JPH0510584B2 - - Google Patents

Info

Publication number
JPH0510584B2
JPH0510584B2 JP15730785A JP15730785A JPH0510584B2 JP H0510584 B2 JPH0510584 B2 JP H0510584B2 JP 15730785 A JP15730785 A JP 15730785A JP 15730785 A JP15730785 A JP 15730785A JP H0510584 B2 JPH0510584 B2 JP H0510584B2
Authority
JP
Japan
Prior art keywords
temperature
humidity
storage
storage chamber
storage room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15730785A
Other languages
Japanese (ja)
Other versions
JPS6219665A (en
Inventor
Kenji Maru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP15730785A priority Critical patent/JPS6219665A/en
Publication of JPS6219665A publication Critical patent/JPS6219665A/en
Publication of JPH0510584B2 publication Critical patent/JPH0510584B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は食品等を収納して冷却貯蔵する貯蔵
庫、更に詳しくは貯蔵室内の湿度を高くして食品
の乾燥を防止した貯蔵庫の制御装置に関する。
[Detailed Description of the Invention] (a) Industrial Application Field The present invention relates to a storage for storing and cooling foods, etc., and more specifically, a control device for a storage that prevents the food from drying out by increasing the humidity in the storage room. Regarding.

(ロ) 従来の技術 従来此種貯蔵庫では貯蔵室内を冷却する冷却装
置に含まれる電動圧縮機を、目標とする貯蔵室内
温度の上下に上限温度及び下限温度を設定して上
限温度にて上記電動圧縮機を起動し、下限温度に
て停止せしめて(所謂ON−OFF制御)貯蔵室内
を平均として略目標温度に近づけている。冷却装
置による冷却により貯蔵室内の空気中の水蒸気は
冷却装置に含まれる冷却器に付着して露や霜とな
るので、貯蔵室内の湿度は通常非常に低くなる。
その為貯蔵室内に収納した食品からの水分蒸発が
激しくなり、乾燥して品質が劣化してしまう欠点
がある。この様な欠点を防止する為に従来では貯
蔵室内に水蒸気を導入して貯蔵室内の湿度を高く
維持する様に構成している。その一例として実開
昭56−38288号がある。
(B) Conventional technology Conventionally, in this type of storage, the electric compressor included in the cooling device that cools the inside of the storage room is operated by setting upper and lower temperature limits above and below the target storage room temperature, and then operating the electric compressor at the upper limit temperature. The compressor is started and stopped at the lower limit temperature (so-called ON-OFF control) to bring the temperature in the storage chamber closer to the target temperature on average. Due to the cooling by the cooling device, water vapor in the air within the storage room adheres to the cooler included in the cooling device and becomes dew or frost, so the humidity inside the storage room is usually very low.
As a result, moisture evaporates from the food stored in the storage room, resulting in drying and deterioration of quality. In order to prevent such drawbacks, the conventional structure is such that water vapor is introduced into the storage chamber to maintain a high humidity inside the storage chamber. One example is Utility Model Application No. 56-38288.

ところで此種貯蔵庫では前述の上限温度と下限
温度との差、即ちデイフアレンシヤルを大きくし
た場合、収納した食品の温度変動も大きくなるの
で品質劣化が著しくなる為前記デイフアレンシヤ
ルは小さい程食品の品質管理は良好となるもので
あるが、余りデイフアレンシヤルを小さくすると
電動圧縮機の起動、停止が頻繁となり、電動圧縮
機部品の損傷が著しくなり、また、消費電力も増
大する結果を生ずる。特に前述の如き貯蔵室内に
水蒸気を導入するものでは、水蒸気による貯蔵室
内負荷の増大により、電動圧縮機停止中の温度上
昇が速くなるので電動圧縮機の起動、停止が一層
頻繁となつてしまう。
By the way, in this type of storage, if the difference between the above-mentioned upper limit temperature and lower limit temperature, that is, the differential, is increased, the temperature fluctuation of the stored food will also increase, resulting in significant quality deterioration, so the smaller the differential, the better. Food quality control is good, but if the differential is made too small, the electric compressor will start and stop frequently, causing significant damage to the electric compressor parts and increasing power consumption. will occur. Particularly in the case where water vapor is introduced into the storage chamber as described above, the increase in the load on the storage chamber due to the water vapor causes the temperature to rise faster while the electric compressor is stopped, resulting in the electric compressor having to be started and stopped more frequently.

斯かる欠点を解決するために、例えば冷却装置
は常時運転状態とし、貯蔵室内に水蒸気を導く例
えば送風機の運転を制御して、貯蔵室内の温度を
制御する方法が考えられる。これは貯蔵室内の温
度が目標値より低下した場合、送風機を運転して
室内に水蒸気を導入するものである。これによつ
て貯蔵室内は負荷が増大し、温度が上昇する。こ
の送風機の運転を適宜制御して貯蔵室内の湿度を
高く維持しつつ温度制御するものであるが、電動
圧縮機の制御に比して前述のデイフアレンシヤル
を小さくできる利点がある。
In order to solve this drawback, a method may be considered in which, for example, the cooling device is always in operation and the operation of, for example, a blower that introduces water vapor into the storage chamber is controlled to control the temperature inside the storage chamber. This system operates a blower to introduce water vapor into the storage room when the temperature inside the storage room falls below a target value. This increases the load and temperature within the storage chamber. The operation of this blower is appropriately controlled to control the temperature while maintaining the humidity in the storage chamber at a high level, but this method has the advantage that the above-mentioned differential can be reduced compared to controlling an electric compressor.

(ハ) 発明が解決しようとする問題点 しかし乍ら斯かる構成によると冷却装置を連続
的に運転させるため、貯蔵庫の周囲の環境によつ
て貯蔵室内の湿度が変化してしまう。即ち、冬季
等の周囲温度が低い状況では、貯蔵室内の温度が
下降気味となるため、温度を上げようとして多量
の水蒸気が導入されることになり湿度が上昇し過
ぎる。又、逆に夏季等の周囲温度が高い状況で
は、貯蔵室内の温度が上昇気味となるため、水蒸
気が導入されなくなり、湿度が下がり過ぎてしま
う問題が生ずる。
(c) Problems to be Solved by the Invention However, according to such a configuration, since the cooling device is operated continuously, the humidity inside the storage room changes depending on the environment around the storage room. That is, in a situation where the ambient temperature is low, such as in winter, the temperature inside the storage room tends to drop, so a large amount of water vapor is introduced in an attempt to raise the temperature, resulting in an excessive rise in humidity. On the other hand, when the ambient temperature is high, such as during summer, the temperature inside the storage room tends to rise, causing the problem that water vapor is no longer introduced and the humidity becomes too low.

(ニ) 問題点を解決するための手段 本発明は斯かる問題点を解決するために、貯蔵
庫1の貯蔵室2内に水蒸気を供給する水蒸気供給
装置を室2内の温度によつて該室2内を所望の温
度とするよう制御すると共に、室2内を常時冷却
する冷却装置3の電動圧縮機13,14の回転数
を室2内の湿度によつて調節し、所望の湿度に室
2内が制御されるようにしたものである。
(d) Means for Solving the Problems In order to solve the problems, the present invention has a water vapor supply device that supplies water vapor into the storage chamber 2 of the storage warehouse 1, depending on the temperature inside the chamber 2. The rotation speed of the electric compressors 13 and 14 of the cooling device 3, which constantly cools the inside of the room 2, is controlled according to the humidity inside the room 2, and the humidity inside the room 2 is adjusted to the desired temperature. 2 is controlled.

(ホ) 作用 本発明によれば貯蔵室内は冷却装置による連続
した冷却と水蒸気の供給により室内負荷が増大す
る事による温度上昇との調和によつて所望の温度
に維持されると共に室内温度のデイフアレンシヤ
ルも小さく設定できる。
(E) Effect According to the present invention, the inside of the storage room is maintained at a desired temperature by continuously cooling the storage room with the cooling device and supplying water vapor, thereby balancing the temperature rise due to an increase in the indoor load, and also controlling the room temperature. You can also set the differential to a smaller value.

又、貯蔵室内の湿度により冷却装置の電動圧縮
機の回転数を調節し、湿度が高い時は回転数を下
げ、水蒸気の導入を抑制し、湿度が低い時は回転
数を上げ、水蒸気の導入を促進することが可能で
ある。
In addition, the rotation speed of the electric compressor of the cooling device is adjusted depending on the humidity in the storage room.When the humidity is high, the rotation speed is lowered to suppress the introduction of water vapor, and when the humidity is low, the rotation speed is increased to prevent the introduction of water vapor. It is possible to promote

(ヘ) 実施例 図面に於いて実施例を説明する。第4図、第5
図で1は実施例として貯蔵室2内を略−1℃の氷
温にて冷却維持される氷温庫で示す貯蔵庫であ
り、前方に開放する外箱内に内箱を組み込み、両
箱間にウレタン若しくはグラスウール、または内
部を真空状態とした断熱ブロツク等を装填する
か、或いは断熱パネルを組み立てて箱状とする等
により断熱箱体6を構成しており、この断熱箱体
6内を貯蔵室2としている。尚、実施例では断熱
箱体6は前方に開口しているが、上方に開口した
ものでも良くまた、開口は図示しない断熱扉によ
つて開閉自在に閉塞される。また、ここで氷温と
は氷点下であつて肉や魚が凍結する前の温度帯を
意味しており、通常この温度は0℃から約−2℃
の範囲である。
(f) Examples Examples will be explained with reference to the drawings. Figures 4 and 5
In the figure, reference numeral 1 is an example of an ice-warmed warehouse in which the inside of the storage room 2 is kept cooled at an ice temperature of approximately -1°C. The insulating box 6 is constructed by loading urethane or glass wool, or an insulating block with a vacuum inside, or by assembling insulating panels into a box shape. It is called room 2. In the embodiment, the heat insulating box body 6 is open to the front, but it may be open to the top, and the opening is closed by a heat insulating door (not shown) so as to be openable and closable. In addition, freezing temperature here refers to the temperature range below freezing before meat and fish freezes, and this temperature is usually between 0°C and about -2°C.
is within the range of

第4図は貯蔵庫1の一部切欠斜視図、第5図は
同一部切欠正面図である。貯蔵庫1の天井部には
冷却装置3を構成するそれぞれ独立した冷媒回路
を有した冷却ユニツト7,8が、それぞれ断熱性
の取付基板9,10に固定されて設けられてい
る。貯蔵室2天井部にはユニツトカバー11が設
けられ、これと取付基板9,10間に貯蔵室2と
区画された冷却室12が形成されている。取付基
板9,10それぞれの庫外側には冷却ユニツト
7,8をそれぞれ構成する電動圧縮機13,14
や凝縮器15,16等が設けられ、冷却室12側
に冷却器17,18がそれぞれ取り付けられる。
貯蔵室2背面略中央部には上下に延在し内部を吐
出ダクト19とし、両側に貯蔵室2と吐出ダクト
19を連通する複数の吐出口20を有したダクト
部材21が設けられており、この吐出ダクト19
は上部で冷却室12と連通している。ユニツトカ
バー11の略中央部には貯蔵室2上部と冷却室1
2とを連通する吸入部22が形成され、また、冷
却室12内の冷却器17,18それぞれの前方下
部に位置して吸入フアン23,24が設けられ、
更に吐出ダクト19上端には吐出フアン25が設
けられる。吸入フアン23,24は吸入部22か
ら貯蔵室2内の空気を吸入してそれぞれ冷却器1
7,18へ送出し、空気は冷却器17或いは18
によつて冷却された後、吐出フアン25によつて
吐出ダクト19に吐出され吐出口20から貯蔵室
2へ吐出され、図中実線矢印の如く循環して貯蔵
室2を冷却する。
FIG. 4 is a partially cutaway perspective view of the storage 1, and FIG. 5 is a partially cutaway front view of the same. Cooling units 7 and 8, each having an independent refrigerant circuit, constituting the cooling device 3 are provided on the ceiling of the storage 1 and are fixed to heat insulating mounting boards 9 and 10, respectively. A unit cover 11 is provided on the ceiling of the storage chamber 2, and a cooling chamber 12 partitioned from the storage chamber 2 is formed between this and the mounting boards 9 and 10. On the outside of each of the mounting boards 9 and 10 are electric compressors 13 and 14 that constitute the cooling units 7 and 8, respectively.
and condensers 15 and 16, and coolers 17 and 18 are respectively attached to the cooling chamber 12 side.
A duct member 21 is provided at approximately the center of the back surface of the storage chamber 2, which extends vertically, has a discharge duct 19 inside, and has a plurality of discharge ports 20 on both sides that communicate the storage chamber 2 and the discharge duct 19. This discharge duct 19
communicates with the cooling chamber 12 at the top. Approximately in the center of the unit cover 11 are the upper part of the storage chamber 2 and the cooling chamber 1.
2 is formed, and suction fans 23 and 24 are provided at the front lower part of each of the coolers 17 and 18 in the cooling chamber 12,
Furthermore, a discharge fan 25 is provided at the upper end of the discharge duct 19. The suction fans 23 and 24 suck air in the storage chamber 2 from the suction section 22 and supply the air to the cooler 1, respectively.
7, 18, and the air is sent to the cooler 17 or 18.
After being cooled by the discharge fan 25, it is discharged into the discharge duct 19 and discharged from the discharge port 20 into the storage chamber 2, where it circulates as shown by the solid line arrow in the figure to cool the storage chamber 2.

断熱箱体6外の下部には貯水槽30が設けられ
る。この貯水槽30は水面上適所を外気に連通し
ている。この貯水槽30には水位センサーとポン
プ等を用いた自動給水若しくは手動による任意給
水によつて水が供給され、更に貯水槽30内の水
はヒータ31によつて常時50℃程度に加熱されて
おり、貯水槽30からは常時水蒸気が発生してい
る。この水蒸気は断熱箱体6背壁外面を上方に延
びる加湿用ダクト32を、そこの上端に設けた加
湿用フアン33により吸引されて上昇し、吐出口
34より吐出ダクト19内に送出され、上方から
の冷気流に乗つて吐出口20より貯蔵室2に吐出
されて加湿し、結果的に冷却器17若しくは18
に霜となつて付着する。この貯水槽30、ヒータ
31、加湿用ダクト32及び加湿用フアン33に
よつて水蒸気供給装置を構成している。
A water storage tank 30 is provided at the bottom outside of the heat insulating box 6. This water tank 30 communicates with the outside air at a suitable location above the water surface. Water is supplied to this water tank 30 by automatic water supply using a water level sensor and pump, or by manual water supply, and furthermore, the water in the water tank 30 is constantly heated to about 50°C by a heater 31. Therefore, water vapor is constantly generated from the water storage tank 30. This water vapor is drawn up by a humidifying fan 33 provided at the upper end of a humidifying duct 32 that extends upward on the outer surface of the back wall of the insulating box 6, rises, is sent into the discharge duct 19 from the discharge port 34, and is sent upward. It is discharged into the storage chamber 2 from the discharge port 20 on the flow of cold air from the air, humidifying the storage chamber 2, and as a result, the cooler 17 or 18
It forms frost and adheres to the surface. The water tank 30, the heater 31, the humidifying duct 32, and the humidifying fan 33 constitute a water vapor supply device.

第1図は本発明の制御装置36をブロツク図で
示す。37は貯蔵室2内の温度を設定する温度設
定装置であり、ここでは室2内を0℃から−2℃
とするべき出力を発生し、その出力はA/D変換
器38を介してマイクロCPU39に入力せしめ、
例えば貯蔵室2の上限温度(TH)を0℃、下限
温度(TL)を−2℃としている。40は貯蔵室
2内の湿度を設定する湿度設定装置であり、その
出力はA/D変換器41を経てマイクロCPU3
9に出力させる。又、ここで貯蔵室(2)内の湿度
(HS)を温度−1℃で約90%即ち高湿度となる様
設定する。42は貯蔵室2内の温度を検出する温
度センサーで、その出力はA/D変換器43を介
してマイクロCPU39に入力される。又、44
は貯蔵室2内の湿度を検出する湿度センサーで、
その出力は同様にA/D変換器45を介してマイ
クロCPU39に入力される。
FIG. 1 shows in block diagram form a control system 36 of the present invention. 37 is a temperature setting device that sets the temperature inside the storage room 2, and here the temperature inside the storage room 2 is set from 0°C to -2°C.
The output is inputted to the micro CPU 39 via the A/D converter 38,
For example, the upper limit temperature (TH) of the storage room 2 is set to 0°C, and the lower limit temperature (TL) is set to -2°C. 40 is a humidity setting device for setting the humidity in the storage room 2, and its output is sent to the micro CPU 3 via the A/D converter 41.
Output to 9. Also, here, the humidity (HS) in the storage room (2) is set to be about 90%, that is, high humidity at a temperature of -1°C. A temperature sensor 42 detects the temperature inside the storage chamber 2, and its output is input to the micro CPU 39 via an A/D converter 43. Also, 44
is a humidity sensor that detects the humidity in storage room 2,
The output is similarly input to the micro CPU 39 via the A/D converter 45.

マイクロCPU39は温度設定装置37及び温
度センサー42からの温度情報に基づき、出力端
子47から出力を発生し、D/A変換器48を経
てドライバ49により加湿用フアン33の運転を
制御する。更にマイクロCPU39は湿度設定装
置40と湿度センサー44からの湿度情報に基づ
き、出力端子50より出力を発生し、D/A変換
器51によりアナログ電圧に変換する。52はイ
ンバータ回路であり、D/A変換器51の出力に
略比例した周波数の三相交流出力を発生し、切換
手段53を経て、冷却装置3の冷却ユニツト7若
しくは8の電動圧縮機13若しくは14を駆動す
る。電動圧縮機13,14は所謂ータリータイプ
の電動圧縮機であり、そのモータは例えば三相同
期電動機にて構成され、インバータ回路52の出
力周波数に略比例して回転数が変化する。
The micro CPU 39 generates an output from an output terminal 47 based on temperature information from the temperature setting device 37 and the temperature sensor 42, and controls the operation of the humidifying fan 33 by a driver 49 via a D/A converter 48. Further, the micro CPU 39 generates an output from an output terminal 50 based on the humidity information from the humidity setting device 40 and the humidity sensor 44, and converts it into an analog voltage using a D/A converter 51. 52 is an inverter circuit, which generates a three-phase AC output with a frequency approximately proportional to the output of the D/A converter 51, and outputs a three-phase AC output through a switching means 53 to the electric compressor 13 or 8 of the cooling unit 7 or 8 of the cooling device 3. 14. The electric compressors 13 and 14 are so-called tally type electric compressors, and their motors are constituted by, for example, three-phase synchronous motors, and the rotational speed changes approximately in proportion to the output frequency of the inverter circuit 52.

マイクロCPU39の出力端子54には2時間
毎に出力が発生し、切換手段53を動作してイン
バータ回路52の出力を電動圧縮機13若しくは
14に交互に入力する。即ち電動圧縮機13,1
4は何れか一方が運転されている時は他方は停止
しており、これを2時間毎に切換えると共に、停
止している電動圧縮機を有する冷却ユニツトの冷
却器は除霜ヒータ55若しくは56によつて除霜
される。貯蔵室2内は常時高湿度に維持されるた
め、冷却器17又は18への着霜は著しいが、こ
れによつて冷却器は絶えず除霜されるので冷却効
率を常に良好に維持できる。
An output is generated at the output terminal 54 of the micro CPU 39 every two hours, and the switching means 53 is operated to alternately input the output of the inverter circuit 52 to the electric compressor 13 or 14. That is, the electric compressor 13,1
4, when one is in operation, the other is stopped, and this is switched every two hours, and the cooler of the cooling unit with the stopped electric compressor is switched to the defrosting heater 55 or 56. It is then defrosted. Since the inside of the storage room 2 is always maintained at high humidity, frost buildup on the cooler 17 or 18 is significant, but the cooler is constantly defrosted, so that the cooling efficiency can always be maintained at a good level.

第2図はマイクロCPU39の温度制御用ソフ
トウエアのフローチヤートの概略を示し、第3図
は図湿度制御用ソフトウエアのフローチヤートの
概略を示す。ステツプ(S1)にて温度センサー4
2より現在の貯蔵室2内の温度(TP)即ち温度
情報を読み込み、ステツプ(S2)で上限温度
(TH)である0℃以上か否か判断し、否であれ
ばステツプ(S3)で下限温度(TL)である−2
℃以下か否か判断する。ステツプ(S3)で温度
(TP)が下限温度(TL)以下であればステツプ
(S4)に進み、出力端子47より出力を発生して
加湿用フアン33を運転し、貯蔵室2内に水蒸気
を導入する。貯蔵室2は水蒸気が導入されること
によつて温度上昇し、(TL)<(TP)<(TH)に
なると、ステツプ(S3)から今度はステツプ
(S5)に進むが前回の貯蔵室2の温度(TO)が
(TL)以下であつたからステツプ(S4)に進み、
加湿用フアン33を運転し続ける。更に温度が上
昇して(TP)が(TH)以上になると、ステツ
プ(S1)から(S6)に進んで加湿用フアン33を
停止させる。貯蔵室2は水蒸気の導入が停止した
ことによつて温度が再び低下して行くが、(TL)
<(TP)<(TH)となつても前回の温度(TO)
が(TH)以上であつたからステツプ(S5)から
(S6)に進んで加湿用フアン33を停止し続け、
(TP)が(TL)以下になつて再びステツプ(S3
から(S4)に進み、加湿用フアン33を運転す
る。以上の動作のうち、温度のサンプリングは上
限温度(TH)又は下限温度(TL)を貯蔵室の
温度が横切つた時に行い、処理を実行した後、前
回の温度(TO)の代わりに現在の温度(TP)
を書き込み記憶するものである。この動作によつ
て貯蔵室2内は0℃と−2℃の間で平均−1℃に
維持される。又、運転停止するのは加湿用フアン
33であるから、温度(TH)と(TL)との差
即ちデイフアレンシヤルを小さくでき、温度変動
が小さくなる。
FIG. 2 shows an outline of the flowchart of the temperature control software for the micro CPU 39, and FIG. 3 shows an outline of the flowchart of the humidity control software. Temperature sensor 4 at step (S 1 )
2, the current temperature (TP) in the storage room 2, that is, temperature information is read, and in step (S 2 ) it is determined whether or not it is above the upper limit temperature (TH) of 0°C, and if not, in step (S 3 ). The lower limit temperature (TL) is −2
Determine whether the temperature is below ℃. If the temperature (TP) is below the lower limit temperature (TL) in step (S 3 ), the process proceeds to step (S 4 ), generates an output from the output terminal 47, operates the humidifying fan 33, and cools the inside of the storage chamber 2. Introduce water vapor. The temperature of the storage chamber 2 rises due to the introduction of water vapor, and when (TL) < (TP) < (TH), the process proceeds from step (S 3 ) to step (S 5 ), but the storage chamber 2 Since the temperature (TO) of chamber 2 was below (TL), proceed to step (S 4 ).
The humidifying fan 33 continues to operate. When the temperature further increases and (TP) exceeds (TH), the process proceeds from step (S 1 ) to step (S 6 ) and the humidifying fan 33 is stopped. The temperature in storage room 2 drops again as the introduction of water vapor stops, but (TL)
Even if <(TP)<(TH), the previous temperature (TO)
is greater than or equal to (TH), proceeding from step (S 5 ) to step (S 6 ) and continuing to stop the humidifying fan 33.
When (TP) becomes less than (TL), step again (S 3 )
The process then proceeds to (S 4 ) and the humidifying fan 33 is operated. Among the above operations, temperature sampling is performed when the temperature in the storage room crosses the upper limit temperature (TH) or lower limit temperature (TL), and after processing, the current temperature is used instead of the previous temperature (TO). Temperature (TP)
is written and memorized. By this operation, the inside of the storage chamber 2 is maintained at an average temperature of -1°C between 0°C and -2°C. Furthermore, since it is the humidifying fan 33 that is stopped, the difference between the temperatures (TH) and (TL), that is, the differential, can be reduced, and temperature fluctuations can be reduced.

次に第3図の湿度制御用フローチヤートにおい
て、ステツプ(S10)において湿度センサー44
より現在の貯蔵室2内の湿度(HP)即ち湿度情
報を読み込み、ステツプ(S11)で設定湿度
(HS)即ち90%より低いか否か判断し、低くけれ
ばステツプ(S12)に進み、マイクロCPU39は
出力端子50からの出力を変化させ、インバータ
回路52の出力周波数を上昇させる動作を実行す
る。これによつて電動圧縮機13又は14の回転
数が上昇し、冷却ユニツト7又は8の冷却能力が
上昇するので、マイクロCPU39は貯蔵室2内
の温度(TP)を一定に保つため、上昇させよう
と動作し、ステツプ(S3)から(S4)、又は(S5
から(S4)を実行して加湿用フアン33を運転せ
しめるので貯蔵室2内の湿度は増加する。ステツ
プ(S11)で否であり、ステツプ(S13)に進んで
設定湿度(HS)より(HP)が高い場合はステ
ツプ(S14)に進み、マイクロCPU39は出力端
子50からの出力を変化させ、インバータ回路5
2の出力周波数を下降させる動作を実行する。こ
れによつて電動圧縮機13又は14の回転数が下
降し、冷却ユニツト7又は8の冷却能力が減少す
るので、マイクロCPU39は貯蔵室2内の温度
を下げようとして加湿用フアン33を停止させる
ようになる。これによつて貯蔵室2内の湿度は減
少する。ステツプ(S13)で否であるときは
(HP)が(HS)に等しい場合であるから、ステ
ツプ(S15)に進んでマイクロCPU39は電動圧
縮機13又は14の回転数を維持する。
Next, in the flowchart for humidity control shown in FIG. 3, the humidity sensor 44 is
The current humidity (HP) in the storage room 2, that is, humidity information is read, and in step ( S11 ) it is determined whether the humidity is lower than the set humidity (HS), that is, 90%, and if it is lower, the process proceeds to step ( S12 ). , the micro CPU 39 changes the output from the output terminal 50 to increase the output frequency of the inverter circuit 52. As a result, the rotational speed of the electric compressor 13 or 14 increases, and the cooling capacity of the cooling unit 7 or 8 increases. Steps (S 3 ) to (S 4 ) or (S 5 )
Since (S 4 ) is executed to operate the humidifying fan 33, the humidity in the storage chamber 2 increases. If the result in step (S 11 ) is negative, the process proceeds to step (S 13 ), and if (HP) is higher than the set humidity (HS), the process proceeds to step (S 14 ), where the micro CPU 39 changes the output from the output terminal 50. and inverter circuit 5
Execute the operation to lower the output frequency of step 2. As a result, the rotational speed of the electric compressor 13 or 14 decreases, and the cooling capacity of the cooling unit 7 or 8 decreases, so the micro CPU 39 stops the humidifying fan 33 in an attempt to lower the temperature inside the storage chamber 2. It becomes like this. This reduces the humidity within the storage chamber 2. If the result in step (S 13 ) is negative, it means that (HP) is equal to (HS), so the process advances to step (S 15 ) and the micro CPU 39 maintains the rotational speed of the electric compressor 13 or 14.

以上の動作によつて貯蔵室2内の湿度(HP)
は90%に収束して行くが、第3図のフローチヤー
トにおける湿度情報のサンプリングは例えば15秒
毎に行ない、周波数調節動作を実行する。又、マ
イクロCPU39による周波数の変更動作は設定
湿度(HS)と現在の湿度(HP)との偏差に比
例した周波数の修正要素を演算し、例えば電動圧
縮機13又は14の回転周波数にして30Hzから
120Hzの範囲で実行するように構成されている。
By the above operation, the humidity (HP) in storage room 2
converges to 90%, but the humidity information is sampled every 15 seconds, for example, in the flowchart of FIG. 3, and the frequency adjustment operation is executed. In addition, the frequency change operation by the micro CPU 39 calculates a frequency correction factor proportional to the deviation between the set humidity (HS) and the current humidity (HP), and for example, changes the rotation frequency of the electric compressor 13 or 14 from 30Hz to
Configured to run in the 120Hz range.

この様な水蒸気供給装置と冷却ユニツトの動作
の繰り返えしによつて貯蔵室2内の温度は平均と
して−1℃℃に保たれ、又、貯蔵庫1の周囲の環
境が如何に変化しても貯蔵室2内は常に90%の高
湿度に保たれる。また、斯かる高湿度により貯蔵
室2内空気の熱容量も増大している為、温度の低
下率も緩慢となり、結果として貯蔵室2内の温度
変化は非常に緩やかなものとなる。従つて貯蔵室
2に収納された食品は凍結せず、それによつて組
織の破壊が発生せず、また氷点下であるので内部
のバクテリアの繁殖も抑制される。また、高湿の
環境で保存される為、食品表面からの水分蒸発も
少なく、食品の乾燥も抑制される。更に貯蔵温度
の変化が緩やかで略恒温に近くなるので、温度変
動による食品の品質劣化も抑制される。これによ
つて食品の死後硬直からタンパク質が分解して行
き腐敗するまでの賞味期間は長期間(実験では20
日程度。ここで本発明によらない時は通常4日程
である。)となり、保存期間が延長される。ここ
で、この様な貯蔵室2内が高湿度になる点を考慮
して前述の冷却ユニツト7,8の切換え間隔(実
施例では2時間)は決定されるが、回転数制御に
よるものでもあり、通常のON−OFF制御等に比
べれば電動圧縮機13,14の起動、停止回数は
遥かに少なくなるので、経年変化による構成部品
の損傷も少なくなる。また、これによつて装置3
7により設定されるデイフアレンシヤル(実施例
では0℃から−2℃の間の2℃)も小さくする事
が可能となり、更に貯蔵室2温度を恒温に近づけ
られ、食品の保存性が更に良好となる。更に温度
センサー42の有する熱容量による時間遅れが、
貯蔵室2内空気の熱容量の増大による温度変化の
緩慢化によつて補正される結果となるので、温度
センサー42の感知する温度と実際の温度との差
が小さくなり、温度制御性能が向上し、且つ、回
路素子設定値の調整等も容易となる。
By repeating the operations of the steam supply device and the cooling unit, the temperature inside the storage room 2 is maintained at -1°C on average, and the temperature around the storage room 1 is kept at -1°C. The inside of storage room 2 is always kept at a high humidity of 90%. Furthermore, since the heat capacity of the air within the storage chamber 2 is increased due to such high humidity, the rate of decrease in temperature is also slow, and as a result, the temperature change within the storage chamber 2 becomes very gradual. Therefore, the food stored in the storage chamber 2 does not freeze, thereby preventing tissue destruction, and since the temperature is below freezing, the growth of bacteria inside is also suppressed. Furthermore, since the food is stored in a high-humidity environment, there is less water evaporation from the surface of the food, which prevents the food from drying out. Furthermore, since the storage temperature changes gradually and becomes almost constant temperature, deterioration of food quality due to temperature fluctuations is also suppressed. As a result, the shelf life of food from rigor mortis to protein decomposition and spoilage can be extended over a long period of time (in experiments, 20
About a day. Here, when not according to the present invention, it is usually 4 days. ) and the storage period will be extended. Here, the above-mentioned switching interval of the cooling units 7 and 8 (2 hours in the embodiment) is determined taking into consideration the high humidity inside the storage room 2, but it is also determined by controlling the rotation speed. Compared to normal ON-OFF control, etc., the number of times the electric compressors 13 and 14 are started and stopped is much smaller, so damage to component parts due to aging is also reduced. Also, this allows the device 3
It is also possible to reduce the differential set by 7 (2 degrees Celsius between 0 degrees Celsius and -2 degrees Celsius in the example), and the storage room 2 temperature can be brought closer to constant temperature, further improving the shelf life of food. Becomes good. Furthermore, the time delay due to the heat capacity of the temperature sensor 42 is
This is corrected by slowing down the temperature change due to the increase in heat capacity of the air in the storage room 2, so the difference between the temperature sensed by the temperature sensor 42 and the actual temperature becomes smaller, improving temperature control performance. , and adjustment of circuit element setting values is also facilitated.

尚、実施例では貯蔵室を氷温にて冷却するもの
に本発明を適用したが、それに限られず一般的な
冷蔵温度や冷凍温度に冷却されるものでも何等差
支えないものである。
In the embodiments, the present invention is applied to a storage room that is cooled to an ice temperature, but the present invention is not limited thereto, and may be used to cool a storage room to a general refrigeration temperature or freezing temperature.

(ト) 発明の効果 本発明によれば冷却装置に含まれる冷却ユニツ
トは通常貯蔵室内の温度による所謂ON−OFF制
御を受けないので構成部品の経年劣化が抑制さ
れ、結果的に耐久性が向上する。また、それによ
つて貯蔵室の設定上下限温度の幅、即ちデイフア
レンシヤルを小さくする事が可能となると共に、
高湿度に維持される事によつて温度変動が緩やか
になるので、収納した食品等の周囲環境をより恒
温に近づける事ができ食品の品質保持能力が一段
と向上し、賞味期間を長くする事ができる。また
食品表面からの水分の蒸発も抑制されるので、乾
燥が抑制され食品の保存性が一段と向上するもの
である。
(G) Effects of the Invention According to the present invention, the cooling unit included in the cooling device is not normally subjected to so-called ON-OFF control based on the temperature in the storage room, so aging deterioration of component parts is suppressed, resulting in improved durability. do. In addition, this makes it possible to reduce the range of the upper and lower temperature limits set in the storage room, that is, the differential.
Maintaining a high level of humidity slows down temperature fluctuations, making it possible to bring the surrounding environment of stored food closer to a constant temperature, further improving the quality retention ability of food and extending its shelf life. can. Furthermore, since the evaporation of water from the surface of the food is also suppressed, drying is suppressed and the shelf life of the food is further improved.

更に本発明によれば貯蔵室内の湿度を検出して
貯蔵室内を略一定の湿度に確実に維持するので、
過剰加湿による貯蔵室内の氷付きや、逆に加湿不
足による食品の乾燥が防止され、安定した食品保
存が可能となる。
Furthermore, according to the present invention, the humidity inside the storage room is detected and the humidity inside the storage room is reliably maintained at a substantially constant level.
This prevents ice build-up in the storage room due to excessive humidification, and conversely, prevents food from drying out due to insufficient humidification, allowing for stable food storage.

【図面の簡単な説明】[Brief explanation of the drawing]

各図は本発明の実施例を示し、第1図は制御装
置のブロツク図、第2図及び第3図はマイクロ
CPUのソフトウエアを示すフローチヤート、第
4図は貯蔵庫の一部切欠き斜視図、第5図は同一
部切欠き正面図である。 1……貯蔵庫、3……冷却装置、13,14…
…電動圧縮機、33……加湿用フアン、39……
マイクロCPU、42……温度センサー、44…
…湿度センサー。
Each figure shows an embodiment of the present invention, FIG. 1 is a block diagram of a control device, and FIGS. 2 and 3 are a microcontroller.
A flowchart showing the software of the CPU, FIG. 4 is a partially cutaway perspective view of the storage, and FIG. 5 is a partially cutaway front view of the same. 1...Storage, 3...Cooling device, 13, 14...
...Electric compressor, 33... Humidifying fan, 39...
Micro CPU, 42...Temperature sensor, 44...
...Humidity sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 貯蔵室内を常時冷却する冷却装置と、前記貯
蔵室内に水蒸気を供給する水蒸気供給装置と、前
記貯蔵室内の温度により該室内を所望の温度に維
持するよう前記水蒸気供給装置を制御する温度制
御装置と、前記貯蔵室内の湿度を検知し所望の湿
度となるよう前記冷却装置の電動圧縮機の回転数
を調節する湿度制御装置とを具備して成る貯蔵庫
の制御装置。
1. A cooling device that constantly cools the interior of the storage chamber, a steam supply device that supplies steam into the storage chamber, and a temperature control device that controls the steam supply device to maintain the interior of the storage chamber at a desired temperature based on the temperature inside the storage chamber. and a humidity control device that detects the humidity in the storage room and adjusts the rotation speed of an electric compressor of the cooling device so that the humidity becomes a desired humidity.
JP15730785A 1985-07-17 1985-07-17 Controller for storage shed Granted JPS6219665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15730785A JPS6219665A (en) 1985-07-17 1985-07-17 Controller for storage shed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15730785A JPS6219665A (en) 1985-07-17 1985-07-17 Controller for storage shed

Publications (2)

Publication Number Publication Date
JPS6219665A JPS6219665A (en) 1987-01-28
JPH0510584B2 true JPH0510584B2 (en) 1993-02-10

Family

ID=15646805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15730785A Granted JPS6219665A (en) 1985-07-17 1985-07-17 Controller for storage shed

Country Status (1)

Country Link
JP (1) JPS6219665A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2366622C (en) * 2001-08-31 2006-10-03 Lg Electronics Inc. Device for controlling cooling air supply of refrigerator
JP4776222B2 (en) * 2004-12-15 2011-09-21 ホシザキ電機株式会社 Cooling storage
JP4742692B2 (en) * 2005-06-20 2011-08-10 富士ゼロックス株式会社 Powder container

Also Published As

Publication number Publication date
JPS6219665A (en) 1987-01-28

Similar Documents

Publication Publication Date Title
US7895851B2 (en) Method for controlling humidity in a domestic refrigerator, and refrigerator adapted to carry out such method
CN106766537A (en) A kind of three compartment refrigerators and its control method of defrost and moisturizing
JPH07174453A (en) Refrigerator
KR100774191B1 (en) Kimchi Refrigerator and Control Method for the Same
JPH04369375A (en) Refrigerator
JP3901895B2 (en) Food freezer
JPH0510584B2 (en)
CN111351310A (en) Refrigeration equipment, defrosting control method and device thereof, and storage medium
JP3208239B2 (en) Constant temperature and humidity chamber
JP2950227B2 (en) Air conditioner
JP3461531B2 (en) refrigerator
JPS6127472A (en) Controller for storage warehouse
JPS6222978A (en) Controller for storage shed
JPS6219666A (en) Controller for storage shed
JPH11101548A (en) Refrigerator
JPS6219667A (en) Controller for storage shed
JPS6127473A (en) Controller for storage warehouse
JP2003299435A (en) Baking oven apparatus for frozen bread dough
JP6998292B2 (en) refrigerator
JP2542277Y2 (en) High humidity thawing cool box
JPH10311649A (en) Refrigerating storeroom for food and control for operation of the same
JP2584342B2 (en) Refrigeration / refrigerator cooling control device
WO2024012133A1 (en) Freezing-prevention control method for refrigerating chamber of refrigerator, and refrigerator
JP2024009282A (en) refrigerator
JPH06194021A (en) Refrigerator