JPH05106783A - Filter for vacuum heat insulating wall - Google Patents

Filter for vacuum heat insulating wall

Info

Publication number
JPH05106783A
JPH05106783A JP3296373A JP29637391A JPH05106783A JP H05106783 A JPH05106783 A JP H05106783A JP 3296373 A JP3296373 A JP 3296373A JP 29637391 A JP29637391 A JP 29637391A JP H05106783 A JPH05106783 A JP H05106783A
Authority
JP
Japan
Prior art keywords
heat insulating
fiber
mat
vacuum
insulating wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3296373A
Other languages
Japanese (ja)
Other versions
JP2664573B2 (en
Inventor
Tadao Yamaji
忠雄 山路
Hiroshi Yamazaki
洋 山崎
Shigeru Tanaka
茂 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP3296373A priority Critical patent/JP2664573B2/en
Publication of JPH05106783A publication Critical patent/JPH05106783A/en
Application granted granted Critical
Publication of JP2664573B2 publication Critical patent/JP2664573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermal Insulation (AREA)

Abstract

PURPOSE:To provide a filler for a vacuum heat insulating wall which has excellent pressure resistant strength and by which conditions of fiber contact points exerting influence upon a degree of inside vacuum and heat conductivity can be maintained moderately. CONSTITUTION:A filler for a vacuum heat insulating wall is constituted in such a way that inorganic fibrous parts whose orientation directions are in the thickness (z) direction are arranged partially and uniformly dispersedly in an inorganic fibrous mat shape body 1 molded by orienting fiber in the plane (x, y) directions, and pressure resistant strength is improved by means of the thickness (z) directionally oriented fiber, and an area ratio of these parts is also diminished, so that deterioration of a heat conductivity rate can be restrained to the minimum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は真空断熱壁の充填材に
関し、詳しくは二重壁内部に断熱効果に優れる無機質繊
維よりなる充填材を充填し真空密閉してなる真空断熱壁
に使用される真空断熱壁の充填材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filler for a vacuum heat insulating wall, and more particularly, it is used for a vacuum heat insulating wall formed by filling a double wall with a filler made of an inorganic fiber having an excellent heat insulating effect and sealing it in a vacuum. The present invention relates to a filler for a vacuum insulation wall.

【0002】[0002]

【従来の技術】従来、大型の断熱容器などで高次の断熱
を行う必要のある断熱容器の構造として、容器を二重壁
としこの二重壁内部に断熱効果に優れる無機質粒子また
は繊維を充填し真空密閉したものが知られている。この
種断熱壁は、真空圧のレベルと粉末や繊維充填の相乗に
より、ある真空レベルにすると気体の対流や伝熱の影響
が除かれ、非常に優れた断熱性を発揮することが知られ
ている。
2. Description of the Related Art Conventionally, as a structure of a heat insulating container that needs to perform high-order heat insulation in a large heat insulating container or the like, the container has a double wall and the inside of the double wall is filled with inorganic particles or fibers excellent in heat insulating effect. It is known that it is vacuum sealed. It is known that this kind of heat insulating wall exerts an extremely excellent heat insulating property by eliminating the effects of gas convection and heat transfer at a certain vacuum level due to the synergistic effect of vacuum pressure level and powder or fiber filling. There is.

【0003】この理由は、真空圧力により決定される内
部の気体分子の平均自由行程と、空隙を有する粉末等の
空隙の大きさとの相関において、ある真空圧力での気体
分子の平均自由行程が空隙より長くなると、熱伝導率に
影響する気体の自由行程が制限される結果と考えられて
いる。このときの断熱性能は、粉末等の内部やこれらの
接触点を熱が伝わる量によって決定され、例えば粉末系
の場合、粒径10μ前後シリカ系微粉末を充填し真空度を
0.1〜1Torr 以下とした場合、平均温度20℃での熱伝導
率が10-2〜10-3Wm/K、繊維系の場合では、繊維径1〜10
μでSiO2成分リッチの無機質繊維を充填し真空度を 0.1
Torr以下とした場合、熱伝導率は10-3Wm/Kのオーダーと
なることが知られている。
The reason for this is that in the correlation between the mean free path of the gas molecules inside determined by the vacuum pressure and the size of the voids such as powder having voids, the average free path of the gas molecules at a certain vacuum pressure is the void. Longer lengths are believed to be the result of limiting the free path of the gas, which affects thermal conductivity. The adiabatic performance at this time is determined by the amount of heat transferred through the inside of the powder or the like and their contact points.
When 0.1 to 1 Torr or less, the thermal conductivity at an average temperature of 20 ° C is 10 -2 to 10 -3 Wm / K, and in the case of fiber type, the fiber diameter is 1 to 10
The SiO 2 component rich inorganic fiber is filled with μ and the vacuum degree is set to 0.1.
It is known that the thermal conductivity will be on the order of 10 -3 Wm / K when it is set to Torr or less.

【0004】[0004]

【従来の技術の問題点】しかしながら、上記断熱壁にお
いて二重壁内部を高度な真空度とした場合、これらは大
きな大気圧の影響を受け変形するので、断熱容器の全体
の形状によって異なるが特に方形形状をなす断熱容器の
場合、二重壁を構成するメンブレンが大気圧の影響によ
り変形しこの変形圧力により内部の充填材も圧縮されて
内部の粉末、繊維の接触圧が高まり、如何に初期条件を
良くしても後発的に生じる大気圧による変形により折角
の断熱性もかなり低くなってしまう問題点があった。
However, when the inside of the double wall of the heat insulating wall has a high degree of vacuum, they are deformed under the influence of a large atmospheric pressure. In the case of a rectangular heat-insulating container, the membrane that composes the double wall is deformed by the effect of atmospheric pressure, and this deforming pressure also compresses the filler inside, increasing the contact pressure of the powder and fiber inside, and Even if the conditions are improved, there is a problem that the thermal insulation property of the corner is considerably lowered due to the deformation due to the atmospheric pressure which occurs subsequently.

【0005】このような問題を解消するため、本願出願
人は断熱性に優れたSiO2成分リッチの無機質繊維製マッ
トを二重壁内への充填材とし、しかもこのマットを大気
圧に等しい圧力で予め圧縮しておき、これを二重壁内に
充填後内部を真空にすることにより、繊維マットを断熱
に寄与させると同時に二重壁内での耐圧部材とすること
を提案したが、繊維マットを予備的に圧縮した際に繊維
間の接触点がかなり増加するので、仮にマットを構成す
る繊維を平面方向へ配列しても断熱効果の向上はそれほ
ど望めず、またマットを圧縮するので見かけ比重も増加
し重量も嵩むなどの問題が生じた。
In order to solve such a problem, the applicant of the present application has used a matte made of an inorganic fiber rich in SiO 2 component, which is excellent in heat insulating property, as a filler for filling the double wall, and the mat has a pressure equal to the atmospheric pressure. It was proposed that the fiber mat should be compressed in advance and filled in the double wall and then the inside should be evacuated so that the fiber mat contributes to heat insulation and at the same time it is used as a pressure resistant member in the double wall. When the mat is pre-compressed, the contact points between the fibers increase considerably, so even if the fibers that make up the mat are arranged in the plane direction, the improvement of the heat insulating effect cannot be expected so much, and the mat is compressed, so it is apparent. There were problems such as an increase in specific gravity and an increase in weight.

【0006】[0006]

【発明が解決しようとする課題】この発明は、上記問題
点に鑑み、内部真空度と繊維の接触点等の適度な条件を
維持可能でしかも耐圧強度にも優れる真空断熱壁の充填
材を得ることを目的としてなされたものである。
SUMMARY OF THE INVENTION In view of the above problems, the present invention provides a filler for a vacuum heat insulating wall which is capable of maintaining appropriate conditions such as the internal vacuum degree and the contact point of fibers, and is excellent in pressure resistance. It was made for that purpose.

【0007】[0007]

【課題を解決するための手段】即ち、この発明の真空断
熱壁の充填材は平面方向に繊維を配向させて成形した無
機質繊維マット状体に無機質繊維の配向方向が厚さ方向
となる部分を部分的にかつ均一分散状に設けてなること
を特徴とするものである。
That is, the filler of the vacuum heat insulating wall of the present invention has a portion in which the orientation direction of the inorganic fibers is the thickness direction in the inorganic fiber mat-like body formed by orienting the fibers in the plane direction. It is characterized in that it is provided partially and uniformly.

【0008】[0008]

【作用】この発明において断熱壁内に充填される断熱材
としてSiO2成分リッチの無機質繊維を平面方向へ配向し
てなるマットが前提とされる。平面方向に繊維を配列し
た場合、そのマットには厚さ方向に延在する繊維が全く
無いことから厚さ方向への伝熱性は無加圧状態ではかな
り高い。しかし、このような配向性を持つ繊維マットに
おける平面座標x,y軸方向に対する圧縮強度とこれら
に直交するz軸方向への圧縮強度を比較した場合、力学
的性質は後者は前者に比しかなり下回る。
In the present invention, a mat formed by orienting SiO 2 component-rich inorganic fibers in the plane direction is assumed as the heat insulating material filled in the heat insulating wall. When the fibers are arranged in the planar direction, the mat has no fibers extending in the thickness direction, and therefore the heat transfer property in the thickness direction is considerably high in the unpressurized state. However, when the compressive strength in the plane coordinate x, y axis direction and the compressive strength in the z axis direction orthogonal to these in the fiber mat having such an orientation are compared, the mechanical properties of the latter are considerably higher than those of the former. Fall below.

【0009】また、このマットの圧縮強度を増すには前
記z軸方向への繊維の配向性を高めれば良いが、このよ
うにすると当然のこととして断熱性が著しく低下する。
繊維マットに加わる外圧に対する圧縮強度と伝熱性の調
和点を考慮すると、最も断熱性が良好な状態にマットを
成形しても圧縮によりこれが犠牲になる訳であるから、
これ以下の断熱性犠牲を払ってz軸方向の繊維配向を増
やし、圧縮強度を付加する方がより良い断熱性が結果的
に得られる。
Further, in order to increase the compressive strength of this mat, the orientation of the fibers in the z-axis direction may be enhanced, but naturally, the heat insulating property is remarkably lowered.
Considering the harmony point between the compressive strength against the external pressure applied to the fiber mat and the heat transfer property, even if the mat is molded in the state with the best heat insulation, this will be sacrificed by compression.
Better heat insulation results when the fiber orientation in the z-axis direction is increased and compression strength is added at the cost of less heat insulation.

【0010】この場合、図1に示すように繊維マット1
のxy軸方向(平面方向)の面積をL1 、z軸方向(厚
さ方向)の繊維配列の面積をL2、それぞれの熱伝導率
をλxy、λZ また弾性率をExy、EZ とすると(添字の
xy及びz はそれぞれの方向を示す) 、繊維マット全体の
平均熱伝導率をλ、同弾性率をEとすると λ=(λZ 1 +λxy2 )/(L1 +L2 )… E=(EZ 1 +Exy2 )/(L1 +L2 )… この場合、例えばL1 :L2 =9:1、λxy=0.01W/m
k、λZ =0.004W/mk 、Exy=200kgf/cm2、EZ =17kgf
/cm2 とすると式に代入して λ=0.0046W/mK E=35.3 kgf/cm2 となる。
In this case, as shown in FIG. 1, the fiber mat 1
The area in the xy axis direction (plane direction) of L1, Z-axis direction (thickness
Area) of the fiber array2, Thermal conductivity of each
Λxy, ΛZThe elastic modulus is Exy, EZThen (subscript
xy and z indicate the respective directions) of the entire fiber mat
If the average thermal conductivity is λ and the elastic modulus is E, then λ = (λZL1+ ΛxyL2) / (L1+ L2) ... E = (EZL1+ ExyL2) / (L1+ L2) ... In this case, L1: L2= 9: 1, λxy= 0.01 W / m
k, λZ= 0.004W / mk, Exy= 200kgf / cm2, EZ= 17kgf
/cm2 Substituting into the equation, λ = 0.0046W / mK E = 35.3 kgf / cm2  Becomes

【0011】即ち、xy平面に全て繊維を配向したマッ
トではλ=0.004W/mK 、E=17kgf/cm2 となるのに対
し、10%の面積に相当する部分を厚さ方向に配列するだ
けで熱伝導率は上述のように0.0046W/mKとやや大きくな
るが弾性率は35.3 kgf/cm2と圧縮強度が倍以上となる。
That is, in the mat in which all the fibers are oriented in the xy plane, λ = 0.004 W / mK and E = 17 kgf / cm 2 , whereas only the portion corresponding to 10% area is arranged in the thickness direction. The thermal conductivity is 0.0046 W / mK, which is slightly high, but the elastic modulus is 35.3 kgf / cm 2, which is more than double the compressive strength.

【0012】[0012]

【実施例】次にこの発明の実施例について説明する。図
1はこの発明の実施例の要部斜視図、図2は他の実施例
の斜視図である。
Embodiments of the present invention will be described below. 1 is a perspective view of an essential part of an embodiment of the present invention, and FIG. 2 is a perspective view of another embodiment.

【0013】〔実施例1〕SiO2成分35〜45重量%、Al2O
3 成分10〜20重量%、CaO 成分30〜40重量%、MgO 成分
5〜10重量%、及び繊維径 5〜8 μm のミネラル繊維よ
りなる厚さ2cmの繊維マット1であって、xy平面方向
に繊維が配向され、同平面方向の弾性率が200kgf/cm2
同熱伝導率が0.01W/mk、z軸方向の弾性率が17kgf/c
m2 、同熱伝導率が0.004W/mkのものを用意し、図1に示
すようにこのマット1に面積比が9:1となるように2
×2cmの正方形状の貫通孔2…2を均一分散状に穿設
し、次いでマット穿設片3…3を90度向きを変え繊維を
z軸方向に沿わせて再び穿設孔に挿入し充填材Aとし
た。このマット全体の厚さ方向の弾性率、及び熱伝導率
を測定したところ弾性率は35.3 kgf/cm2、また熱伝導率
は0.0046W/mKであった。
[Example 1] SiO 2 component 35 to 45% by weight, Al 2 O
3 components 10-20% by weight, CaO component 30-40% by weight, MgO component
A fiber mat 1 having a thickness of 2 cm and comprising 5 to 10% by weight and a mineral fiber having a fiber diameter of 5 to 8 μm, in which the fibers are oriented in the xy plane direction and the elastic modulus in the same plane direction is 200 kgf / cm 2 ,
Same thermal conductivity of 0.01 W / mk, z-axis elastic modulus of 17 kgf / c
Prepare m 2 with the same thermal conductivity of 0.004 W / mk, and make the area ratio 9: 1 on this mat 1 as shown in FIG. 1.
2. Square-shaped through-holes 2 ... 2 having a size of 2 cm are evenly distributed, and then the matte-piercing pieces 3 ... 3 are turned 90 degrees, and the fibers are inserted into the holes again along the z-axis direction. Filler A was used. When the elastic modulus in the thickness direction and the thermal conductivity of the entire mat were measured, the elastic modulus was 35.3 kgf / cm 2 , and the thermal conductivity was 0.0046 W / mK.

【0014】〔実施例2〕実施例1で使用したミネラル
繊維マット1を使用し、穿設孔を設けることなく横方向
成分と縦方向成分が丁度9:1となるように波型に折曲
し、包絡線での厚さが4cmとなる充填材Aを得た。この
マット1全体の厚さ方向の弾性率、及び熱伝導率を測定
したところ弾性率及び熱伝導率は共に実施例1と略同じ
結果となった。
[Example 2] The mineral fiber mat 1 used in Example 1 was used and bent in a corrugated shape so that the transverse component and the longitudinal component were exactly 9: 1 without providing a hole. Then, a filling material A having an envelope thickness of 4 cm was obtained. When the elastic modulus and the thermal conductivity of the entire mat 1 in the thickness direction were measured, both the elastic modulus and the thermal conductivity were substantially the same as those in Example 1.

【0015】[0015]

【発明の効果】以上説明したように、この発明の真空断
熱壁の充填材Aは、繊維配向方向が平面方向を基調とす
るものの、部分的に厚さ方向への繊維配向とされている
ため、全体の厚さ方向の弾性率が著しく向上し耐圧強度
に優れ、しかも厚さ方向の繊維配列は平面配列部分に対
し非常に少ない面積であるのでこれによる断熱性の犠牲
は僅かで実用的に殆ど問題がなく、真空断熱壁内の充填
材として非常に優れた性能を有するのである。
As described above, the filler A of the vacuum heat insulating wall according to the present invention has a fiber orientation based on the plane direction, but is partially oriented in the thickness direction. The overall elastic modulus in the thickness direction is significantly improved and the compressive strength is excellent. Moreover, since the fiber arrangement in the thickness direction is a very small area compared to the plane arrangement part, the heat insulation due to this is small and practical. It has very few problems and has a very good performance as a filler in a vacuum insulation wall.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例の斜視図である。FIG. 1 is a perspective view of an embodiment of the present invention.

【図2】他の実施例の斜視図である。FIG. 2 is a perspective view of another embodiment.

【符号の説明】[Explanation of symbols]

A…充填材、 1…繊維マット、 2…貫通孔、 3…
マット穿設片
A ... Filler, 1 ... Fiber mat, 2 ... Through hole, 3 ...
Mat perforated piece

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年12月18日[Submission date] December 18, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0004[Correction target item name] 0004

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0004】[0004]

【従来の技術の問題点】しかしながら、上記断熱壁にお
いて二重壁内部を高度な真空度とした場合、これらは大
きな大気圧の影響を受け変形するので、断熱容器の全体
の形状によって異なるが特に方形形状をなす断熱容器の
場合、二重壁を結合する端部材料が大気圧の影響により
変形したり、二重壁間が接近してしまう問題が生じ、充
填物の耐圧性が必要となる。
However, when the inside of the double wall of the heat insulating wall has a high degree of vacuum, they are deformed under the influence of a large atmospheric pressure. for insulated container forms a rectangular shape, Ri termination material which binds the double wall is deformed due to the influence of atmospheric pressure, there is a problem that double walls will close, charge
The pressure resistance of the filler is required.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Correction target item name] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】このような問題を解消するため、本願出願
人は断熱性に優れたSiO2成分リッチ繊維よりなり、この
繊維を平面方向へ配列させた無機質繊維製マットを二重
壁内への充填材とし、しかもこのマットを大気圧に等し
い圧力で予め圧縮しておき、これを二重壁内に充填後内
部を真空にすることにより、繊維マットを断熱に寄与さ
せると同時に二重壁内での耐圧部材とすることを提案し
たが、繊維マットを予備的に圧縮してもマットの断熱効
果と耐圧性向上の効果はそれほど望めず、またマットを
圧縮するので見かけ比重も増加し重量も嵩むなどの問題
が生じた。
In order to solve such a problem, the applicant of the present invention is composed of SiO 2 component rich fiber having excellent heat insulating property.
An inorganic fiber mat in which the fibers are arranged in the plane direction is used as a filling material for the double wall, and this mat is pre-compressed at a pressure equal to the atmospheric pressure. We have proposed that the vacuum can make the fiber mat contribute to heat insulation and at the same time make it a pressure resistant member in the double wall, but even if the fiber mat is pre-compressed , the heat insulation effect of the mat is proposed.
As a result, the effect of improving the pressure resistance cannot be expected so much, and since the mat is compressed, the apparent specific gravity is increased and the weight is increased.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】[0008]

【作用】この発明において断熱壁内に充填される断熱材
としてSiO2成分リッチの無機質繊維を平面方向へ配向し
てなるマットが前提とされる。平面方向に繊維を配列し
た場合、そのマットには厚さ方向に延在する繊維が極め
て少ないことから厚さ方向への伝熱性は極めて小さく、
断熱性はかなり高い。しかし、このような配向性を持つ
繊維マットにおける平面座標x,y軸方向に対する圧縮
強度とこれらに直交するz軸方向への圧縮強度を比較し
た場合、力学的性質は後者は前者に比しかなり下回る。
In the present invention, a mat formed by orienting SiO 2 component-rich inorganic fibers in the plane direction is assumed as the heat insulating material filled in the heat insulating wall. If an array of fibers in a planar direction, extremely fibers extending in the thickness direction in the mat
Heat transfer in the thickness direction since the small Te is very small,
The heat insulation is quite high. However, when the compressive strength in the plane coordinate x, y axis direction and the compressive strength in the z axis direction orthogonal to these in the fiber mat having such an orientation are compared, the mechanical properties of the latter are considerably higher than those of the former. Fall below.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 平面方向に繊維を配向させて成形した無
機質繊維マット状体に無機質繊維の配向方向が厚さ方向
となる部分を部分的にかつ均一分散状に設けてなること
を特徴とする真空断熱壁の充填材。
1. An inorganic fiber mat-like body formed by orienting fibers in a plane direction, wherein a portion in which the orientation direction of the inorganic fibers is the thickness direction is partially and uniformly dispersed. Vacuum insulation wall filler.
JP3296373A 1991-10-15 1991-10-15 Vacuum insulation wall filler Expired - Lifetime JP2664573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3296373A JP2664573B2 (en) 1991-10-15 1991-10-15 Vacuum insulation wall filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3296373A JP2664573B2 (en) 1991-10-15 1991-10-15 Vacuum insulation wall filler

Publications (2)

Publication Number Publication Date
JPH05106783A true JPH05106783A (en) 1993-04-27
JP2664573B2 JP2664573B2 (en) 1997-10-15

Family

ID=17832715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3296373A Expired - Lifetime JP2664573B2 (en) 1991-10-15 1991-10-15 Vacuum insulation wall filler

Country Status (1)

Country Link
JP (1) JP2664573B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102460A1 (en) * 2002-05-31 2003-12-11 Matsushita Refrigeration Company Vacuum thermal insulating material, process for producing the same and refrigerator including the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747124A (en) * 1971-06-28 1982-03-17 Sauder Industries Heat insulating module for furnace inner wall

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5747124A (en) * 1971-06-28 1982-03-17 Sauder Industries Heat insulating module for furnace inner wall

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003102460A1 (en) * 2002-05-31 2003-12-11 Matsushita Refrigeration Company Vacuum thermal insulating material, process for producing the same and refrigerator including the same
CN1308611C (en) * 2002-05-31 2007-04-04 松下冷机株式会社 Vacuum thermal insulating material, process for producing the same and refrigerator including the same
US7571582B2 (en) 2002-05-31 2009-08-11 Panasonic Corporation Vacuum heat insulator, method of manufacturing the same, and refrigerator using the same

Also Published As

Publication number Publication date
JP2664573B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
US4486482A (en) Vacuum heat insulator
US3179549A (en) Thermal insulating panel and method of making the same
WO2018211906A1 (en) Heat-insulating material and heat-insulating structure employing same
US4055268A (en) Cryogenic storage container
JPS6340779A (en) Heat insulator comprising sedimented silica and fly ash
WO2017139196A1 (en) Alternative core material based vacuum insulated panel
US20180003334A1 (en) Thermal enclosure
GB2079533A (en) Resistance thermometer element
WO2015115149A1 (en) Vacuum heat-insulating material, heat-insulating box using vacuum heat-insulating material, and method for manufacturing vacuum heat-insulating material
JPH05106783A (en) Filter for vacuum heat insulating wall
JP2000249290A (en) Vacuum heat insulating body
JPH05106784A (en) Filler for vacuum heat insulating wall
US2528387A (en) Clamped cavity resonator
JPH05187597A (en) Vacuum heat insulating wall
Mikhalchenko et al. Study of heat transfer in multilayer insulations based on composite spacer materials
US5652550A (en) Method and apparatus for isolating an oscillator from external mechanical and thermal effects using aerogels
US984541A (en) Heat-insulating wall.
JP2000304428A5 (en)
EP0128235B1 (en) Vacuum heat insulator
WO2018047261A1 (en) Vacuum insulation material and insulation box
JPH07151297A (en) Vacuum insulating structure body
JP2003148687A5 (en)
JP2768573B2 (en) Vacuum insulation for high temperature
JP2000351677A (en) Thermal insulation form and electric heating unit using the same and their production
JPH01150098A (en) Heat insulator