JPH05107495A - Scanning optical device - Google Patents

Scanning optical device

Info

Publication number
JPH05107495A
JPH05107495A JP3299654A JP29965491A JPH05107495A JP H05107495 A JPH05107495 A JP H05107495A JP 3299654 A JP3299654 A JP 3299654A JP 29965491 A JP29965491 A JP 29965491A JP H05107495 A JPH05107495 A JP H05107495A
Authority
JP
Japan
Prior art keywords
lens
scanning direction
scanning
refracting power
main scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3299654A
Other languages
Japanese (ja)
Inventor
Manabu Kato
加藤  学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP3299654A priority Critical patent/JPH05107495A/en
Publication of JPH05107495A publication Critical patent/JPH05107495A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable design of a thin ftheta lens by forming a deflection surface of a light deflecting device comprising polygon mirrors in recessed form with a specified refracting power in main scanning direction only. CONSTITUTION:In a scanning optical device in which a beam radiated from a light source means 1 is reflected and deflected by a light deflecting device 5, introduced on a surface to be scanned 7 by an image-form optical system (ftheta lens 6), and the surface to be scanned is scanned by light, a deflection surface of a light deflecting device 5 comprises multiple reflection surfaces in recessed form with refracting power in main scanning direction only. Namely, the light deflecting device 5 is provided with multiple reflection surfaces (polygon surfaces) in recessed form with positive refracting power in main scanning direction only. Then, by distributing a part of the refracting power of an ftheta lens 6 on its reflection surface, the refracting power of the ftheta lens 6 is reduced to form the lens with one lens only. Thus the refracting power of the image- form optical system (ftheta lens 6) can be reduced, and the ftheta lens 6 can be constructed with a thin one lens only.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は走査光学装置に関し、特
に光源手段から放射した光束を凹面形状の反射面を偏向
面とする光偏向器(ポリゴンミラー)で反射偏向させ、
結像光学系(fθレンズ)を介して被走査面上を光走査
して画像情報を記録するようにした、例えばレーザービ
ームプリンター(LBP)やデジタル複写機等の装置に
好適な走査光学装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scanning optical device, and in particular, a light beam emitted from a light source means is reflected and deflected by an optical deflector (polygon mirror) having a concave reflecting surface as a deflecting surface.
The present invention relates to a scanning optical device suitable for a device such as a laser beam printer (LBP) or a digital copying machine, which records image information by optically scanning a surface to be scanned through an imaging optical system (fθ lens). It is a thing.

【0002】[0002]

【従来の技術】従来よりレーザービームプリンター(L
BP)等の走査光学装置に於いては画像信号に応じて光
源手段から放射した光束を光変調している。そして該光
変調された光束を例えばポリゴンミラーから成る光偏向
器により周期的に偏向させ、fθ特性を有する結像光学
系により感光性の記録媒体面上にスポット状に集束さ
せ、光走査して画像記録を行っている。
2. Description of the Related Art Conventionally, a laser beam printer (L
In a scanning optical device such as BP), the light flux emitted from the light source means is optically modulated according to the image signal. Then, the light-modulated light beam is periodically deflected by an optical deflector composed of, for example, a polygon mirror, focused on a photosensitive recording medium surface in a spot shape by an imaging optical system having an fθ characteristic, and optically scanned. Image recording.

【0003】図4は従来の走査光学装置の主走査方向の
要部断面図である。同図に於いて光源手段41から放射
した光束(発散光束)はコリメーターレンズ42により
平行光束とし、絞り43によって該光束(光量)を制限
して副走査方向にのみ屈折力を有するシリンドリカルレ
ンズ44に入射している。
FIG. 4 is a sectional view of a main part of a conventional scanning optical device in the main scanning direction. In the figure, the luminous flux (divergent luminous flux) emitted from the light source means 41 is converted into a parallel luminous flux by the collimator lens 42, and the luminous flux (amount of light) is limited by the diaphragm 43 so that the cylindrical lens 44 has a refracting power only in the sub-scanning direction. Is incident on.

【0004】シリンドリカルレンズ44に入射した平行
光束のうち主走査面内に於いてはそのまま平行光束の状
態で射出する。又副走査面内に於いては集束してポリゴ
ンミラーから成る光偏向器45の反射面(ポリゴン面)
45aにほぼ線像として結像している。そして光偏向器
45の反射面45aで反射偏向された光束はfθ特性を
有する2枚のレンズ46a,46bから成る結像光学系
(fθレンズ系)46を介して被走査面47上に導光し
ている。
Of the parallel light beam incident on the cylindrical lens 44, the parallel light beam is emitted as it is in the main scanning plane. Further, in the sub-scanning plane, the reflection surface (polygon surface) of the optical deflector 45 which is converged and formed of a polygon mirror.
The image is formed on the line 45a as a substantially linear image. Then, the light beam reflected and deflected by the reflecting surface 45a of the optical deflector 45 is guided to the surface 47 to be scanned through an imaging optical system (fθ lens system) 46 including two lenses 46a and 46b having fθ characteristics. is doing.

【0005】そして光偏向器45を矢印A方向に回転さ
せることによって被走査面47上を光走査している。
By rotating the optical deflector 45 in the direction of arrow A, the surface 47 to be scanned is optically scanned.

【0006】[0006]

【発明が解決しようとする課題】従来この種の走査光学
装置に於いては一般に光源手段から放射した光束(発散
光束)を平行光束とする為コリメーターレンズを用いて
いる。
Conventionally, in this type of scanning optical apparatus, a collimator lens is generally used in order to convert a light beam (divergent light beam) emitted from a light source means into a parallel light beam.

【0007】このコリメーターレンズを用いた場合に
は、例えば該コリメーターレンズと光源手段との相対的
な位置合わせ、即ちコリメーターレンズの光軸に対して
主走査面内に光源手段の光射出面を精度良く位置させる
等のコリメーター調整が必要となってくる。一般にこの
コリメーター調整は大変面倒でこれが原因となって低コ
スト化を図るのを妨げる一つの原因となっていた。
When this collimator lens is used, for example, the relative alignment between the collimator lens and the light source means, that is, the light emission of the light source means in the main scanning plane with respect to the optical axis of the collimator lens. It becomes necessary to adjust the collimator such as positioning the surface with high accuracy. Generally, this collimator adjustment is very troublesome, and this is one of the causes that hinders cost reduction.

【0008】そこでコリメーターレンズを用いずに光源
手段からの発散光束を直接ポリゴンミラーより成る光偏
向器の反射面に入射させるようにした走査光学装置が種
々提案されている。
Therefore, various scanning optical devices have been proposed in which the divergent light beam from the light source means is directly incident on the reflecting surface of the optical deflector composed of a polygon mirror without using a collimator lens.

【0009】この様な走査光学装置に於いて光偏向器と
して平面反射面を有するポリゴンミラーを使用した場
合、該反射面で反射偏向され、結像光学系(fθレン
ズ)に入射する光束は発散光束となる。
When a polygon mirror having a plane reflecting surface is used as a light deflector in such a scanning optical device, a light beam reflected by the reflecting surface and incident on the imaging optical system (fθ lens) is diverged. It becomes a luminous flux.

【0010】従って、被走査面上に光束を集束させる為
には該光束を発散光束から集束光束にかえる必要があ
り、その為fθレンズの屈折力(パワー)はコリメータ
ーレンズを用いた場合に比べかなり大きくしなければな
らなかった。
Therefore, in order to focus the light flux on the surface to be scanned, it is necessary to change the light flux from the divergent light flux to the focused light flux, and therefore, the refractive power (power) of the fθ lens is in the case of using a collimator lens. I had to make it quite large.

【0011】又、低コストを追従する為にはfθレンズ
を1枚のレンズより構成するのが良い。fθレンズを1
枚のレンズより構成した走査光学装置は、例えば特開昭
55−7727号公報や特開昭58−5706号公報等
で種々提案されている。
Further, in order to follow the low cost, it is preferable that the fθ lens is composed of one lens. fθ lens 1
Various scanning optical devices composed of a single lens have been proposed, for example, in JP-A-55-7727 and JP-A-58-5706.

【0012】一般にfθレンズを1枚のレンズで構成す
る場合は光学性能を維持する為にレンズ面を非球面にす
る必要がある。fθレンズを非球面レンズより構成する
ときは非球面加工の点よりプラスチック等の材料で加工
成形することが望ましい。又非球面加工上の点から非球
面レンズは肉厚の薄いレンズが求められる。
Generally, when the fθ lens is composed of one lens, it is necessary to make the lens surface aspherical in order to maintain the optical performance. When the fθ lens is composed of an aspherical lens, it is desirable to process and mold it with a material such as plastic in terms of aspherical surface processing. Further, from the point of view of processing the aspherical surface, the aspherical lens is required to be a thin lens.

【0013】しかしながら前述の如くfθレンズに所定
の屈折力を付与しようとすると曲率の点よりそのレンズ
厚をあまり薄くすることはできない。
However, if the fθ lens is to be given a predetermined refractive power as described above, the lens thickness cannot be made too thin in view of the curvature.

【0014】本発明はコリメーターレンズを用いず、そ
の代わりに主走査方向にのみ屈折力を持つ凹面形状の反
射面を偏向面とする光偏向器を利用し、該反射面に正の
屈折力を持たせることにより、結像光学系(fθレン
ズ)の屈折力の一部を該反射面に分担させ、これにより
結像光学系(fθレンズ)の屈折力を小さくし肉厚の薄
い1枚のレンズでfθレンズを構成し、低コスト化及び
組立調整の簡素化を図った走査光学装置の提供を目的と
する。
The present invention does not use a collimator lens, but instead uses an optical deflector having a concave reflecting surface having a refracting power only in the main scanning direction as a deflecting surface. The reflecting surface has a positive refracting power. By making the reflecting surface share a part of the refracting power of the imaging optical system (fθ lens), the refracting power of the imaging optical system (fθ lens) can be reduced, and one thin sheet can be used. It is an object of the present invention to provide a scanning optical device in which the fθ lens is configured by the above lens and the cost is reduced and the assembly adjustment is simplified.

【0015】[0015]

【課題を解決するための手段】本発明の走査光学装置
は、光源手段から放射した光束を光偏向器によって反射
偏向させ結像光学系により被走査面上に導光し、該被走
査面上を光走査する走査光学装置において、該光偏向器
の偏向面は主走査方向にのみ屈折力を有する凹面形状か
ら成る複数の反射面より成っていることを特徴としてい
る。
In a scanning optical apparatus of the present invention, a light beam emitted from a light source means is reflected and deflected by an optical deflector and guided by an imaging optical system onto a surface to be scanned, and the surface to be scanned is scanned. In the scanning optical device for optical scanning, the deflecting surface of the optical deflector is composed of a plurality of reflecting surfaces each having a concave shape having a refractive power only in the main scanning direction.

【0016】[0016]

【実施例】図1(A),(B)は各々本発明の実施例1
の走査光学装置の主走査方向及び副走査方向の要部断面
図である。
Embodiments FIGS. 1A and 1B show Embodiment 1 of the present invention.
FIG. 3 is a cross-sectional view of the main parts of the scanning optical device in the main scanning direction and the sub scanning direction.

【0017】同図に於いて1は光源手段であり、例えば
半導体レーザより成っている。3は絞りであり、光源手
段1から放射した発散光束(光量)を制限している。4
はシリンドリカルレンズ(シリンダー)であり、副走査
方向のみ所定の屈折力を有している。5は光偏向器であ
り、ポリゴンミラーより成っておりモータ等の駆動手段
(不図示)により矢印A方向に回転している。
In FIG. 1, reference numeral 1 denotes a light source means, which is composed of, for example, a semiconductor laser. A diaphragm 3 limits the divergent light flux (light quantity) emitted from the light source means 1. Four
Is a cylindrical lens (cylinder) and has a predetermined refractive power only in the sub-scanning direction. An optical deflector 5 is composed of a polygon mirror and is rotated in the direction of arrow A by driving means (not shown) such as a motor.

【0018】本実施例に於いての光偏向器5は主走査方
向にのみ正の屈折力を有する凹面形状より成る複数の反
射面(ポリゴン面)を有している。そして後述するよう
にfθレンズ6の屈折力の一部を該反射面に分担させる
ことにより、該fθレンズ6の屈折力を小さくして1枚
のレンズで構成している。
The optical deflector 5 in this embodiment has a plurality of reflecting surfaces (polygonal surfaces) each having a concave shape having a positive refractive power only in the main scanning direction. Then, as will be described later, a part of the refracting power of the fθ lens 6 is shared by the reflecting surface to reduce the refracting power of the fθ lens 6 to form one lens.

【0019】6はfθ特性を有する結像光学系(fθレ
ンズ)であり、主走査方向と副走査方向とで互いに異な
る曲率を持つ正の屈折力の1枚のレンズより構成してい
る。fθレンズ6は光偏向器5によって反射偏向された
画像情報に基づく光束を被走査面(像面)7上に結像さ
せている。
Reference numeral 6 denotes an image forming optical system (f.theta. Lens) having f.theta. Characteristics, which is composed of a single lens having a positive refractive power and having different curvatures in the main scanning direction and the sub scanning direction. The fθ lens 6 forms a light beam based on the image information reflected and deflected by the optical deflector 5 on the surface to be scanned (image surface) 7.

【0020】本実施例に於いては光源手段1より放射し
た発散光束は絞り3によって光量を制限しシリンドリカ
ルレンズ4を介して光偏向器5の反射面5aに入射して
いる。
In this embodiment, the divergent light flux emitted from the light source means 1 is limited in quantity by the diaphragm 3 and is incident on the reflecting surface 5a of the optical deflector 5 through the cylindrical lens 4.

【0021】このとき、該反射面5aで偏向反射される
光束は該反射面5aが曲率を持っている為、偏向角(偏
向光束がfθレンズ6に入射する入射角)の違いによっ
て該光束の集光位置がそれぞれ異なってくる。この現象
は偏向角が大きくなるにつれて顕著に現れてくる。
At this time, since the reflection surface 5a has a curvature, the light beam deflected and reflected by the reflecting surface 5a has a different deflection angle (incident angle at which the deflected light beam enters the fθ lens 6). The light collection positions are different. This phenomenon remarkably appears as the deflection angle increases.

【0022】そこで本実施例に於いては光源手段1から
放射した発散光束を副走査方向から所定の角度をつけて
反射面5aへ入射させている。これにより該光束の偏向
角を最小にし、上記に示した影響が少なくなるようにし
ている。
Therefore, in this embodiment, the divergent light beam emitted from the light source means 1 is incident on the reflecting surface 5a at a predetermined angle from the sub-scanning direction. As a result, the deflection angle of the light flux is minimized and the above-mentioned influence is reduced.

【0023】ここで光偏向器5の反射面5aは図2に示
すようにダイヤモンドバイト11のついた回転軸12を
所定量傾けることにより切削することで容易に加工する
ことができる。
The reflecting surface 5a of the optical deflector 5 can be easily processed by cutting it by inclining the rotary shaft 12 with the diamond cutting tool 11 by a predetermined amount as shown in FIG.

【0024】このとき反射面5aの主走査方向の形状は
加工上、完全な円弧とはならず主走査面内に於いて光偏
向器5の回転中心Oと該反射面5aの中心を結ぶ軸をx
軸、該x軸と直交する軸をy軸としたとき、
At this time, the shape of the reflecting surface 5a in the main scanning direction is not a perfect arc due to processing, and an axis connecting the rotation center O of the optical deflector 5 and the center of the reflecting surface 5a in the main scanning surface. X
Axis, and an axis orthogonal to the x-axis is the y-axis,

【0025】[0025]

【数2】 1 は光偏向器5の回転中心Oからダイヤモンドバイト
11までの距離で表わすことができる2次曲面より成っ
ている。
[Equation 2] R 1 is composed of a quadric surface which can be represented by the distance from the rotation center O of the optical deflector 5 to the diamond bite 11.

【0026】この2次曲面より形成した反射面5aは正
の屈折力を持っているので、該反射面5aで反射偏向し
た光束は集束光束となってfθレンズ6に入射してい
る。
Since the reflecting surface 5a formed by this quadric surface has a positive refractive power, the light beam reflected and deflected by the reflecting surface 5a becomes a convergent light beam and enters the fθ lens 6.

【0027】fθレンズ6は1枚のレンズより構成して
おり低コスト化を図ると共に光学性能を良好に維持する
為、そのレンズ面形状を非球面としている。非球面形状
は例えばfθレンズ6と光軸上との交点を原点とし光軸
方向をx軸、主走査面内に於いて光軸と直交する軸をy
軸、副走査面内に於いて光軸と直交する軸をz軸とした
とき主走査方向と対応する母線方向が
The fθ lens 6 is composed of one lens, and its lens surface shape is an aspherical surface in order to reduce cost and maintain good optical performance. The aspherical shape has, for example, the origin at the intersection of the fθ lens 6 and the optical axis, the optical axis direction is the x-axis, and the axis orthogonal to the optical axis in the main scanning plane is y.
When the axis perpendicular to the optical axis in the sub-scanning plane is the z-axis, the generatrix direction corresponding to the main scanning direction is

【0028】[0028]

【数3】 但しRは近軸曲率半径,K ,B4 ,B6 ,B8 ,B10
は各々非球面係数なる式で表わせるものとしている。
[Equation 3] Where R is the paraxial radius of curvature, K, B 4 , B 6 , B 8 , B 10
Are each expressed by an aspherical coefficient.

【0029】又、副走査方向と対応する子線方向はThe sagittal direction corresponding to the sub-scanning direction is

【0030】[0030]

【数4】 ここでr´=r(1+D22 +D44 +D66
88 +D1010) Sは副走査面内でのレンズ形状 rは近軸曲率半径 なる式で表わせるものとしている。
[Equation 4] Where r ′ = r (1 + D 2 y 2 + D 4 y 4 + D 6 y 6 +
D 8 y 8 + D 10 y 10 ) S is a lens shape in the sub-scanning plane, and r is a paraxial radius of curvature.

【0031】上記の式は母線方向が10次までの関数で
表わせる非球面であり、又子線方向はyの値によって曲
率の異なるトーリック面であることを表わしている。
The above equation represents that the generatrix direction is an aspherical surface which can be expressed by a function up to the tenth order, and the sagittal direction is a toric surface having a different curvature depending on the value of y.

【0032】この様に本実施例に於いてのfθレンズの
形状は主走査方向と副走査方向とで互いに異なる曲率を
持って形成している。
As described above, the shape of the fθ lens in this embodiment is formed with different curvatures in the main scanning direction and the sub scanning direction.

【0033】又、fθレンズ6は副走査面内に於いて反
射面5aと被走査面7とがほぼ共役関係となるようにし
ている。これにより例えば反射面が副走査面内に於いて
面倒れがあっても光束は被走査面上の同一走査線上に結
像するようにしている。そしてfθレンズ6に入射した
集束光束は該fθレンズ6により被走査面7上に結像し
て被走査面7上を該光束で光走査している。
Further, in the fθ lens 6, the reflecting surface 5a and the surface to be scanned 7 are substantially in a conjugate relationship within the sub-scanning surface. Thus, for example, even if the reflecting surface is tilted in the sub-scanning plane, the light flux is focused on the same scanning line on the surface to be scanned. Then, the focused light flux incident on the fθ lens 6 is imaged on the scanned surface 7 by the fθ lens 6 and optically scans the scanned surface 7 with the light flux.

【0034】一方、副走査方向は従来の走査光学装置と
同様に面倒れ補正を行う為、光源手段から放射した光束
をシリンドリカルレンズ4により一度反射面5aに集光
した後、fθレンズ6によって被走査面7上に結像させ
該被走査面7上を該光束で光走査している。
On the other hand, in the sub-scanning direction, surface tilt correction is performed as in the conventional scanning optical device. Therefore, after the light flux emitted from the light source means is once condensed on the reflecting surface 5a by the cylindrical lens 4, it is covered by the fθ lens 6. An image is formed on the scanning surface 7 and the surface to be scanned 7 is optically scanned with the light beam.

【0035】この様に本実施例に於いては前述の如く光
偏向器の反射面に正の屈折力を持たせfθレンズの屈折
力の一部を該反射面で分担させることにより、該fθレ
ンズの屈折力を小さくすることができ、これにより肉厚
の薄いfθレンズの設計が可能となり、例えば安価なプ
ラスチック等の材料で容易に加工成形を行うことができ
るようにしている。
As described above, in this embodiment, the reflecting surface of the optical deflector is given a positive refracting power as described above, and a part of the refracting power of the fθ lens is shared by the reflecting surface. The refracting power of the lens can be made small, which enables the design of a thin fθ lens, and makes it possible to easily perform processing and molding with an inexpensive material such as plastic.

【0036】次に本発明の実施例1における設計例を表
−1に示す。
Next, Table-1 shows a design example in the first embodiment of the present invention.

【0037】表−1に於いては像面湾曲及びfθ特性を
十分満足するように設計している。この表−1に示すよ
うに従来の走査光学装置に用いたfθレンズの屈折力の
大部分を光偏向器(Rポリゴン)の反射面(ポリゴン
面)に分担させることでfθレンズの屈折力をかなり小
さくすることができる。
In Table 1, it is designed to sufficiently satisfy the field curvature and the fθ characteristic. As shown in Table 1, most of the refracting power of the fθ lens used in the conventional scanning optical device is shared by the reflecting surface (polygon surface) of the optical deflector (R polygon), so that the refracting power of the fθ lens is increased. Can be quite small.

【0038】このことから反射面が凹面形状であるポリ
ゴンミラーを使用することによってfθレンズの屈折力
を小さくでき、これにより肉厚の薄いレンズの設計を可
能としている。
Therefore, by using a polygon mirror having a concave reflecting surface, it is possible to reduce the refracting power of the fθ lens, which makes it possible to design a thin lens.

【0039】又、本実施例に於いては光源手段1から放
射した発散光束を副走査方向から入射させている為、主
走査方向に左右対称なfθレンズを設計することがで
き、これにより製造が容易でしかも安価に製作すること
ができるといった特長を有している。
Further, in this embodiment, since the divergent light beam emitted from the light source means 1 is made incident from the sub-scanning direction, it is possible to design an fθ lens which is bilaterally symmetrical in the main-scanning direction. It has the feature that it can be manufactured easily and at low cost.

【0040】[0040]

【表1】 図3は本発明の実施例2の走査光学装置の主走査方向の
要部断面図である。同図に於いて図1に示した要素と同
一要素には同符番を付している。
[Table 1] FIG. 3 is a sectional view of a main part of a scanning optical device according to a second embodiment of the present invention in the main scanning direction. In the figure, the same elements as those shown in FIG. 1 are designated by the same reference numerals.

【0041】本実施例に於いて実施例1と異なる点は光
源手段1から放射した発散光束を光偏向器5の反射面に
副走査方向から入射させる代わりに主走査方向から所定
の角度をつけて入射させたことである。他の構成は実施
例1と同様である。
The difference of this embodiment from the first embodiment is that the divergent light beam emitted from the light source means 1 is made incident on the reflecting surface of the optical deflector 5 in the sub-scanning direction, but at a predetermined angle from the main scanning direction. It was made to enter. Other configurations are similar to those of the first embodiment.

【0042】本実施例に於いても実施例1と同様に光束
の偏向角の違いによって該光束の集光点(集光位置)が
それぞれ異なるという現象が起こる。この為、光軸に対
する光束の入射角が小さくなるように主走査方向から角
度をつけて反射面5aへ入射させている。そしてこのよ
うにして反射面5aに入射した発散光束を正の屈折力を
有する該反射面5aによって集束光束として反射偏向さ
せ前記(2),(3)式で示したレンズ面より成るfθ
レンズ6によって被走査面7上に結像させている。
Also in this embodiment, as in the case of the first embodiment, there occurs a phenomenon that the converging points (converging positions) of the light beams differ depending on the deflection angles of the light beams. Therefore, the light beam is incident on the reflecting surface 5a at an angle from the main scanning direction so that the incident angle of the light beam with respect to the optical axis becomes small. In this way, the divergent light beam incident on the reflecting surface 5a is reflected and deflected as a convergent light beam by the reflecting surface 5a having a positive refracting power, and fθ formed by the lens surface shown in the above equations (2) and (3)
An image is formed on the surface 7 to be scanned by the lens 6.

【0043】この様に本実施例に於いては実施例1と同
様にfθレンズ6の屈折力の大部分を光偏向器5の反射
面5aに分担させているので該fθレンズの屈折力は小
さくすることができ、これにより前述の実施例1と同様
に肉厚の薄いレンズの設計を可能としている。
In this way, in the present embodiment, as in the case of the first embodiment, most of the refracting power of the fθ lens 6 is shared by the reflecting surface 5a of the optical deflector 5, so that the fθ lens has a refracting power. The size of the lens can be reduced, which enables the design of a lens having a thin thickness as in the first embodiment.

【0044】又、本実施例に於いては光源手段1からの
発散光束を主走査方向から入射させている為、副走査方
向の走査線に曲がりがないという特長を有している。
Further, in this embodiment, since the divergent light beam from the light source means 1 is made incident from the main scanning direction, there is a feature that the scanning line in the sub-scanning direction is not bent.

【0045】[0045]

【発明の効果】本発明によればポリゴンミラーから成る
光偏向器の反射面を前述の如く主走査方向にのみ所定の
屈折力を有する凹面形状より形成することにより、該反
射面に正の屈折力を持たせることで結像光学系としての
fθレンズの屈折力を小さくすることができ、これによ
り肉厚の薄いfθレンズの設計が可能となり、例えばプ
ラスチック等の安価な材料を用いて容易に非球面の加工
成形を行うことができる走査光学装置を達成することが
できる。
According to the present invention, by forming the reflecting surface of the optical deflector composed of a polygon mirror into a concave shape having a predetermined refractive power only in the main scanning direction as described above, the positive refraction on the reflecting surface is achieved. By giving a force, it is possible to reduce the refracting power of the fθ lens as an image forming optical system, which makes it possible to design an fθ lens having a small thickness, and easily use an inexpensive material such as plastic, for example. It is possible to achieve a scanning optical device capable of performing aspherical processing.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施例1の主走査方向及び副走査
方向の要部断面図
FIG. 1 is a sectional view of a main part in a main scanning direction and a sub scanning direction according to a first embodiment of the present invention.

【図2】 光偏向器の偏向面の切削の様子を示した説
明図
FIG. 2 is an explanatory diagram showing a state of cutting a deflection surface of an optical deflector.

【図3】 本発明の実施例2の主走査方向の要部断面
FIG. 3 is a sectional view of a main part in a main scanning direction according to a second embodiment of the present invention.

【図4】 従来の走査光学装置の主走査方向の要部断
面図
FIG. 4 is a sectional view of a main part of a conventional scanning optical device in a main scanning direction.

【符号の説明】[Explanation of symbols]

1 光源手段 3 絞り 4 シリンドリカルレンズ 5 光偏向器(ポリゴンミラー) 6 結像光学系(fθレンズ) 7 被走査面 11 ダイヤモンドバイト 12 回転軸 1 Light Source Means 3 Aperture 4 Cylindrical Lens 5 Optical Deflector (Polygon Mirror) 6 Imaging Optical System (fθ Lens) 7 Scanning Surface 11 Diamond Bit 12 12 Rotation Axis

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光源手段から放射した光束を光偏向器に
よって反射偏向させ結像光学系により被走査面上に導光
し、該被走査面上を光走査する走査光学装置において、
該光偏向器の偏向面は主走査方向にのみ屈折力を有する
凹面形状から成る複数の反射面より成っていることを特
徴とする走査光学装置。
1. A scanning optical device in which a light beam emitted from a light source means is reflected and deflected by an optical deflector, guided onto a surface to be scanned by an imaging optical system, and optically scanned on the surface to be scanned.
A scanning optical device, wherein a deflecting surface of the optical deflector comprises a plurality of reflecting surfaces each having a concave shape having a refracting power only in a main scanning direction.
【請求項2】 前記光偏向器の反射面の主走査方向の形
状は主走査面内において、該光偏向器の回転中心と該反
射面の中心とを結ぶ軸をx軸、該x軸と直交する軸をy
軸としたとき、 【数1】 なる2次曲面より成っていることを特徴とする請求項1
の走査光学装置。
2. The shape of the reflecting surface of the optical deflector in the main scanning direction is defined by an x-axis, and an x-axis, which is an axis connecting the rotation center of the optical deflector and the center of the reflecting surface in the main scanning surface. The orthogonal axis is y
When the axis is used, 2. A quadric surface that is
Scanning optics.
【請求項3】 前記光源手段から放射した光束は副走査
面内から又は主走査面内から前記光偏向器の反射面に入
射していることを特徴とする請求項1の走査光学装置。
3. The scanning optical device according to claim 1, wherein the light beam emitted from the light source means is incident on the reflection surface of the optical deflector from within the sub-scanning surface or from within the main scanning surface.
【請求項4】 前記結像光学系は主走査方向と副走査方
向とで互いに異なる曲率を持つ少なくとも1枚のレンズ
を有していることを特徴とする請求項1の走査光学装
置。
4. The scanning optical device according to claim 1, wherein the imaging optical system has at least one lens having different curvatures in the main scanning direction and the sub scanning direction.
JP3299654A 1991-10-18 1991-10-18 Scanning optical device Pending JPH05107495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3299654A JPH05107495A (en) 1991-10-18 1991-10-18 Scanning optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3299654A JPH05107495A (en) 1991-10-18 1991-10-18 Scanning optical device

Publications (1)

Publication Number Publication Date
JPH05107495A true JPH05107495A (en) 1993-04-30

Family

ID=17875372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3299654A Pending JPH05107495A (en) 1991-10-18 1991-10-18 Scanning optical device

Country Status (1)

Country Link
JP (1) JPH05107495A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145897A (en) * 1995-02-28 2009-07-02 Canon Inc Scanning optical device and laser beam printer having scanning optical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145897A (en) * 1995-02-28 2009-07-02 Canon Inc Scanning optical device and laser beam printer having scanning optical device

Similar Documents

Publication Publication Date Title
EP0853253B1 (en) Optical scanning apparatus
JPH0627904B2 (en) Laser beam scanning optics
JPH05346549A (en) Scanning optical device
US4818046A (en) Light beam scanning device
JP3433070B2 (en) Light beam scanning device
US4984858A (en) Light beam scanning optical system
KR100335624B1 (en) Laser beam scanning apparatus
JPH0727123B2 (en) Surface tilt correction scanning optical system
JP2673591B2 (en) fθ lens and laser scanning optical system using the same
US5038156A (en) Light beam scanning optical system
US4908708A (en) Light beam scanning optical system
US4586782A (en) Laser beam optical system with inclined cylindrical lens
JPH08248345A (en) Optical scanner
JPH04141619A (en) Scanning optical system with surface tilt correcting function
JPH05107495A (en) Scanning optical device
JPH11281911A (en) Optical scanning optical system
JPH10260371A (en) Scanning optical device
JP3381333B2 (en) Optical scanning device
JP3192537B2 (en) Scanning optical device
JPS63142317A (en) Light beam scanner
JP3385678B2 (en) Optical scanning device
JPH0543090B2 (en)
EP0836106B1 (en) Light-beam scanning apparatus comprising divergent or convergent light-shaping means
JP2626708B2 (en) Scanning optical system
JP2657381B2 (en) Light flux adjusting method for scanning optical device