JPH05107739A - Photomask, exposing method, and projection exposure device - Google Patents

Photomask, exposing method, and projection exposure device

Info

Publication number
JPH05107739A
JPH05107739A JP29206391A JP29206391A JPH05107739A JP H05107739 A JPH05107739 A JP H05107739A JP 29206391 A JP29206391 A JP 29206391A JP 29206391 A JP29206391 A JP 29206391A JP H05107739 A JPH05107739 A JP H05107739A
Authority
JP
Japan
Prior art keywords
photomask
image plane
optical system
exposure
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29206391A
Other languages
Japanese (ja)
Inventor
Masaya Komatsu
雅也 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP29206391A priority Critical patent/JPH05107739A/en
Publication of JPH05107739A publication Critical patent/JPH05107739A/en
Priority to US08/573,760 priority patent/US5592259A/en
Priority to US08/731,917 priority patent/US5682226A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To obtain excellent image formation performance over the entire exposure area. CONSTITUTION:Transparent films 1a and 1b which differ in refractive index corresponding to the step structure of a wafer 4 and/or the distortion of an image formation plane by a projection lens 3 are adhered to the pattern formed surface of the photomask 1, and the image formation plane is moved in the direction of the optical axis. At this time, the both sides of the projection lens 3 are preferably telecentric. The transparent films 1a and 1b may be separated from the photomask 1 and an image plane correction member which has a refractive index distribution corresponding to the step structure of the wafer 4 and/or the distortion of the image formation plane may be arranged between the photomask 1 and projection lens 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば半導体素子や液
晶表示素子製造のリソグラフィ工程で使用されるフォト
マスク及び投影露光方法並びに投影露光装置に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photomask, a projection exposure method, and a projection exposure apparatus used in a lithography process for manufacturing a semiconductor device or a liquid crystal display device, for example.

【0002】[0002]

【従来の技術】近年、リソグラフィ工程では原図基板
(マスクまたはレチクル)に形成されたパターンを高分
解能で感光基板(半導体ウエハ等)上に転写する装置と
して、ステップアンドリピート方式の縮小投影型露光装
置(ステッパー)が多用されるようになっている。この
種のステッパーでは、投影レンズが露光光の波長に関し
て色収差補正され、その露光波長のもとでレチクルとウ
エハとは互いに共役になるように配置されている。尚、
レチクルの下面(パターン面)はほぼフラット(平面)
であり、投影レンズの投影像面(最良結像面)もほぼフ
ラットである。
2. Description of the Related Art In recent years, in a lithography process, as a device for transferring a pattern formed on an original substrate (mask or reticle) onto a photosensitive substrate (semiconductor wafer etc.) with high resolution, a step-and-repeat type reduction projection type exposure apparatus. (Stepper) is often used. In this type of stepper, the projection lens is chromatically corrected with respect to the wavelength of the exposure light, and the reticle and the wafer are arranged to be conjugate with each other under the exposure wavelength. still,
The bottom surface (pattern surface) of the reticle is almost flat (flat surface)
The projection image plane (best image plane) of the projection lens is also substantially flat.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記の
如き従来の装置では以下のような問題があった。通常、
感応基板(以下ウエハとして説明する)上の1つの露光
領域の表面はほぼフラットと見なされ、この場合は投影
光学系の結像面がフラットでも問題はない。ところが、
ウエハ上の各露光領域は部分的に段差(凹凸構造)をも
つことがある。このような場合に従来技術では、投影光
学系の結像面がほぼフラットであるため、段差の上面に
焦点を合わせる。すなわち結像面と上面とを一致させる
と、段差下面での結像性能が悪化する。特に投影光学系
の焦点深度が段差より小さいと、段差下面では解像不良
となる。逆に段差の下面に焦点を合わせると、段差上面
での結像性能が悪化する。また、上面と下面との中間に
焦点を合わせると、上面及び下面の両方で十分な結像性
能を得られないという欠点があった。
However, the conventional device as described above has the following problems. Normal,
The surface of one exposure region on the sensitive substrate (hereinafter referred to as a wafer) is considered to be almost flat, and in this case, there is no problem even if the image plane of the projection optical system is flat. However,
Each exposure region on the wafer may partially have a step (uneven structure). In such a case, in the conventional technique, the image plane of the projection optical system is substantially flat, so that the focus is on the upper surface of the step. That is, if the image forming surface and the upper surface are aligned with each other, the image forming performance on the lower surface of the step deteriorates. In particular, if the depth of focus of the projection optical system is smaller than the step, the lower surface of the step causes poor resolution. On the contrary, when focusing on the lower surface of the step, the imaging performance on the upper surface of the step deteriorates. Further, if the focal point is focused between the upper surface and the lower surface, there is a drawback that sufficient imaging performance cannot be obtained on both the upper surface and the lower surface.

【0004】ウエハ上の凹凸が比較的微細である場合に
は、レジストを厚く塗布したり、多層レジストを用いる
ことによりある程度対応が可能であるが、大面積に渡る
凹凸に対応することは非常に困難であり、結像性能の悪
化を避けることができなかった。
When the unevenness on the wafer is relatively fine, it can be dealt with to some extent by applying a thick resist or using a multilayer resist, but it is very difficult to deal with unevenness over a large area. It was difficult to avoid deterioration of the imaging performance.

【0005】また、例えウエハが平坦であったとしても
あったとしても、投影光学系の収差(像面湾曲など)や
フォトマスク自体の反り等によって像面に大面積に渡る
歪みが生じている場合、部分的に結像面と露光領域表面
がずれてしまい、結像性能が低下してしまう。従来、こ
のような像面の歪みに対処する方法は皆無であった。
Further, even if the wafer is flat, the image plane is distorted over a large area due to aberrations of the projection optical system (curvature of field, etc.) and warpage of the photomask itself. In this case, the image plane and the surface of the exposure area are partially displaced from each other, and the image forming performance is deteriorated. Heretofore, there has been no method of coping with such image plane distortion.

【0006】上述したようなことに加えて、投影露光に
おける転写可能な最小寸法は、投影光学系の開口数(N
A)に反比例し、露光波長に比例するため、パターンの
微細化要求に対応して、投影光学系の開口数(NA)は
増大し、露光波長は短波長化する傾向がある。投影光学
系の焦点深度は開口数の2乗に反比例し、露光波長に比
例するため、投影光学系の焦点深度は、近年、急激に減
少しており、ウエハの凹凸や像面の歪みによって一層解
像不良が生じやすくなっている。
In addition to the above, the minimum transferable size in projection exposure is the numerical aperture (N) of the projection optical system.
Since it is inversely proportional to A) and proportional to the exposure wavelength, the numerical aperture (NA) of the projection optical system tends to increase and the exposure wavelength tends to become shorter in response to the demand for pattern miniaturization. Since the depth of focus of the projection optical system is inversely proportional to the square of the numerical aperture and is proportional to the exposure wavelength, the depth of focus of the projection optical system has been rapidly decreasing in recent years, and it is even more prominent due to unevenness of the wafer and distortion of the image plane. Poor resolution is likely to occur.

【0007】本発明は以上の点を考慮してなされたもの
であり、感光基板上の露光領域内に段差(凹凸)があっ
たり、投影光学系によるパターンの像に歪みがあったり
しても、露光領域の全面で高解像のパターン露光を行う
ことができるフォトマスク及び投影露光方法並びに投影
露光装置を得ることを目的としている。
The present invention has been made in consideration of the above points, and even if there is a step (unevenness) in the exposure area on the photosensitive substrate or the pattern image by the projection optical system is distorted. An object of the present invention is to obtain a photomask, a projection exposure method, and a projection exposure apparatus capable of performing high-resolution pattern exposure over the entire exposure area.

【0008】[0008]

【課題を解決するための手段】請求項1のフォトマスク
は、投影光学系を介して所定のパターンを感応基板上に
露光するために用いられるフォトマスクであり、上記の
課題を達成するために、前記感応基板上の露光領域内に
ある段差構造及び/又は前記投影光学系による結像面の
歪みに応じて、前記パターンの形成面側に、屈折率の異
なる領域が設けられたものである。
A photomask according to claim 1 is a photomask used for exposing a photosensitive substrate with a predetermined pattern through a projection optical system, and in order to achieve the above object. An area having a different refractive index is provided on the pattern formation surface side according to the step structure in the exposure area on the sensitive substrate and / or the distortion of the image plane formed by the projection optical system. ..

【0009】また、請求項2の投影露光方法は、原図基
板に形成されたパターンを投影光学系を介して感応基板
上に露光するに際して、上記の課題を達成するために、
前記原図基板のパターン形成面側に、前記感応基板上の
露光領域内にある段差構造及び/又は前記投影光学系に
よる結像面の歪みに応じた屈折率分布をもたせ、前記投
影光学系の結像面と前記露光領域の表面とがほぼ一致す
るように前記投影光学系の結像面の少なくとも一部分を
光軸方向に移動させるものである。
In order to achieve the above object, the projection exposure method according to a second aspect of the present invention achieves the above object when the pattern formed on the original drawing substrate is exposed on the sensitive substrate through the projection optical system.
The pattern formation surface side of the original drawing substrate is provided with a step structure in the exposure area on the sensitive substrate and / or a refractive index distribution according to the distortion of the image forming surface by the projection optical system, and the projection optical system is connected. At least a part of the image plane of the projection optical system is moved in the optical axis direction so that the image plane and the surface of the exposure area are substantially aligned with each other.

【0010】更に、請求項3の投影露光装置は、原図基
板に形成されたパターンの像を感応基板上に結像投影す
る投影光学系と、前記感応基板の表面が前記投影光学系
の結像面近傍に位置するように前記感応基板を保持する
ステージとを有し、上記の課題を達成するために、前記
感応基板上の露光領域内にある段差構造及び/又は前記
投影光学系による結像面の歪みに応じた屈折率分布をも
ち、前記投影光学系の結像面と前記露光領域の表面とが
ほぼ一致するように前記投影光学系の結像面の少なくと
も一部分を光軸方向に移動させる像面補正部材を備えた
ものである。
Further, in the projection exposure apparatus of the third aspect, a projection optical system for image-forming and projecting an image of the pattern formed on the original substrate onto the sensitive substrate, and the surface of the sensitive substrate is imaged by the projection optical system. In order to achieve the above object, there is provided a step structure in the exposure area on the sensitive substrate and / or an image formed by the projection optical system. It has a refractive index distribution according to the distortion of the surface, and moves at least a part of the image plane of the projection optical system in the optical axis direction so that the image plane of the projection optical system and the surface of the exposure region substantially coincide with each other. The image surface correcting member is provided.

【0011】[0011]

【作用】図3(後述する本発明の第1実施例に対応)を
参照して、本発明の作用を説明する。図において、フォ
トマスク1のパターン形成面側の所定の部分には、厚さ
が一定で屈折率が異なる透明膜1a,1bが被着されて
いる。パターン形成面のA1,A2 を射出し、透明膜1
a,1bを透過した光束IL1 ,IL2 が倍率mの投影
光学系3によってB1 ,B2 に結像するとき、光束IL
1 とIL2 では光路差が生じるため、図3に示されるよ
うに光軸方向の結像位置がΔdだけ異なることになる。
このとき、透明膜1a,1bの屈折率をn1 ,n2 (n
2 >n1 )、厚さをDとすると、式1が成立する。但し
Δn=n1 −n2 ,mは投影レンズの倍率である。 Δd={Δn/(n1 ・n2 )}・D・m2 …式1
The operation of the present invention will be described with reference to FIG. 3 (corresponding to the first embodiment of the present invention described later). In the figure, transparent films 1a and 1b having a constant thickness and different refractive indexes are deposited on predetermined portions of the photomask 1 on the pattern formation surface side. The A 1, A 2 of the pattern formation surface by injection, a transparent film 1
When the light fluxes IL 1 and IL 2 transmitted through a and 1b are imaged on B 1 and B 2 by the projection optical system 3 having the magnification m,
Since there is an optical path difference between 1 and IL 2 , the image forming positions in the optical axis direction differ by Δd as shown in FIG.
At this time, the refractive indexes of the transparent films 1a and 1b are set to n 1 , n 2 (n
2 > n 1 ) and the thickness is D, Formula 1 is established. However, Δn = n 1 −n 2 , m is the magnification of the projection lens. Δd = {Δn / (n 1 · n 2 )} · D · m 2 Equation 1

【0012】即ち、上記のΔdが露光領域の段差に相当
するように、透明膜1a,1bの屈折率,厚さを選択し
て、透明膜1aを露光領域凹部対応する箇所に、透明膜
1bを露光領域凸部に対応する箇所に被着すれば、凹
部,凸部とも結像面に合致することになる。この際、フ
ォトマスク1を透過して投影光学系3に入射する光束及
び投影光学系3から射出される光束の主光線が光軸に対
して傾いていると、結像面を光軸方向にずらすことによ
って像の大きさも変わってしまうので、投影光学系3は
両側テレセントリックであることが望ましい。
That is, the refractive indexes and the thicknesses of the transparent films 1a and 1b are selected so that the above-mentioned Δd corresponds to the step difference of the exposure region, and the transparent film 1a is placed at a position corresponding to the concave portion of the exposure region. By depositing a portion corresponding to the convex portion of the exposure area, both the concave portion and the convex portion coincide with the image plane. At this time, if the principal rays of the light flux that has passed through the photomask 1 and is incident on the projection optical system 3 and the light flux that is emitted from the projection optical system 3 are inclined with respect to the optical axis, the image plane is oriented in the optical axis direction. Since the size of the image also changes due to the shift, it is desirable that the projection optical system 3 be both-side telecentric.

【0013】また、感応基板は平坦で結像面に歪みがあ
る場合は、Δdが結像面の光軸方向の位置の差に相当す
るように透明膜1a,1bの屈折率,厚さを選択して、
結像面が凸となっている部分に屈折率の小さい透明膜1
aを、結像面が凹となっている部分に屈折率の大きい透
明膜1bを被着すれば、結像面の歪みを補正され、露光
領域全体を結像面と合致させることができる。
When the sensitive substrate is flat and the image plane is distorted, the refractive indexes and thicknesses of the transparent films 1a and 1b are set so that Δd corresponds to the difference in the position of the image plane in the optical axis direction. Select
A transparent film 1 having a small refractive index in the portion where the image plane is convex
If a is coated with a transparent film 1b having a large refractive index in a portion where the image forming surface is concave, the distortion of the image forming surface can be corrected and the entire exposure area can be matched with the image forming surface.

【0014】なお、図3では簡単のため厚さが同じで屈
折率の異なる透明膜をパターン形成面に被着することに
より結像面を光軸方向に移動させているが、被着する透
明膜の厚さは一定である必要はない。
In FIG. 3, for simplicity, a transparent film having the same thickness and a different refractive index is applied to the pattern forming surface to move the image forming surface in the optical axis direction. The thickness of the film does not have to be constant.

【0015】更に、図3では露光領域の凹凸や像面の歪
みに対してフォトマスク自体に屈折率の異なる領域を設
けることで対応しているが、図3中の透明膜1a,1b
とフォトマスクとを分離することも可能である。即ち、
投影露光装置のフォトマスクに近接して、露光領域の凹
凸や像面の歪み応じた屈折率分布をもつ像面補正部材を
配置すれば、図3で説明したと同様にして露光領域全体
を結像面に合致させることができる。
Further, in FIG. 3, the unevenness of the exposure area and the distortion of the image plane are dealt with by providing areas having different refractive indexes in the photomask itself, but the transparent films 1a and 1b in FIG.
It is also possible to separate the photomask and the photomask. That is,
By disposing an image plane correction member having a refractive index distribution according to the unevenness of the exposure region or the distortion of the image plane in the vicinity of the photomask of the projection exposure apparatus, the entire exposure region is connected in the same manner as described with reference to FIG. Can be matched to the image plane.

【0016】本発明において、結像面を移動させるため
に設ける膜(図3の透明膜1a,1b)は、露光光に対
して透明であれば良く、例えばガラス,石英,PMM
A,フッ素樹脂等があるが、これらに限定されるもので
はない。所望の屈折率分布をもたせることは、透明膜の
特定の部分にイオンビームを注入したり、フォトレジス
トをマスクとして屈折率の異なる物質を選択的に堆積さ
せたり、あるいは、逆に不要部分をエッチングすること
によって行なうことができる。
In the present invention, the films (transparent films 1a and 1b in FIG. 3) provided for moving the image plane may be transparent to the exposure light, for example, glass, quartz, PMM.
A, fluororesin, etc., but not limited to these. The desired refractive index distribution can be obtained by injecting an ion beam into a specific part of the transparent film, selectively depositing substances with different refractive indexes using a photoresist as a mask, or conversely etching unnecessary parts. Can be done by doing.

【0017】[0017]

【実施例】図1を参照して、本発明の第1実施例を説明
する。まず、図1(a) は、本実施例で用いたフォトマス
クのパターン領域PAの平面図である。形成されている
パターンは、マスク上寸法で2.5μmのライン・アン
ド・スペースパターンである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIG. First, FIG. 1A is a plan view of the pattern area PA of the photomask used in this embodiment. The formed pattern is a line and space pattern having a dimension on the mask of 2.5 μm.

【0018】次に、図1(b) は、本実施例によるフォト
マスクを用いて投影露光を行なった様子を示す概念図で
ある。図において、レジストを塗布したウエハ(感応基
板)4には図1(a) 中の点線に相当する部分に0.1μ
mの段差が生じているものとし、5分の1縮小投影レン
ズ3を用いて投影露光を行なう。ここで、フォトマスク
1のパターン形成面に、100μmの厚さの透明膜1
a,1bを形成して、ウエハ4の段差に対応するものと
し、透明膜1a,1bの屈折率n1 ,n2 は1.5付近
でn1 <n2 であるとすると、前述した式1から、n1
=1.5,n2 =1.55,Δn=0.5となる。即
ち、図1(b) において、フォトマスク1のウエハ4凹部
に対応する部分には屈折率1.5の透明膜1aを被着
し、ウエハ4凸部に対応する部分には屈折率1.55の
透明膜1bを被着すれば良い。
Next, FIG. 1B is a conceptual diagram showing a state in which projection exposure is performed using the photomask according to this embodiment. In the figure, on the wafer (sensitive substrate) 4 coated with resist, 0.1 μ is applied to the portion corresponding to the dotted line in FIG. 1 (a).
Assuming that a step of m has occurred, projection exposure is performed using the 1/5 reduction projection lens 3. Here, the transparent film 1 having a thickness of 100 μm is formed on the pattern formation surface of the photomask 1.
a and 1b are formed to correspond to the steps of the wafer 4, and the refractive indexes n 1 and n 2 of the transparent films 1a and 1b are n 1 <n 2 near 1.5, the above formula 1 to n 1
= 1.5, n 2 = 1.55, Δn = 0.5. That is, in FIG. 1B, the transparent film 1a having a refractive index of 1.5 is applied to the portion of the photomask 1 corresponding to the concave portion of the wafer 4, and the portion corresponding to the convex portion of the wafer 4 has a refractive index of 1. The transparent film 1b of 55 may be applied.

【0019】このようなフォトマスクを用いて投影露光
を行なえば、透明膜1aを通過した光束IL1 はウエハ
4の凹部に結像し、透明膜1bを透過した光束IL2
ウエハ4の凸部に結像することになり、露光領域全体が
結像面に合致し、良好な結像性能が得られる。
When projection exposure is performed using such a photomask, the light flux IL 1 that has passed through the transparent film 1a forms an image in the concave portion of the wafer 4, and the light flux IL 2 that has passed through the transparent film 1b is convex on the wafer 4. An image is formed on the part, and the entire exposure area matches the image forming surface, and good image forming performance is obtained.

【0020】これに対して、図1(c) は従来のフォトマ
スク101を用いて、上記の第1実施例と同じ条件で投
影露光をした様子を示すものである。図に示されるよう
に、ウエハ4の凹部に結像面を合わせると、ウエハ4の
凸部は結像面と合致しなくなり、露光領域全体で良好な
結像性能を得ることはできない。
On the other hand, FIG. 1 (c) shows a state in which projection exposure is performed using the conventional photomask 101 under the same conditions as in the above-described first embodiment. As shown in the figure, when the image forming surface is aligned with the concave portion of the wafer 4, the convex portion of the wafer 4 does not coincide with the image forming surface, and good image forming performance cannot be obtained in the entire exposure region.

【0021】次に、図2は本発明の第2の実施例による
フォトマスクを用いて実施例1と同じ露光装置で投影露
光を行なった様子を示したものである。この実施例で
は、フォトマスク10に設ける透明膜10a,10bに
ついて、ウエハ4の凹凸に対応して屈折率だけでなく膜
厚も変えている。膜厚の調整は、透明膜10a,10b
を成膜する際に行なっても良いし、成膜後、エッチング
によって特定の箇所だけ膜厚を減少させても良い。屈折
率と膜厚を調整することによって、第1実施例と同様に
露光領域全体を結像面に合致させることができる。
Next, FIG. 2 shows a state in which projection exposure is performed by the same exposure apparatus as that of the first embodiment using the photomask according to the second embodiment of the present invention. In this embodiment, not only the refractive index but also the film thickness of the transparent films 10a and 10b provided on the photomask 10 are changed according to the unevenness of the wafer 4. The film thickness is adjusted by the transparent films 10a and 10b
May be performed at the time of forming the film, or after the film is formed, the film thickness may be reduced only at a specific portion by etching. By adjusting the refractive index and the film thickness, the entire exposure region can be matched with the image plane as in the first embodiment.

【0022】更に、ウエハの露光領域にある段差が比較
的大きい場合等については、フォトマスク自体に段差を
設けたり、フォトマスクの特定の箇所に透明膜(屈折率
は同じ)を設けることによって、結像面を移動させる方
法を採用しても良い。これらの方法は、本願出願人が特
願平3−200580号(平成3年8月9日出願)で提
案しているものであるが、図4,図5を参照して簡単に
説明する。
Further, when the step in the exposure area of the wafer is relatively large, the step is provided on the photomask itself or a transparent film (having the same refractive index) is provided on a specific portion of the photomask. A method of moving the image plane may be adopted. These methods are proposed by the applicant of the present application in Japanese Patent Application No. 3-200580 (filed on August 9, 1991), and will be briefly described with reference to FIGS. 4 and 5.

【0023】まず、図4(b) において、光軸方向の座標
がDだけ異なる2点A1 ,A2 から射出した光束IL
1 ,IL2 が、倍率mの投影レンズ3により、光軸方向
の座標がΔdだけ異なる2点B1 ,B2 に結像されるも
のとすると、式2が成立する。 Δd=D・m2 …式2 従って、Δdがウエハの段差に相当する値となるよう
に、フォトマスク20’自体にD=Δd/m2 の段差を
設ければ凹凸のある露光領域と結像面を合致させること
ができる。
First, in FIG. 4B, the luminous flux IL emitted from two points A 1 and A 2 whose coordinates in the optical axis direction differ by D.
Assuming that 1 and IL 2 are imaged at two points B 1 and B 2 whose coordinates in the optical axis direction are different by Δd by the projection lens 3 having a magnification of m, Expression 2 is established. Δd = D · m 2 Formula 2 Therefore, if a step of D = Δd / m 2 is provided on the photomask 20 ′ itself so that Δd becomes a value corresponding to the step of the wafer, the exposure area with unevenness is connected. The image planes can be matched.

【0024】例えば、図4(a) において、投影レンズ3
の倍率が5分の1(m=0.2)であり、ウエハ4に1
μmの段差がある場合には、フォトマスク20に25μ
mの段差を設ければ良い。この際、フォトマスク20の
パターンが、図1(a) のように段差部分の両側でつなが
っている場合には、ウエハ4上の段差の傾斜に合わせて
(ウエハ4の段差は一般に直角状ではなく傾斜をもつ)
フォトマスク20に設ける段差にも傾斜をつけることが
望ましい。
For example, in FIG. 4A, the projection lens 3
Is one-fifth (m = 0.2), and the wafer 4 has a magnification of 1
If there is a step of μm, the photomask 20 has
A step of m may be provided. At this time, when the pattern of the photomask 20 is connected on both sides of the step portion as shown in FIG. 1A, the step of the wafer 4 is adjusted to the inclination of the step on the wafer 4 (the step of the wafer 4 is generally a right angle). Without inclination)
It is desirable that the steps provided on the photomask 20 also be inclined.

【0025】次に、フォトマスク上に厚さの異なる透明
膜(屈折率一定)を形成する場合について説明する。図
5(b) において、被着された透明膜30a’の膜厚差が
ΔDである2点A1 ,A2 から射出した光束IL1 ,I
2 が倍率mの投影レンズ3により、光軸方向にΔdだ
け異なる2点B1 ,B2 に結像されるものとすると、式
3が成立する。但しnは透明膜30a’の屈折率、1は
空気の屈折率である。 Δd={(n−1)/n}・ΔD・m2 …式3 従って、Δdがウエハの段差に相当する値となるよう
に、透明膜30a’の膜厚差を調整すれば凹凸のある露
光領域と結像面を合致させることができる。
Next, the case of forming transparent films (having a constant refractive index) having different thicknesses on the photomask will be described. In FIG. 5B, the luminous fluxes IL 1 and I emitted from the two points A 1 and A 2 where the film thickness difference of the deposited transparent film 30a ′ is ΔD.
If L 2 is imaged at two points B 1 and B 2 which are different by Δd in the optical axis direction by the projection lens 3 having the magnification m, the expression 3 is established. However, n is the refractive index of the transparent film 30a ', and 1 is the refractive index of air. Δd = {(n−1) / n} · ΔD · m 2 Equation 3 Therefore, if the film thickness difference of the transparent film 30a ′ is adjusted so that Δd becomes a value corresponding to the step of the wafer, there is unevenness. The exposure area and the image plane can be matched.

【0026】例えば、図5(a) において、投影レンズ3
の倍率が5分の1(m=0.2)、ウエハ4の段差が
0.5μm、透明膜30aの屈折率が1.5であると
き、式3から透明膜30aの膜厚は37.5μmとすれ
ば良いことがわかる。
For example, in FIG. 5A, the projection lens 3
Is 1/5 (m = 0.2), the level difference of the wafer 4 is 0.5 μm, and the refractive index of the transparent film 30a is 1.5, the thickness of the transparent film 30a is 37. It can be seen that 5 μm is sufficient.

【0027】次に、図6は本発明の第3実施例による投
影露光装置の概略的な構成を示す模式図である。図にお
いて、照明系2は超高圧水銀ランプ等の光源、オプチカ
ルインテグレータ等を含み、レジスト層を感光させる波
長域の露光用照明光ILをほぼ均一な照度でフォトマス
ク40に照射する。フォトマスク40のパターン領域P
Aを通過した露光光ILは、両側テレセトリックな投影
レンズ3に入射し、投影レンズ3はフォトマスク40の
下面にクロム等の遮光層により形成されたパターンの像
を、表面にレジスト層が形成されたウエハ4上に結像投
影する。尚、本実施例ではフォトマスク40自体を本発
明における像面補正部材として用いているが、このこと
については後で詳しく説明する。
Next, FIG. 6 is a schematic diagram showing the schematic construction of a projection exposure apparatus according to the third embodiment of the present invention. In the figure, the illumination system 2 includes a light source such as an ultra-high pressure mercury lamp, an optical integrator, and the like, and irradiates the photomask 40 with the exposure illumination light IL in the wavelength range in which the resist layer is exposed to light with a substantially uniform illuminance. The pattern area P of the photomask 40
The exposure light IL that has passed through A is incident on the both-side telecentric projection lens 3, and the projection lens 3 forms an image of a pattern formed by a light-shielding layer such as chrome on the lower surface of the photomask 40 and a resist layer on the surface. An image is projected on the formed wafer 4. In this embodiment, the photomask 40 itself is used as the image plane correction member in the present invention, which will be described later in detail.

【0028】また、投影レンズ3の倍率がmの時、当然
ながらフォトマスク40のパターンの大きさは、ウエハ
4上で形成すべきパターンの1/m倍になっている。投
影レンズ3は露光光ILの波長に関して良好に色収差補
正され、その露光波長のもとでフォトマスク2とウエハ
4とは互いに共役になるように配置されている。
When the magnification of the projection lens 3 is m, the size of the pattern of the photomask 40 is naturally 1 / m times the size of the pattern to be formed on the wafer 4. The projection lens 3 is well corrected for chromatic aberration with respect to the wavelength of the exposure light IL, and the photomask 2 and the wafer 4 are arranged so as to be conjugate with each other under the exposure wavelength.

【0029】また、ウエハ4はモータ6によりステップ
アンドリピート方式で2次元移動するウエハステージ5
に載置され、ウエハ4上の1つの露光領域に対するフォ
トマスク40の転写露光が終了すると、次の露光領域の
位置までステッピングされる。ここで、ウエハステージ
5はウエハ4の表面を投影レンズ3の結像面IM近傍に
配置するようにウエハ4を保持している。ウエハステー
ジ5の2次元的な位置は干渉計7によって、例えば0.
01μm程度の分解能で常時検出される。
Further, the wafer 4 is two-dimensionally moved by a motor 6 in a step-and-repeat manner.
When the transfer exposure of the photomask 40 onto one exposure area on the wafer 4 is completed, the wafer is stepped to the position of the next exposure area. Here, the wafer stage 5 holds the wafer 4 so that the surface of the wafer 4 is arranged near the image plane IM of the projection lens 3. The two-dimensional position of the wafer stage 5 is measured by the interferometer 7, for example, 0.
It is always detected with a resolution of about 01 μm.

【0030】図8(a) はウエハ上に形成された複数の露
光領域のうちの1つの領域SAを示し、1つの露光領域
SAの周囲4辺には通常50〜100μm程度の幅のス
トリートラインSTが形成される。ストリートラインS
Tはウエハ上のチップを切り出す際の切りしろであっ
て、ここに回路パターンの一部がはみ出して形成される
ことはない。図8(b) は図8(a) のB−B’矢視断面図
であって、露光領域SAが部分的に段差構造となってい
ることを示している。尚、ここでは露光領域SA内の部
分領域W11とW12との段差(間隔)をdで表している。
FIG. 8A shows one area SA of the plurality of exposure areas formed on the wafer, and the four side lines around one exposure area SA usually have street lines with a width of about 50 to 100 μm. ST is formed. Street line S
T is a cutting margin when the chips on the wafer are cut out, and a part of the circuit pattern is not formed to extend there. FIG. 8B is a sectional view taken along the line BB ′ of FIG. 8A and shows that the exposure area SA partially has a step structure. Here, the step (spacing) between the partial areas W 11 and W 12 in the exposure area SA is represented by d.

【0031】さて、上記の如く露光領域SAの一部が段
差構造となっていることから、本実施例では露光領域S
Aの段差構造に対応してフォトマスク40のパターン面
に屈折率の異なる領域を形成している。これによって、
投影レンズ3の結像面IM(すなわちフォトマスクパタ
ーンの投影像)の一部分が光軸AXに沿った方向(Z方
向)にシフト(移動)し、投影レンズ3の結像面IMと
露光領域SAの表面とがその全面にわたってほぼ一致す
ることになる(図9)。従って、本実施例ではパターン
面側に屈折率の異なる領域をもつフォトマスク40が、
像面補正部材として用いられることとなっている。
Since a part of the exposure area SA has a step structure as described above, the exposure area S is used in this embodiment.
Corresponding to the step structure of A, regions having different refractive indexes are formed on the pattern surface of the photomask 40. by this,
A part of the image plane IM of the projection lens 3 (that is, the projected image of the photomask pattern) is shifted (moved) in the direction along the optical axis AX (Z direction), and the image plane IM of the projection lens 3 and the exposure area SA are obtained. The surface of the surface and the surface of the surface substantially coincide with each other (FIG. 9). Therefore, in this embodiment, the photomask 40 having regions having different refractive indexes on the pattern surface side is
It is supposed to be used as an image plane correction member.

【0032】図7(a) は本実施例で好適なフォトマスク
40の具体的な構成の一例を示しており、図7(b) は図
7(a) のA−A’矢視断面図である。図7(a) ,(b) に
示すようにフォトマスク40のパターン面には、露光領
域SAの段差構造に対応して屈折率の異なる領域R11
12が形成されている。すなわち、図8(b) 中に示した
露光領域SA内での段差(間隔d)基づいて、パターン
領域PA内において部分領域W11に対応する領域R11
部分領域W12に対応する領域R12とには、それぞれ屈折
率の異なる透明膜40a,40bが被着されている。こ
こで、透明膜40a,40bの屈折率差Δn及び膜厚D
は、前述した式1を満たすように設定されるが、ウエハ
4上に形成されるレジスト層の膜厚、レジストの種類、
及びパターンのサイズや配列の密度等の影響でΔn,D
の最適値は変化し得るので、予め実験あるいはシミュレ
ーションを行ってフォトマスク毎に最適値を決めておく
ことが望ましい。
FIG. 7A shows an example of a specific structure of a photomask 40 suitable for this embodiment, and FIG. 7B is a sectional view taken along the line AA 'of FIG. 7A. Is. As shown in FIGS. 7A and 7B, on the pattern surface of the photomask 40, regions R 11 having different refractive indices corresponding to the step structure of the exposure region SA,
R 12 is formed. That is, based on the step (distance d) in the exposure area SA shown in FIG. 8B, the area R 11 corresponding to the partial area W 11 and the area R corresponding to the partial area W 12 in the pattern area PA. Transparent films 40a and 40b having different refractive indexes are adhered to 12 respectively. Here, the refractive index difference Δn and the film thickness D of the transparent films 40a and 40b
Is set so as to satisfy the above-mentioned formula 1, but the film thickness of the resist layer formed on the wafer 4, the type of resist,
And Δn, D due to the influence of pattern size and array density.
Since the optimum value of 1 can vary, it is desirable to determine the optimum value for each photomask by conducting experiments or simulations in advance.

【0033】次に、図10を参照して第4実施例による
投影露光装置について説明する。図10は本実施例によ
る装置の構成の一例を示す図である。尚、図6の実施例
では像面補正部材としてフォトマスクを用いていたが、
本実施例ではフォトマスク50と投影レンズ3との間に
配置された平行平板ガラス51を像面補正部材として用
いる点のみが異なる。
Next, a projection exposure apparatus according to the fourth embodiment will be described with reference to FIG. FIG. 10 is a diagram showing an example of the configuration of the apparatus according to the present embodiment. Although the photomask is used as the image plane correction member in the embodiment of FIG. 6,
The present embodiment is different only in that the parallel flat plate glass 51 arranged between the photomask 50 and the projection lens 3 is used as an image plane correction member.

【0034】図10に示すように、本実施例では露光領
域内の段差構造に対応して少なくとも一方の面(図中で
は上面のみ)に屈折率の異なる透明膜51a,51bを
被着した平行平板ガラス51を、フォトマスク50と投
影レンズ3との間に配置している。これによって、本実
施例においても投影光学系の結像面と露光領域の表面と
をその全面にわたってほぼ一致させることが可能とな
る。この際、平行平板ガラス51は出来るだけフォトマ
スク50に近接して配置することが望ましい。また、透
明膜51a,51bもフォトマスク50に近い方の面に
形成することが望ましく、これは露光領域上で結像面の
段差部分の分離を明確に行う上で有効である。なお、図
の例では平行平板ガラスに透明膜51a,51bを被着
して所定の屈折率分布をもたせているが、平行平板ガラ
スにイオンビームを注入する等して平行平板ガラス自体
に屈折率分布をもたせるようにしても良い。
As shown in FIG. 10, in this embodiment, at least one surface (only the upper surface in the drawing) corresponding to the step structure in the exposure area is coated with transparent films 51a and 51b having different refractive indexes. The flat glass plate 51 is arranged between the photomask 50 and the projection lens 3. As a result, also in this embodiment, the image plane of the projection optical system and the surface of the exposure area can be made to substantially coincide with each other over the entire surface. At this time, it is desirable that the parallel plate glass 51 be arranged as close to the photomask 50 as possible. Further, it is desirable that the transparent films 51a and 51b are also formed on the surface closer to the photomask 50, which is effective in clearly separating the step portion of the image plane on the exposure area. In the example shown in the figure, the transparent films 51a and 51b are applied to the parallel flat plate glass so as to have a predetermined refractive index distribution. However, the parallel flat plate glass itself is injected with an ion beam or the like so that the parallel flat plate glass itself has a refractive index. You may make it have a distribution.

【0035】ところで、以上の実施例ではウエハ(露光
領域)上での段差構造を2段として(すなわち図8(b)
に示したように露光領域SAを2つの部分領域W11,W
12に分けて)説明したが、当然ながら互いに段差(間隔
dに相当)が異なる3段以上の段差構造にも簡単に対応
することができる。尚、本発明を実施するに当たって投
影レンズ3はウエハ側のみならずフォトマスク側もテレ
セントリッグてあることが望ましい。また、図6,図1
0の実施例ではステッパーを例に挙げて説明したが、ス
テッパー以外の露光装置であっても、投影光学系を備え
た露光装置(例えば、ミラープロジェクション方式でも
良い)であれば、本発明を適用できることは言うまでも
ない。さらに感光基板(半導体ウエハや液晶基板等)の
全面を等倍で一括露光する装置でも構わない。また、本
発明における像面補正部材はフォトマスクや平行平板ガ
ラスに限定されるものではなく、感光基板段差構造又は
結像面の歪みに対応した屈折率分布をもたせることので
きるものであれば、何でも構わない。
By the way, in the above embodiment, the stepped structure on the wafer (exposure region) has two steps (that is, FIG. 8B).
The exposure area SA is divided into two partial areas W 11 and W
Although it has been described (divided into 12 ), it is naturally possible to easily cope with a step structure having three or more steps having different steps (corresponding to the distance d). In carrying out the present invention, it is desirable that the projection lens 3 be telecentric not only on the wafer side but also on the photomask side. 6 and 1
In the embodiment of No. 0, the stepper has been described as an example, but the present invention is applied to any exposure apparatus other than the stepper as long as it is an exposure apparatus provided with a projection optical system (for example, a mirror projection system may be used). It goes without saying that you can do it. Further, an apparatus may be used which collectively exposes the entire surface of a photosensitive substrate (semiconductor wafer, liquid crystal substrate, etc.) at the same magnification. Further, the image plane correction member in the present invention is not limited to the photomask and the parallel flat plate glass, as long as it can have a refractive index distribution corresponding to the photosensitive substrate step structure or the distortion of the image plane. It doesn't matter.

【0036】[0036]

【発明の効果】以上のように本発明においては、フォト
マスクのパターン形成面側に感応基板の段差構造及び/
又は結像面の歪みに応じた屈折率分布をもたせるので、
感応基板が広い範囲に渡る段差構造をもつ場合や投影光
学系の収差によって結像面が歪んでいる場合でも、露光
領域全体に渡って良好な像質のパターンを形成すること
ができるという効果が得られる。
As described above, in the present invention, the step structure of the sensitive substrate and / or the step structure of the sensitive substrate is formed on the pattern forming surface side of the photomask.
Or because it has a refractive index distribution according to the distortion of the image plane,
Even if the sensitive substrate has a step structure over a wide range or the image plane is distorted due to the aberration of the projection optical system, it is possible to form a pattern with good image quality over the entire exposure region. can get.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a) は、第1実施例で用いたフォトマスク
に形成されたパターンの平面図、図1(b) は第1実施例
における投影露光のようすを示す概念図、図1(c) は従
来のフォトマスクを用いた投影露光の様子を示した概念
図である。
FIG. 1 (a) is a plan view of a pattern formed on a photomask used in the first embodiment, and FIG. 1 (b) is a conceptual diagram showing a projection exposure state in the first embodiment. 1 (c) is a conceptual diagram showing a state of projection exposure using a conventional photomask.

【図2】本発明の第2実施例における投影露光の様子を
示した概念図である。
FIG. 2 is a conceptual diagram showing a state of projection exposure in a second embodiment of the present invention.

【図3】本発明の作用を説明するための概念図である。FIG. 3 is a conceptual diagram for explaining the operation of the present invention.

【図4】図4(a) ,(b) は結像面を光軸方向に移動させ
るための更に別の例を説明するための概念図である。
4 (a) and 4 (b) are conceptual views for explaining still another example for moving the image plane in the optical axis direction.

【図5】図5(a) ,(b) は結像面を光軸方向に移動させ
るための更に別の例を説明するための概念図である。
5 (a) and 5 (b) are conceptual diagrams for explaining still another example for moving the image plane in the optical axis direction.

【図6】本発明の第3実施例による投影露光装置の構成
を示す模式的な構成図である。
FIG. 6 is a schematic configuration diagram showing a configuration of a projection exposure apparatus according to a third embodiment of the present invention.

【図7】図7(a) は第3実施例で用いられるフォトマス
ク(像面補正部材)の構成を示す平面図、図7(b) は図
7(a) のAA’矢視断面図である。
7 (a) is a plan view showing the configuration of a photomask (image plane correction member) used in the third embodiment, and FIG. 7 (b) is a sectional view taken along the line AA 'of FIG. 7 (a). Is.

【図8】図8(a) は感応基板上に形成された複数の露光
領域のうち1つの領域の様子を示す平面図、図8(b) は
図8(a) のBB’断面図である。
8A is a plan view showing a state of one of a plurality of exposure regions formed on a sensitive substrate, and FIG. 8B is a sectional view taken along line BB ′ of FIG. 8A. is there.

【図9】結像面が感応基板の段差構造に対応して補正さ
れている様子を示す断面図である。
FIG. 9 is a cross-sectional view showing how the image plane is corrected in accordance with the step structure of the sensitive substrate.

【図10】本発明の第3実施例による投影露光装置の構
成を示す要部構成図である。
FIG. 10 is a main part configuration diagram showing a configuration of a projection exposure apparatus according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,10,20,30,40,50 フォトマスク 1a,1b,10a,10b,30a,40a,40
b,50a,50b 透明膜 3 投影光学系 4 ウエハ 5 ウエハステージ 51 平行平板ガラス IM 結像面 PA パターン領域 SA 露光領域
1, 10, 20, 30, 40, 50 Photomasks 1a, 1b, 10a, 10b, 30a, 40a, 40
b, 50a, 50b Transparent film 3 Projection optical system 4 Wafer 5 Wafer stage 51 Parallel plate glass IM image plane PA pattern area SA exposure area

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 投影光学系を介して所定のパターンを感
応基板上に露光するために用いられるフォトマスクにお
いて、 前記感応基板上の露光領域内にある段差構造及び/又は
前記投影光学系による結像面の歪みに応じて、前記パタ
ーンの形成面側に、屈折率の異なる領域が設けられたこ
とを特徴とするフォトマスク。
1. A photomask used to expose a predetermined pattern on a sensitive substrate through a projection optical system, wherein a step structure in an exposure area on the sensitive substrate and / or a connection by the projection optical system. A photomask, characterized in that regions having different refractive indices are provided on the pattern formation surface side according to the distortion of the image plane.
【請求項2】 原図基板に形成されたパターンを投影光
学系を介して感応基板上に露光する方法において、 前記原図基板のパターン形成面側に、前記感応基板上の
露光領域内にある段差構造及び/又は前記投影光学系に
よる結像面の歪みに応じた屈折率分布をもたせ、前記投
影光学系の結像面と前記露光領域の表面とがほぼ一致す
るように前記投影光学系の結像面の少なくとも一部分を
光軸方向に移動させることを特徴とする露光方法。
2. A method of exposing a pattern formed on an original substrate onto a sensitive substrate via a projection optical system, wherein a step structure on the pattern forming surface side of the original substrate in an exposure area on the sensitive substrate. And / or by providing a refractive index distribution according to the distortion of the image plane formed by the projection optical system so that the image plane of the projection optical system and the surface of the exposure region substantially coincide with each other. An exposure method, wherein at least a part of the surface is moved in the optical axis direction.
【請求項3】 原図基板に形成されたパターンの像を感
応基板上に結像投影する投影光学系と、前記感応基板の
表面が前記投影光学系の結像面近傍に位置するように前
記感応基板を保持するステージとを備えた投影露光装置
において、 前記感応基板上の露光領域内にある段差構造及び/又は
前記投影光学系による結像面の歪みに応じた屈折率分布
をもち、前記投影光学系の結像面と前記露光領域の表面
とがほぼ一致するように前記投影光学系の結像面の少な
くとも一部分を光軸方向に移動させる像面補正部材を備
えたことを特徴とする投影露光装置。
3. A projection optical system for image-forming and projecting an image of a pattern formed on an original substrate onto a sensitive substrate, and the sensitive substrate such that the surface of the sensitive substrate is located in the vicinity of the image plane of the projection optical system. In a projection exposure apparatus including a stage for holding a substrate, the projection exposure apparatus has a step structure in an exposure area on the sensitive substrate and / or a refractive index distribution according to distortion of an image plane formed by the projection optical system, A projection comprising an image plane correction member that moves at least a part of the image plane of the projection optical system in the optical axis direction so that the image plane of the optical system and the surface of the exposure region substantially coincide with each other. Exposure equipment.
JP29206391A 1991-08-09 1991-10-14 Photomask, exposing method, and projection exposure device Pending JPH05107739A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP29206391A JPH05107739A (en) 1991-10-14 1991-10-14 Photomask, exposing method, and projection exposure device
US08/573,760 US5592259A (en) 1991-08-09 1995-12-18 Photomask, an exposure method and a projection exposure apparatus
US08/731,917 US5682226A (en) 1991-08-09 1996-10-22 Photomask, an exposure method and a projection exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29206391A JPH05107739A (en) 1991-10-14 1991-10-14 Photomask, exposing method, and projection exposure device

Publications (1)

Publication Number Publication Date
JPH05107739A true JPH05107739A (en) 1993-04-30

Family

ID=17777057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29206391A Pending JPH05107739A (en) 1991-08-09 1991-10-14 Photomask, exposing method, and projection exposure device

Country Status (1)

Country Link
JP (1) JPH05107739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165398A (en) * 2013-02-26 2014-09-08 Toshiba Corp Focus position adjustment apparatus, reticle, focus position adjustment program and method of manufacturing semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03203737A (en) * 1989-12-29 1991-09-05 Hitachi Ltd Mask and exposure device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03203737A (en) * 1989-12-29 1991-09-05 Hitachi Ltd Mask and exposure device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165398A (en) * 2013-02-26 2014-09-08 Toshiba Corp Focus position adjustment apparatus, reticle, focus position adjustment program and method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US6333776B1 (en) Projection exposure apparatus
JP2940553B2 (en) Exposure method
JPH0140490B2 (en)
JP3413160B2 (en) Illumination apparatus and scanning exposure apparatus using the same
US6890692B2 (en) Method of focus monitoring and manufacturing method for an electronic device
US6989229B2 (en) Non-resolving mask tiling method for flare reduction
JPS60223122A (en) Projection exposure device
US8085384B2 (en) Exposure apparatus
US5682226A (en) Photomask, an exposure method and a projection exposure apparatus
US20060109441A1 (en) Reticle, exposure apparatus, and methods for measuring the alignment state thereof
JP4296701B2 (en) Projection optical system, exposure apparatus provided with the projection optical system, and device manufacturing method using the exposure apparatus
JP2901201B2 (en) Photo mask
JPH05107739A (en) Photomask, exposing method, and projection exposure device
US20060110683A1 (en) Process of improved grayscale lithography
JP2007132981A (en) Objective optical system, aberration measuring instrument and exposure device
JP3082747B2 (en) Exposure equipment evaluation method
JPH0545864A (en) Photomask and exposing method and stepper
JP2004233401A (en) Photomask, photomask fabrication method and exposing method
US7655384B2 (en) Methods for reducing spherical aberration effects in photolithography
JPH0992601A (en) Projection aligner
JPH0620923A (en) Exposing method
JP2004354555A (en) Reflection refraction type projection optical system, exposing device and exposing method
JPH05216209A (en) Photomask
JP2006120899A (en) Projection optical system, adjustment method thereof, projection aligner, projection exposure method, and adjustment method of projection aligner
US20080106716A1 (en) Photomask, exposure method and apparatus that use the same, and semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20001017