な吸脱着等温線を
得ることを可能とする、簡単な構成の吸脱着量測定用装
置およびこの装置を用いた吸脱着量測定方法を提供する
ことを目的とする。
The present invention solves the above-mentioned problems, and an accurate flow rate of gas can be easily determined, so that an accurate adsorption / desorption isotherm can be obtained. It is an object to provide a method for measuring adsorption / desorption amount using this device.

【0010】[0010]

【課題を解決するための手段及び作用】本発明の吸脱着
量測定用装置は、固体試料による気体の吸着量または脱
着量を測定するために用いられる吸脱着量測定用装置で
あって、前記固体試料を導入可能な体積既知の試料容器
と、気体を蓄えることが可能な体積既知のガスだめと、
前記試料容器または前記ガスだめから気体を排出する気
体排出手段と、前記ガスだめから前記試料容器にまたは
前記試料容器から前記ガスだめに、前記ガスだめ内の圧
力変化が所定の変化率となるようにバルブの開度を調節
し、気体を連続的に送り出す気体送り出し手段と、前記
試料容器内の圧力を測定する圧力計と、前記ガスだめ内
の圧力を測定する圧力計とを有してなる吸脱着量測定用
装置。
A device for measuring adsorption / desorption amount of the present invention is a device for measuring adsorption / desorption amount used for measuring adsorption amount or desorption amount of gas by a solid sample, comprising: A sample container of known volume that can introduce a solid sample, a gas reservoir of known volume that can store gas,
A gas discharge means for discharging gas from the sample container or the gas reservoir, and a pressure change in the gas reservoir at a predetermined change rate from the gas reservoir to the sample container or from the sample container to the gas reservoir. A gas delivery means for continuously delivering gas by adjusting the valve opening degree, a pressure gauge for measuring the pressure in the sample container, and a pressure gauge for measuring the pressure in the gas reservoir. Device for measuring adsorption and desorption amount.

【0011】上記吸脱着量測定用装置を用いて固体試料
の吸着量を測定する本発明の吸着量測定方法は、次のよ
うになされる。試料容器に固体試料を導入すると共に、
該試料容器から気体を気体排出手段によって排出し、そ
の後、所定温度に維持され気体が含まれているガスだめ
から、所定温度に維持されている前記試料容器内に、気
体を連続的に気体送り出し手段によって送り出し、その
送り出し中に、各圧力計によって、前記試料容器内の圧
力と前記ガスだめ内の圧力とを、それぞれ時間の経過と
ともに測定し、その測定された前記ガスだめ内の圧力
と、前記ガスだめの体積とに基づき前記気体の前記試料
容器への流量を算出し、その算出流量と、前記測定され
た試料容器内の圧力と、該試料容器の体積とに基づき、
前記固体試料の吸着量(各時点での固体試料の吸着量)
を求める。
The adsorption amount measuring method of the present invention for measuring the adsorption amount of a solid sample using the adsorption / desorption amount measuring device is as follows. While introducing a solid sample into the sample container,
The gas is discharged from the sample container by a gas discharging means, and thereafter, the gas is continuously sent out from the gas reservoir that is maintained at the predetermined temperature and contains the gas into the sample container that is maintained at the predetermined temperature. Sending out by means, during the sending out, by each pressure gauge, the pressure in the sample container and the pressure in the gas reservoir, respectively measured over time, and the measured pressure in the gas reservoir, Calculate the flow rate of the gas to the sample container based on the volume of the gas reservoir, based on the calculated flow rate, the pressure in the measured sample container, and the volume of the sample container,
Adsorption amount of the solid sample (adsorption amount of the solid sample at each time point)
Ask for.

【0012】また、上記吸脱着量測定用装置を用いて固
体試料の脱着量を測定する本発明の脱着量測定方法は、
次のようになされる。試料容器に固体試料を導入すると
共に、ガスだめから気体を気体排出手段によって排出
し、その後、所定温度に維持されている前記試料容器か
ら、所定温度に維持されている前記ガスだめ内に、気体
を連続的に気体送り出し手段によって送り出し、その送
り出し中に、各圧力計によって、前記試料容器内の圧力
と前記ガスだめ内の圧力とを、それぞれ時間の経過とと
もに測定し、その測定された前記ガスだめ内の圧力と、
前記ガスだめの体積とに基づき前記気体の前記ガスだめ
への流量を算出し、その算出流量と、前記測定された試
料容器内の圧力と、該試料容器の体積とに基づき、前記
固体試料の脱着量(各時点での固体試料の脱着量)を求
める。
The desorption amount measuring method of the present invention for measuring the desorption amount of a solid sample using the above adsorption / desorption amount measuring device is
It is done as follows. While introducing the solid sample into the sample container, the gas is discharged from the gas reservoir by the gas discharging means, and thereafter, from the sample container maintained at the predetermined temperature, the gas is stored in the gas reservoir maintained at the predetermined temperature. Is continuously sent out by the gas sending means, during the sending out, by each pressure gauge, the pressure in the sample container and the pressure in the gas reservoir are respectively measured with the passage of time, the measured gas The pressure inside the dam,
Calculate the flow rate of the gas to the gas reservoir based on the volume of the gas reservoir, based on the calculated flow rate, the pressure in the measured sample container, and the volume of the sample container of the solid sample The desorption amount (the desorption amount of the solid sample at each time point) is calculated.

【0013】このため、流量を直接正確に調節しなくと
も、ガスだめ内の圧力のみを観測してゆくことで、流量
状態が正確に判明する。また試料容器内の吸着されてい
ない気体量状態もその試料容器内の圧力を観測すること
により判明する。従って、流量状態と、試料容器内の吸
着されていない気体量状態との差から吸着量状態は容易
に判明する。即ち、流量が変動しても吸着量の状態を正
確に求めることができる。このことは、脱着量を求める
場合も同様である。即ち、ガスだめから予め気体を除去
しておき、試料容器内の固体試料に吸着されている気体
を、気体送り出し手段によって、連続的にガスだめ側へ
送り出す際に、ガスだめ内の圧力のみを観測してゆくこ
とで、試料容器からガスだめへの流量状態が正確に判明
する。また同様に試料容器内の吸着されていない気体量
状態も試料容器内の圧力を観測することにより判明す
る。従って、流量状態と、試料容器内の吸着されていな
い気体量状態との差から脱着量の状態は容易に判明す
る。また、脱着時の流量コントロールは、以下のように
してもよい。即ち、真空ポンプでガスだめを常時真空引
きを行ない、その時のガスだめ圧力を一定になるように
気体送りだし手段の流量を調整して脱着を行う。前述の
方法では、ガスだめの圧力が上昇する度に再度ガスだめ
の気体を除去する必要があったが、この方法ではその必
要がなく前述の方法よりも操作が簡単である。但し、こ
の方法では、脱着量をガスだめ内圧力から算出できない
ため、脱着量は以下のようにして算出する。即ち、吸着
されたガスがどれだけの時間で空になったかによって、
流量を算出し、それをもとに脱着量を算出する。又は、
あらかじめ試料容器内に試料を入れずにガスを導入し、
脱着工程と同じ操作を行ない、その時の試料容器内の圧
力降下変化と試料容器の死容積から流量を算出し、同時
に測定したガスだめ内圧力と流量との換算表を作成す
る。この換算表をもとに、脱着時の流量を求めて、それ
を元に脱着量を算出してもよい。
Therefore, even if the flow rate is not directly and accurately adjusted, the flow rate state can be accurately determined by observing only the pressure in the gas reservoir. Also, the state of the amount of gas not adsorbed in the sample container can be found by observing the pressure in the sample container. Therefore, the adsorption amount state is easily found from the difference between the flow rate state and the non-adsorbed gas amount state in the sample container. That is, the state of the adsorption amount can be accurately obtained even if the flow rate changes. This also applies to the case of obtaining the desorption amount. That is, the gas is previously removed from the gas reservoir, and when the gas adsorbed to the solid sample in the sample container is continuously delivered to the gas reservoir side by the gas delivery means, only the pressure in the gas reservoir is changed. By observing, the flow rate from the sample container to the gas reservoir can be accurately determined. Similarly, the amount of gas not adsorbed in the sample container is also found by observing the pressure in the sample container. Therefore, the state of the desorption amount can be easily found from the difference between the flow rate state and the state of the amount of gas not adsorbed in the sample container. The flow rate control during desorption may be as follows. That is, the gas reservoir is constantly evacuated by the vacuum pump, and the flow rate of the gas delivery means is adjusted so that the gas reservoir pressure at that time is constant, and the gas reservoir is desorbed. In the above method, it was necessary to remove the gas in the gas reservoir again each time the pressure in the gas reservoir increased, but this method does not require this and the operation is simpler than that in the above method. However, in this method, the desorption amount cannot be calculated from the internal pressure of the gas sump, so the desorption amount is calculated as follows. That is, depending on how long the adsorbed gas is emptied,
The flow rate is calculated, and the desorption amount is calculated based on it. Or
Introduce the gas without putting the sample in the sample container in advance,
The same operation as the desorption step is performed, the flow rate is calculated from the pressure drop change in the sample container at that time and the dead volume of the sample container, and a conversion table of the gas reservoir internal pressure and the flow rate measured at the same time is prepared. The desorption amount may be calculated based on the flow rate at the time of desorption based on this conversion table.

【0014】また、本発明の吸脱着量測定用装置の気体
送りだし手段においては、気体の流量は、ガスだめの内
部の圧力変化を測定し、その測定結果をフィードバック
して常に一定量の流量を得られるようにバルブの開度を
調整するものである。ガスだめ内の圧力変化は、ガスだ
めの温度が一定に保たれているため、気体送りだし手段
内を流れる流量によってのみ影響を受ける。そのため、
ガスだめ内の圧力変化をフィードバックさせることによ
って正確な流量コントロールが可能となる。また、気体
の流量検出のために特別に熱伝導度検出器を設ける必要
がない。ガスだめ内の圧力変化を検出し流量をコントロ
ールするための圧力計は、ガスだめ内の圧力を測定する
圧力計を兼用してもよいし、気体送りだし手段のガスだ
めからの気体取入れ口付近に別の圧力計を設けてもよ
い。
Further, in the gas feeding means of the adsorption / desorption amount measuring apparatus of the present invention, the gas flow rate is measured by measuring the pressure change inside the gas reservoir, and the measurement result is fed back to obtain a constant flow rate. The opening of the valve is adjusted so as to be obtained. The pressure change in the gas sump is influenced only by the flow rate of the gas in the gas discharge means because the temperature of the gas sump is kept constant. for that reason,
An accurate flow rate control is possible by feeding back the pressure change in the gas reservoir. Further, it is not necessary to provide a thermal conductivity detector for detecting the gas flow rate. The pressure gauge for detecting the pressure change in the gas reservoir and controlling the flow rate may also be used as the pressure gauge for measuring the pressure in the gas reservoir, or near the gas intake from the gas reservoir of the gas delivery means. Another pressure gauge may be provided.

【0015】以上のようにして吸脱着量が正確に判明す
るので、各時点での圧力と、それに対応する固体試料の
吸脱着量とをプロットすることによって、吸脱着等温線
が求められる。又、ガスだめ内の圧力変化をもとに気体
送りだし量を一定になるように調整するため、気体の流
量検出のために熱伝導度検出器を設ける必要がなく、装
置の構成が簡単になる。
Since the adsorption / desorption amount is accurately determined as described above, the adsorption / desorption isotherm can be obtained by plotting the pressure at each time point and the adsorption / desorption amount of the solid sample corresponding thereto. Also, since the amount of gas fed out is adjusted based on the pressure change in the gas reservoir, it is not necessary to provide a thermal conductivity detector to detect the flow rate of gas, and the device configuration is simplified. .

【0016】[0016]

【実施例】以下本発明の好適な実施例について、添付図
面に従い詳細に説明する。本発明はこれらの実施例に限
られるものではなく、要旨を逸脱しない限り種々の態様
で実施される。
Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. The present invention is not limited to these examples and can be carried out in various modes without departing from the gist.

【0017】第1図は、本発明の吸脱着量測定用装置の
一実施例を示すブロック図である。この図に示すよう
に、本実施例の吸脱着量測定用装置は、表面積,細孔径
分布,細孔容積等を求めようとする固体試料が導入され
る試料容器10、この試料容器10に対して連続的に気
体をほぼ一定量送り出すことが可能なコントロールバル
ブ11、ガスだめ12、ガスボンベ13、2つの圧力計
及び真空ポンプを中心として構成されている。
FIG. 1 is a block diagram showing an embodiment of the adsorption / desorption amount measuring device of the present invention. As shown in this figure, the adsorption / desorption amount measuring device of the present embodiment has a sample container 10 into which a solid sample for which surface area, pore size distribution, pore volume, etc. are to be obtained, is introduced. A control valve 11, a gas sump 12, a gas cylinder 13, two pressure gauges and a vacuum pump capable of continuously sending out a substantially constant amount of gas are mainly constituted.

【0018】試料容器10は、コントロールバルブ1
1、ガスだめ12を介してガスボンベ13へ配管H1に
よって接続されている。圧力計14,真空ポンプ15
は、試料容器10とコントロールバルブ11とを接続す
る配管H1の各箇所A,Cへ、それぞれ配管H2,H3
によって接続されている。
The sample container 10 includes a control valve 1
1. A pipe H1 is connected to a gas cylinder 13 via a gas sump 12. Pressure gauge 14, vacuum pump 15
To the respective points A and C of the pipe H1 connecting the sample container 10 and the control valve 11 to the pipes H2 and H3, respectively.
Connected by.

【0019】圧力計16は、ガスだめ12へ配管H4に
よって接続されている。また、真空ポンプ15へは、大
気に連通する配管H5が接続されている。その配管H5
と配管H4とは交点Bで連結している。更に、コントロ
ールバルブ11とガスだめ12との中間部から試料容器
10へ、配管H6が接続されている。
The pressure gauge 16 is connected to the gas sump 12 by a pipe H4. The vacuum pump 15 is also connected to a pipe H5 that communicates with the atmosphere. The pipe H5
And the pipe H4 are connected at an intersection B. Further, a pipe H6 is connected to the sample container 10 from an intermediate portion between the control valve 11 and the gas sump 12.

【0020】そして試料容器10とコントロールバルブ
11とを接続する部分の配管H1に3つのバルブV1,
V2,V3が設けられている。また、コントロールバル
ブ11とガスだめ12とを接続する部分の配管H1にバ
ルブV4が、更にガスだめ12とガスボンベ13を接続
する部分の配管H1にバルブV5が、加えてコントロー
ルバルブ11とガスだめ12の間と試料容器10とを接
続する配管H6にバルブV6が設けられている。更に、
配管H1のA地点と真空ポンプ15との間にある配管H
3にバルブV7,V10が、配管H5の真空ポンプ15
と地点Bとの間にバルブV8が接続されている。配管H
5の大気連通部にはバルブV9が設けられている。
Three valves V1, are provided in the pipe H1 at the portion connecting the sample container 10 and the control valve 11.
V2 and V3 are provided. Further, a valve V4 is connected to the pipe H1 connecting the control valve 11 and the gas sump 12, a valve V5 is further connected to the pipe H1 connecting the gas sump 12 and the gas cylinder 13, and the control valve 11 and the gas sump 12 are added. A valve V6 is provided in a pipe H6 connecting the space between the space and the sample container 10. Furthermore,
Pipe H between point A of pipe H1 and vacuum pump 15
3, the valves V7 and V10 are vacuum pumps 15 of the pipe H5.
The valve V8 is connected between the point B and the point B. Pipe H
A valve V9 is provided in the atmosphere communicating portion 5 of FIG.

【0021】かかる構成の装置において、試料容器10
は、好ましくは、図示するように冷媒槽17に浸漬した
状態とすることによって恒温に保持する。その場合、試
料容器10内の容積が変わらないように、冷媒槽17の
液面を一定に保持・調整する。
In the apparatus having the above structure, the sample container 10
Is preferably kept at a constant temperature by being immersed in the coolant tank 17 as shown in the figure. In that case, the liquid level of the refrigerant tank 17 is kept constant and adjusted so that the volume in the sample container 10 does not change.

【0022】コントロールバルブ11は、制御部分とバ
ルブ部分とアクチュエーターから構成され、圧力計16
によって測定されたガスだめ12内の圧力を情報として
受け取り、その圧力の変化が一定となるようにバルブの
開閉が制御される。これによって、コントロールバルブ
11内の気体の流量を、ある設定された一定値に保つこ
とが出来る。
The control valve 11 comprises a control part, a valve part and an actuator, and a pressure gauge 16
The pressure in the gas reservoir 12 measured by is received as information, and the opening / closing of the valve is controlled so that the change in the pressure becomes constant. With this, the flow rate of the gas in the control valve 11 can be maintained at a certain set constant value.

【0023】ガスボンベ13からの気体を蓄えるガスだ
め12は、既知の一定温度に保持可能であって、通常そ
の温度は室温付近(25℃)とされる。圧力計16は、
ガスだめ12内の絶対圧を、また圧力計14は、試料容
器10内の絶対圧を、連続的にまたは断続的に測定する
ためのものである。これらの圧力計14,16として、
半導体型圧力トランスデューサ等を用い、絶対圧をコン
ピュータを利用して読み取り、記録計に記録するのが好
ましい。
The gas reservoir 12 for accumulating the gas from the gas cylinder 13 can be maintained at a known constant temperature, and the temperature is usually around room temperature (25 ° C.). The pressure gauge 16
The absolute pressure in the gas reservoir 12 and the absolute pressure in the sample container 10 are for measuring the absolute pressure continuously or intermittently. As these pressure gauges 14 and 16,
It is preferable to use a semiconductor type pressure transducer or the like to read the absolute pressure using a computer and record it in a recorder.

【0024】真空ポンプ15は、試料の吸着量測定の準
備として試料容器10内の排気を行なうために使用され
る。加えて、後記するような方法で圧力計14,16の
校正を行う際にバルブV8,V9等とともに使用され
る。バルブV1,V2,V3,V6は、本実施例の装置
を、試料の吸着量を測定する系から試料の脱着量を測定
する系に,またはその逆に切り換える際などに利用され
る。
The vacuum pump 15 is used to exhaust the inside of the sample container 10 in preparation for measuring the amount of adsorption of the sample. In addition, it is used together with the valves V8, V9, etc. when calibrating the pressure gauges 14, 16 by the method described below. The valves V1, V2, V3 and V6 are used when switching the apparatus of the present embodiment from a system for measuring the adsorption amount of the sample to a system for measuring the desorption amount of the sample, or vice versa.

【0025】次に上記装置を使用して、固体試料の吸着
量を測定する方法を、以下、説明する。この測定方法を
実施する準備として、まず、圧力計の校正,ガスだめの
容量測定,死容積の測定を順に行なう。これらについて
説明する。 圧力計の校正 まず、圧力計14,16の校正を行なう。そのために、
バルブV1,V3,V4,V5,V6,V9を閉、バル
ブV2,V7,V8,V10を開として、真空ポンプ1
5で最大限脱気し(約0Kg/cm2Aとする)、その状
態で圧力計14,16の0点を合わせる。次に、真空ポ
ンプ15を停止し、バルブV9を開として、大気開放状
態とし、その時の圧力計14,16の読みを、水銀気圧
計やアネロイド型気圧計等で正確に測定した大気圧値に
合わせ、圧力計14,16の校正を完了する。
Next, a method for measuring the adsorption amount of a solid sample using the above apparatus will be described below. As a preparation for carrying out this measuring method, first, the pressure gauge is calibrated, the gas reservoir capacity is measured, and the dead volume is measured in order. These will be described. Calibration of Pressure Gauge First, the pressure gauges 14 and 16 are calibrated. for that reason,
The valves V1, V3, V4, V5, V6 and V9 are closed, and the valves V2, V7, V8 and V10 are opened, and the vacuum pump 1
Degas to the maximum at 5 (about 0 kg / cm 2 A), and in that state, set the 0 points of the pressure gauges 14, 16 to zero. Next, the vacuum pump 15 is stopped, the valve V9 is opened to open the atmosphere, and the readings of the pressure gauges 14 and 16 at that time are set to atmospheric pressure values accurately measured by a mercury barometer or an aneroid type barometer. Then, the calibration of the pressure gauges 14 and 16 is completed.

【0026】圧力計14側の大気開放については、試料
容器10をはずすことによって大気圧を測定してもよ
い。 ガスだめ12の容量(正確にはガスだめ12の容量
と、ガスだめ12からコントロールバルブ11までの配
管の容量との和)V0 の測定 バルブV9に容量既知の試料容器(図示せず:できるだ
けガスだめ12と同じくらいの容積のものがよい。容量
測定時は所定の温度に保持する。好ましくは他の部分と
同じく25℃とする。)を接続した後、バルブV4,V
8,V9を開、バルブV5,V6,V7を閉、コントロ
ールバルブ11を閉じて、容量既知の試料容器とガスだ
め12とを真空ポンプ15によって真空引きにする。そ
の後、バルブV8,V9を閉、バルブV5を開として、
ガスだめ12にガス(通常窒素ガス)を導入する。圧力
安定後、圧力計16でガスだめ12内の圧力P0 の測定
を行ない、次に、バルブV9を開として試料容器にガス
を導入し、圧力安定後、圧力計16で圧力P1 を読む。
上記圧力P0 ,P1と、容量既知の試料容器容量Vsと
に基づき、ガスだめ容量V0を次の式から算出する。
With respect to the atmosphere on the pressure gauge 14 side, atmospheric pressure may be measured by removing the sample container 10. The capacity of the gas reservoir 12 (accurately, the sum of the capacity of the gas reservoir 12 and the capacity of the pipe from the gas reservoir 12 to the control valve 11) The measuring valve V9 of the V0 has a known capacity sample container (not shown: gas as much as possible). It is preferable that the capacity is about the same as that of the dead 12. The temperature is kept at a predetermined value when measuring the capacity, and it is preferably 25 ° C. like other parts.
8 and V9 are opened, valves V5, V6 and V7 are closed, and the control valve 11 is closed, and the sample container of known capacity and the gas reservoir 12 are evacuated by the vacuum pump 15. After that, the valves V8 and V9 are closed and the valve V5 is opened,
A gas (normally nitrogen gas) is introduced into the gas sump 12. After the pressure is stabilized, the pressure P0 in the gas reservoir 12 is measured by the pressure gauge 16, then the valve V9 is opened to introduce the gas into the sample container, and after the pressure is stabilized, the pressure P1 is read by the pressure gauge 16.
Based on the pressures P0 and P1 and the sample container volume Vs of known volume, the gas reservoir volume V0 is calculated from the following equation.

【0027】P0V0=P1(V0+Vs) V0=(P1Vs)/(P0−P1) 尚、この間、各ガスだめと圧力計16、配管H1等は、
恒温に保持するために、それらの周囲を充分な換気を行
なう必要がある。 死容積Vtの測定 試料容器10をバルブV1に接続した後、その試料容器
を冷媒槽17に浸漬し、次いで、上述と同様な操作を行
ない、上記圧力P11,P12,P21,P22に対応する圧力
P31,P32,P41,P42を求める。これらの圧力および
既に求められているVs,V0の値に基づき、標準状態で
の死容積Vtを上記式から求める。勿論、上記圧力P
13,P14,P23,P24に対応する圧力P33,P34,P4
3,P44を求めて、上記式からVtを求めてもよい。
P0V0 = P1 (V0 + Vs) V0 = (P1Vs) / (P0-P1) During this time, each gas reservoir, pressure gauge 16, pipe H1, etc.
In order to maintain a constant temperature, it is necessary to provide sufficient ventilation around them. After connecting the sample container 10 for measuring the dead volume Vt to the valve V1, the sample container is immersed in the refrigerant tank 17, and then the same operation as described above is performed to obtain the pressures corresponding to the pressures P11, P12, P21 and P22. Find P31, P32, P41, P42. Based on these pressures and the values of Vs and V0 already obtained, the dead volume Vt in the standard state is obtained from the above equation. Of course, the pressure P
Pressure P33, P34, P4 corresponding to 13, P14, P23, P24
3, P44 may be obtained and Vt may be obtained from the above equation.

【0028】以上の準備が終了した後、固体試料の吸着
量を測定する。そのために、まず、試料容器10に所望
の試料を入れ、上記死容積Vtの測定と同様な操作
で、まずガスだめ12にガスを導入して溜め、その後、
ガスだめ12から、作動状態のコントロールバルブ11
を介して試料容器10に気体を流出させ、その流出始め
から時間の経過とともにガスだめ12の圧力と、試料容
器10の圧力とをそれぞれ圧力計16,14で測定す
る。
After the above preparation is completed, the adsorption amount of the solid sample is measured. For that purpose, first, a desired sample is put in the sample container 10, and gas is first introduced into the gas reservoir 12 and stored therein by the same operation as in the measurement of the dead volume Vt, and thereafter,
From the gas sump 12 to the activated control valve 11
Gas is caused to flow out to the sample container 10 via the pressure gauge, and the pressure of the gas sump 12 and the pressure of the sample container 10 are measured by the pressure gauges 16 and 14 with the lapse of time from the beginning of the flow.

【0029】ガスだめ12の圧力,試料容器10の圧力
と時間との関係は、圧力計16,14に接続したマイク
ロコンピュータ利用の記録計によって、連続的に自動記
録するのが好ましい。尚、この測定に際して、試料の容
積によって測定内死容積に変化を生じるが、それに伴う
誤差を避けるためには、試料容器10に試料を入れた
後、例えば、ヘリウムガス等の非吸気性ガス(試料に吸
着されないガス)によって死容積を測定する方法や、冷
媒温度と試料真比重により計算によって死容積を測定す
る方法等、適宜選定した方法を、上記死容積の測定過程
での方法の代わりに、採用すればよい。
The relationship between the pressure of the gas reservoir 12 and the pressure of the sample container 10 and time is preferably continuously and automatically recorded by a recorder using a microcomputer connected to the pressure gauges 16 and 14. In this measurement, the inner dead volume of the measurement changes depending on the volume of the sample, but in order to avoid an error accompanying it, after the sample is put in the sample container 10, for example, a non-inspiratory gas (such as helium gas) ( Instead of the method used in the above dead volume measurement process, an appropriately selected method, such as a method of measuring the dead volume by a gas that is not adsorbed to the sample) or a method of measuring the dead volume by calculating the refrigerant temperature and the true specific gravity of the sample , Should be adopted.

【0030】以上のようにして求められたガスだめ12
内の圧力値に基づいて、下記の式にて、ガスだめ12か
ら試料容器10に放出された気体の放出質量Qcが任意
の時刻tで常に正確に算出され、その放出質量Qcや圧
力計14による試料容器10内圧力値等に基づいて、試
料の吸着量Qs が算出される。 ・放出質量Qc Qc[モル]=(Ps−Pt1)V0/RT1 Ps[mmHg]:ガスだめ12の放出開始圧力 Pt1[mmHg]:時刻tにおけるガスだめ12の圧力 V0 [ml]:ガスだめ12の容積 T1 [K] :ガスだめ12内温度(ほぼ一定) ・吸着量Qs Qs[モル/g]=[Qc−(Pt2Vt/RT2)]/W Pt2[mmHg]:試料容器測定圧(時間tにおける) Vt[ml]:試料測定時死容積 T2 [K] : 〃 測定時換算時温度 R :ガス定数 W[g]:試料重量 尚、各時刻の圧力を求めていくと、第2図に示すようグ
ラフが得られる。吸着終点量は、第2図のグラフにおい
て、飽和圧力の延長線と吸着上昇曲線の交点により、明
確に判別することができる。
Gas sump 12 obtained as described above
Based on the internal pressure value, the discharge mass Qc of the gas discharged from the gas reservoir 12 to the sample container 10 is always accurately calculated at an arbitrary time t by the following formula, and the discharge mass Qc and the pressure gauge 14 are calculated. The adsorption amount Qs of the sample is calculated based on the pressure value in the sample container 10 and the like. -Discharged mass Qc Qc [mol] = (Ps-Pt1) V0 / RT1 Ps [mmHg]: Release start pressure Pt1 [mmHg] of gas sump 12: Pressure V0 [ml] of gas sump 12 at time t: Gas sump 12 Volume T1 [K]: temperature inside gas sump 12 (almost constant) -adsorption amount Qs Qs [mol / g] = [Qc- (Pt2Vt / RT2)] / W Pt2 [mmHg]: sample container measurement pressure (time t Vt [ml]: dead volume during sample measurement T2 [K]: 〃 conversion time temperature R: gas constant W [g]: sample weight Incidentally, when the pressure at each time is obtained, it is shown in FIG. A graph is obtained as shown. The adsorption end point amount can be clearly discriminated from the intersection of the saturation pressure extension line and the adsorption rise curve in the graph of FIG.

【0031】以上の方法では、試料容器10に放出され
た気体の各時点での流量が圧力計16の値に基づいて正
確に求められるため、各時点での試料の吸着量も正確に
算出される。結果として、正確な吸着等温線が得られ
る。上記実施例の装置あるいはそれを設計変更した装置
を利用することによって、試料の脱着量を算出すること
ができる。次に、上述した吸着量測定後の装置を利用し
て行う実施例を示す。
In the above method, since the flow rate of the gas released into the sample container 10 at each time is accurately obtained based on the value of the pressure gauge 16, the adsorption amount of the sample at each time is also accurately calculated. It As a result, an accurate adsorption isotherm is obtained. The desorption amount of the sample can be calculated by using the device of the above-mentioned embodiment or the device of which design is changed. Next, an example will be shown in which the above-mentioned apparatus after measuring the adsorption amount is used.

【0032】第1図に示す、吸着量測定後の装置のバル
ブV8,V10を開、バルブV7,V4,V5,V9を
閉の状態で、真空ポンプ15にてガスだめ12の内部を
真空とする。次にバルブV7,V3,V6,V1を開、
バルブV4,V2を閉としてコントロールバルブ11を
作動させて、両圧力計14,16の値を記録する。
The inside of the gas sump 12 is evacuated by the vacuum pump 15 with the valves V8, V10 of the apparatus after the adsorption amount measurement shown in FIG. 1 opened and the valves V7, V4, V5, V9 closed. To do. Next, open the valves V7, V3, V6 and V1,
The valves V4 and V2 are closed and the control valve 11 is operated to record the values of both pressure gauges 14 and 16.

【0033】次にバルブV10を閉じ、脱着を開始す
る。既に飽和圧力状態にあるため、脱着開始後しばらく
は圧力計14は一定圧力のままで、低下しない。圧力計
14が低下し始めた時点が脱着等温線の開始ポイントと
なる。このとき、試料容器10から流出するガス脱着質
量Qdおよび試料からの実際の脱着量Qtは、ガスだめ
12の圧力計16の上昇量より、次のように算出され
る。
Next, the valve V10 is closed to start desorption. Since it is already in the saturated pressure state, the pressure gauge 14 remains at a constant pressure for a while after the start of desorption and does not decrease. The starting point of the desorption isotherm is when the pressure gauge 14 starts to fall. At this time, the gas desorption mass Qd flowing out of the sample container 10 and the actual desorption mass Qt from the sample are calculated from the amount of increase of the pressure gauge 16 of the gas reservoir 12 as follows.

【0034】Qd=(Ppt1−Pps)V3/RT1 Qt=[Qd−(Ppt2Vt/RT2)]/W ここで、 Ppt1[mmHg]:時刻t1 における ガスだめ12の測定圧力 Pps [mmHg]:ガスだめ12の測定開始圧力 V3 [ml] :ガスだめ12の脱着時容積 T1 [K] :ガスだめ12の温度(ほぼ一定) Ppt2[mmHg]:時刻t2 における 試料容器10の測定圧力 Vt[ml] :試料測定時死容積 T2 [K] : 〃 測定時換算時温度 R :ガス定数 W [g] :試料重量 そして、前述の吸着測定で求めた飽和圧吸着量Qsoより
時刻t1 の脱着量Qtを差し引いた値(Qso−Qt:脱
着等温線における吸着量)と、時刻t1 での圧力計14
の値Ppt2とをプロットすれば、脱着等温線が得られ
る。
Qd = (Ppt 1 -Pps) V 3 / RT 1 Qt = [Qd- (Ppt 2 Vt / RT 2 )] / W where Ppt 1 [mmHg]: measurement of gas sump 12 at time t 1 . Pressure Pps [mmHg]: Measurement start pressure V 3 [ml] of gas reservoir 12: Desorption volume T 1 [K] of gas reservoir 12: Temperature of gas reservoir 12 (almost constant) Ppt 2 [mmHg]: Time t 2 Measured pressure Vt [ml] of the sample container 10 at: Sample dead volume T2 [K] at measurement: Temperature R at the time of measurement R: Gas constant W [g]: Sample weight and saturation pressure obtained by the above adsorption measurement A value obtained by subtracting the desorption amount Qt at the time t 1 from the adsorption amount Qso (Qso−Qt: the adsorption amount on the desorption isotherm) and the pressure gauge 14 at the time t 1.
The desorption isotherm can be obtained by plotting the value P pt 2 of

【0035】この脱着測定の途中で、ガスだめ12内の
圧力が試料容器10の圧力に近くなるとガスが流れなく
なる。このときには、バルブV3を閉、バルブV10を
開として、真空ポンプ15にて再度ガスだめ12を真空
状態とする。そして、バルブV3,V10を元の状態に
戻して脱着測定を開始すればよい。こうして、全圧力領
域で脱着等温線が得られる。
During the desorption measurement, if the pressure in the gas reservoir 12 approaches the pressure of the sample container 10, the gas will not flow. At this time, the valve V3 is closed and the valve V10 is opened, and the vacuum pump 15 brings the gas reservoir 12 into a vacuum state again. Then, the valves V3 and V10 may be returned to the original state and the desorption measurement may be started. Thus, the desorption isotherm is obtained over the entire pressure range.

【0036】尚、ガスだめ12の脱着時容積V3 は、前
記ガスだめ12の容積V0 と同様に、バルブV1に容量
既知の試料容器と容量零のガラス棒を各々取り付けて、
バルブV1側からコントロールバルブ11を介してガス
だめ12と連結した場合の圧力変化から算出する。 <実測例>上記実施例装置を用いた実測データについて
説明する。
The volume V 3 of the gas reservoir 12 during desorption is the same as the volume V 0 of the gas reservoir 12, and a sample container of known capacity and a glass rod of zero capacity are attached to the valve V1, respectively.
It is calculated from the pressure change when the gas reservoir 12 is connected from the valve V1 side via the control valve 11. <Measurement Example> Measurement data using the apparatus of the above embodiment will be described.

【0037】試料としてシリカゲルを用い、吸着ガスと
して窒素ガスを用い、コントロールバルブの流量は1.
00(SCCM)に調節して測定を行った。その結果に基づ
き比表面積・細孔容積を算出した。尚、比表面積は吸着
等温線を基にB.E.T理論にて算出し、細孔容積は相
対圧1.0(P/P00)に相当する吸着量から求めた。 上記数値は、比表面積については685〜699m2/g
に収まり、細孔容積については0.383〜0.394
ml/gに収まり、安定した測定ができている。また、ガス
流量のコントロールのために、特別に熱伝導度検出器な
どを設ける必要が無い。
Silica gel was used as the sample, nitrogen gas was used as the adsorption gas, and the flow rate of the control valve was 1.
The measurement was performed after adjusting to 00 (SCCM). The specific surface area / pore volume was calculated based on the results. The specific surface area is based on the adsorption isotherm B. E. The pore volume was calculated from the T theory, and the pore volume was obtained from the adsorption amount corresponding to a relative pressure of 1.0 (P / P00). The above values are for specific surface area 685-699m 2 / g
And the pore volume is 0.383 to 0.394.
It is within ml / g and stable measurement is possible. Further, it is not necessary to provide a thermal conductivity detector or the like for controlling the gas flow rate.

【0038】尚、従来から用いられている気相ガス吸着
法により吸着ガスを窒素を用いて行った結果は、 比表面積(m2/g):706.3±4.6 細孔容積(ml/g):0.40 であった。
The results obtained by using nitrogen as an adsorbed gas by the gas phase gas adsorption method which has been conventionally used are as follows: specific surface area (m 2 / g): 706.3 ± 4.6 pore volume (ml / g): 0.40.

【0039】[0039]

【発明の効果】以上詳述したように、本発明によれば、
固体試料が導入されている試料容器あるいはガスだめ内
へ送り込む気体の実際の流量を、その流出源あるいは流
入先となるガスだめの圧力変化によって所望時に正確に
読み取ることができ、その読み取った値を用いて、各時
点での固体試料の気体吸脱着量を算出するので、常に固
体試料の正確な吸脱着等温線を得ることができ、それを
利用して、正確な固体試料の表面積,細孔径分布,細孔
容積等の算出が可能となる。
As described in detail above, according to the present invention,
The actual flow rate of the gas sent into the sample container or the gas reservoir in which the solid sample is introduced can be accurately read at a desired time by the pressure change of the gas reservoir serving as the outflow source or the inflow destination, and the read value can be read. Since the gas adsorption / desorption amount of the solid sample at each time point is calculated by using it, the accurate adsorption / desorption isotherm of the solid sample can be obtained at all times. It is possible to calculate distribution, pore volume, etc.

【0040】しかも、上記のようなことを達成するため
に、マスフローコントローラの流量を頻繁に校正するよ
うな煩わしさが不要である。また、熱伝導度検出器を用
いたマスフローコントローラが不要となり、装置の構成
が簡単となる。
Moreover, in order to achieve the above, the troublesomeness of frequently calibrating the flow rate of the mass flow controller is unnecessary. Further, a mass flow controller using a thermal conductivity detector is not needed, and the device configuration is simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の吸脱着量測定用装置の一態様を示すブ
ロック図
FIG. 1 is a block diagram showing an embodiment of a device for measuring adsorption / desorption amount of the present invention.

【図2】吸着量測定時における圧力の時間変化の一例を
示すグラフ
FIG. 2 is a graph showing an example of a time change of pressure when measuring an adsorption amount.

【符号の説明】[Explanation of symbols]

10…試料容器 11…コントロールバルブ 12…ガスだめ 15…真空ポンプ 14,16…圧力計 10 ... Sample container 11 ... Control valve 12 ... No gas 15 ... Vacuum pump 14, 16 ... Pressure gauge

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 固体試料による気体の吸着量または脱着
量を測定するために用いられる吸脱着量測定用装置であ
って、 前記固体試料を導入可能な体積既知の試料容器と、 気体を蓄えることが可能な体積既知のガスだめと、 前記試料容器または前記ガスだめから気体を排出する気
体排出手段と、 前記ガスだめから前記試料容器にまたは前記試料容器か
ら前記ガスだめに、前記ガスだめ内の圧力変化が所定の
変化率となるようにバルブの開度を調節し、気体を連続
的に送り出す気体送り出し手段と、 前記試料容器内の圧力を測定する圧力計と、 前記ガスだめ内の圧力を測定する圧力計とを有してなる
吸脱着量測定用装置。
1. A device for measuring an adsorption / desorption amount used for measuring an adsorption amount or a desorption amount of a gas by a solid sample, comprising a sample container of a known volume into which the solid sample can be introduced, and storing a gas. A gas reservoir of known volume capable of, a gas discharge means for discharging gas from the sample container or the gas reservoir, and from the gas reservoir to the sample container or from the sample container to the gas reservoir, in the gas reservoir The valve opening is adjusted so that the pressure change becomes a predetermined rate of change, a gas delivery means for continuously delivering gas, a pressure gauge for measuring the pressure in the sample container, and the pressure in the gas reservoir. An adsorption / desorption amount measurement device comprising a pressure gauge for measurement.
【請求項2】 請求項1記載の吸脱着量測定用装置を用
いて固体試料の吸着量を測定する方法であって、 試料容器に固体試料を導入すると共に、該試料容器から
気体を気体排出手段によって排出し、 その後、所定温度に維持され気体が含まれているガスだ
めから、所定温度に維持されている前記試料容器内に、
気体を連続的に気体送り出し手段によって送り出し、 その送り出し中に、 各圧力計によって、前記試料容器内の圧力と前記ガスだ
め内の圧力とを、それぞれ時間の経過とともに測定し、 その測定された前記ガスだめ内の圧力と、前記ガスだめ
の体積とに基づき前記気体の前記試料容器への流量を算
出し、 その算出流量と、前記測定された試料容器内の圧力と、
該試料容器の体積とに基づき、前記固体試料の吸着量を
求める固体試料の吸着量測定方法。
2. A method for measuring an adsorption amount of a solid sample by using the adsorption / desorption amount measuring device according to claim 1, wherein the solid sample is introduced into the sample container and gas is discharged from the sample container. Discharged by means, then from the gas reservoir containing a gas maintained at a predetermined temperature, into the sample container maintained at a predetermined temperature,
The gas is continuously sent out by the gas sending means, and during the sending out, the pressure inside the sample container and the pressure inside the gas reservoir are respectively measured by the respective pressure gauges with the passage of time, and the measured Calculating the flow rate of the gas to the sample container based on the pressure in the gas reservoir and the volume of the gas reservoir, the calculated flow rate, and the measured pressure in the sample container,
A method for measuring an adsorption amount of a solid sample, wherein an adsorption amount of the solid sample is obtained based on the volume of the sample container.
【請求項3】 請求項1記載の吸脱着量測定用装置を用
いて固体試料の脱着量を測定する方法であって、 試料容器に固体試料を導入すると共に、ガスだめから気
体を気体排出手段によって排出し、 その後、所定温度に維持されている前記試料容器から、
所定温度に維持されている前記ガスだめ内に、気体を連
続的に気体送り出し手段によって送り出し、 その送り出し中に、 各圧力計によって、前記試料容器内の圧力と前記ガスだ
め内の圧力とを、それぞれ時間の経過とともに測定し、 その測定された前記ガスだめ内の圧力と、前記ガスだめ
の体積とに基づき前記気体の前記ガスだめへの流量を算
出し、 その算出流量と、前記測定された試料容器内の圧力と、
該試料容器の体積とに基づき、前記固体試料の脱着量を
求める固体試料の脱着量測定方法。
3. A method for measuring the desorption amount of a solid sample by using the adsorption / desorption amount measuring device according to claim 1, wherein the solid sample is introduced into a sample container and gas is discharged from a gas reservoir. And then from the sample container maintained at a predetermined temperature,
Gas is continuously fed into the gas reservoir maintained at a predetermined temperature by the gas delivery means, and during the delivery, the pressure in the sample container and the pressure in the gas reservoir are adjusted by each pressure gauge. Each is measured over time, and the flow rate of the gas to the gas reservoir is calculated based on the measured pressure in the gas reservoir and the volume of the gas reservoir, and the calculated flow rate and the measured value. The pressure inside the sample container,
A method for measuring the amount of desorption of a solid sample, wherein the amount of desorption of the solid sample is obtained based on the volume of the sample container.
JP16458091A 1991-07-04 1991-07-04 Device and method for measuring amount to be adsorbed/ desorbed Pending JPH0510869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16458091A JPH0510869A (en) 1991-07-04 1991-07-04 Device and method for measuring amount to be adsorbed/ desorbed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16458091A JPH0510869A (en) 1991-07-04 1991-07-04 Device and method for measuring amount to be adsorbed/ desorbed

Publications (1)

Publication Number Publication Date
JPH0510869A true JPH0510869A (en) 1993-01-19

Family

ID=15795875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16458091A Pending JPH0510869A (en) 1991-07-04 1991-07-04 Device and method for measuring amount to be adsorbed/ desorbed

Country Status (1)

Country Link
JP (1) JPH0510869A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257687A (en) * 1996-01-16 1997-10-03 Matsushita Electric Ind Co Ltd Measuring method for reaction specific surface area and utilization factor of noble metal catalyst at solid polymer-type fuel cell and catalyst layer for electrode for solid polymer-type fuel cell
US6734896B2 (en) 2000-04-28 2004-05-11 Matsushita Electric Industrial Co., Ltd. Image processor and monitoring system
JP2007101374A (en) * 2005-10-05 2007-04-19 Yokogawa Electric Corp Measuring instrument and measuring method using gas adsorption
JP2011090015A (en) * 2011-02-09 2011-05-06 Yokogawa Electric Corp Measuring device and measuring method using gaseous adsorption
WO2017195243A1 (en) * 2016-05-09 2017-11-16 国立大学法人信州大学 Method for measuring gas adsorption rate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09257687A (en) * 1996-01-16 1997-10-03 Matsushita Electric Ind Co Ltd Measuring method for reaction specific surface area and utilization factor of noble metal catalyst at solid polymer-type fuel cell and catalyst layer for electrode for solid polymer-type fuel cell
US6734896B2 (en) 2000-04-28 2004-05-11 Matsushita Electric Industrial Co., Ltd. Image processor and monitoring system
US7714887B2 (en) 2000-04-28 2010-05-11 Panasonic Corporation Image processor and monitoring system
JP2007101374A (en) * 2005-10-05 2007-04-19 Yokogawa Electric Corp Measuring instrument and measuring method using gas adsorption
JP2011090015A (en) * 2011-02-09 2011-05-06 Yokogawa Electric Corp Measuring device and measuring method using gaseous adsorption
WO2017195243A1 (en) * 2016-05-09 2017-11-16 国立大学法人信州大学 Method for measuring gas adsorption rate

Similar Documents

Publication Publication Date Title
JP2881242B2 (en) Device for measuring adsorption and desorption and method for measuring adsorption and desorption
US6981426B2 (en) Method and apparatus to measure gas amounts adsorbed on a powder sample
Richards Physical condition of water in soil
JP3000296B2 (en) Method and apparatus for monitoring gas concentration
US5239482A (en) Method of and an apparatus for measuring the adsorption and the desorption of a gas adsorbed by a solid sample and the use thereof
US4762010A (en) Apparatus and method for adsorption and desorption studies, particularly for characterization of catalysts
JP6406698B2 (en) Adsorption characteristic measuring device
US5637810A (en) Apparatus and method for efficient determination of equilibrium adsorption isotherms at low pressures
JPH0510869A (en) Device and method for measuring amount to be adsorbed/ desorbed
US5360743A (en) Method for measuring a sample sorption and a sample cell void volume and wall adsorption using an adsorbate gas
US5058442A (en) Apparatus for measuring liquid vapor adsorption and desorption characteristics of a sample
CN207488217U (en) The apparent thermal conductivity of multilayer insulant and outgassing rate test device
CN107367440B (en) Method for acetylene adsorption measurement
Morrison et al. AN ADIABATIC CALORIMETER FOR THE TEMPERATURE REGION BELOW 20° K.—THE SPECIFIC HEAT OF SODIUM CHLORIDE
US5895841A (en) Method and apparatus for performing adsorption and desorption analysis of samples
CN113740202B (en) Volumetric adsorption measurement method and device
CN112697632B (en) Coal rock and shale bulk sample weight method isothermal adsorption measurement device and method
US11169014B2 (en) Bidirectional pycnometer
RU2186365C2 (en) Procedure determining porosity parameters o materials
JP7082596B2 (en) Gas adsorption amount measuring device and gas adsorption amount measuring method
Kate Jr et al. Vapor+ solid equilibrium for helium+ krypton
JPS61271439A (en) Automatic measuring apparatus
CN112504904B (en) Gas adsorption isotherm test analysis method for rock under different water-containing conditions
JPH04164236A (en) Method of measuring volume of absorption and desorption
CN114295085B (en) Double-weighing volume and density measuring method