JPH0510582B2 - - Google Patents

Info

Publication number
JPH0510582B2
JPH0510582B2 JP8754886A JP8754886A JPH0510582B2 JP H0510582 B2 JPH0510582 B2 JP H0510582B2 JP 8754886 A JP8754886 A JP 8754886A JP 8754886 A JP8754886 A JP 8754886A JP H0510582 B2 JPH0510582 B2 JP H0510582B2
Authority
JP
Japan
Prior art keywords
refrigerant
cold storage
ice
tank
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8754886A
Other languages
Japanese (ja)
Other versions
JPS62242778A (en
Inventor
Hayatake Kawasaki
Yoshihiro Nakajima
Yoji Akitani
Masaru Oowa
Masaru Nakaiwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP8754886A priority Critical patent/JPS62242778A/en
Publication of JPS62242778A publication Critical patent/JPS62242778A/en
Publication of JPH0510582B2 publication Critical patent/JPH0510582B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は氷蓄冷装置に関し、より詳細には有機
化合物系の冷媒を塩またはアルコールの水溶液中
に直接吹き込み、冷媒を蒸発させ、その蒸発潜熱
によつて溶液中に氷の結晶を晶析させ、この氷の
含有量を高めて冷熱を蓄える氷蓄冷装置に関す
る。 〔従来技術〕 氷蓄冷装置に関する従来技術には、装置内に氷
を晶析させる方法によつて、次の2つの技術があ
る。その1つには蓄冷装置内に設置された伝熱管
を冷凍機に直結して、冷媒を伝熱管内で蒸発さ
せ、その蒸発熱によつて伝熱管外壁に氷結させ
て、蓄冷する直膨式蓄冷方式であり、他は冷凍機
によつて得られた冷却ブラインを上記伝熱管内に
流入させ、上記と同様に伝熱管外壁に氷を氷結さ
せて蓄冷する間接式蓄冷方式である。 〔発明の目的〕 本発明は上記従来技術とは異なり、氷を晶析す
る晶析槽と晶析した氷を蓄える蓄冷槽とを分離
し、晶析槽内には伝熱管を設けず、冷媒(液)を
晶析槽内の水溶液中に直接吹き込み、冷媒を蒸発
させながら溶液中に粒状の氷を晶析させ、蒸発し
た冷媒を圧縮機と凝縮器により液化し、再び晶析
槽内に吹き込み連続して効率良く氷を晶析させる
ことを可能とすると同時に晶析した氷を逐次蓄冷
槽内に蓄えることにより、蓄冷能力の高い高性能
の氷蓄冷装置を提供することを目的としている。 〔発明の構成〕 上記目的を達成する本発明の氷蓄冷装置は、水
に難溶性で水と反応しない有機化合物系の冷媒
を、塩またはアルコールの水溶液中に直接吹き込
み、冷媒を蒸発させ、該冷媒の蒸発潜熱によつて
該溶液中に氷を晶析させる晶析槽、該晶析槽で晶
析した氷を蓄える蓄冷槽、前記冷媒の圧縮機およ
びこの圧縮された冷媒の凝縮器と液化冷媒の貯槽
からなり、前記晶析槽と蓄冷槽との間に溶液循環
管路を設けると共に、前記晶析槽、圧縮機および
冷媒凝縮器と冷媒貯槽をこの順で連結して再び前
記晶析槽に至る冷媒循環管路を形成し、更に前記
蓄冷槽から熱交換器を経て前記蓄冷槽および前記
晶析槽に至る未凍結溶液の循環管路を設けたこと
を特徴とするものである。 以下、本発明を図面に示した実施例にもとづき
説明する。 第1図において本発明の氷蓄冷装置1は、晶析
槽2、蓄冷槽3、冷媒の圧縮機4および圧縮され
た冷媒の凝縮器5と液化冷媒の貯槽12から構成
され、晶析槽2と蓄冷槽3との間には、晶析槽2
から蓄冷槽3に至る管路6、および蓄冷槽3から
晶析槽2に至る管路14、循環ポンプ8、管路9
からなる溶液循環管路が設けられている。 また、晶析槽2から管路10、デミスター1
1、圧縮機4、冷媒凝縮器5、冷媒貯槽12およ
び管路13、膨張弁20を経て再び晶析槽2に至
る冷媒循環管路が形成されている。 更に蓄冷槽3から管路14、循環ポンプ8、熱
交換器15を経て管路9により晶析槽2に、また
熱交換器15から管路7により蓄冷槽3にいたる
未凍結溶液の循環管路が設けられている。 ここで本発明においては、溶液として塩または
アルコールの水溶液が使用され、塩としては食
塩、塩化カリウム、硫酸ソーダ等が、好ましくは
食塩が使用され、アルコールとしはメタノール、
エタノール、プロパノール等の低級脂肪族アルコ
ールが、好ましくはエタノールが使用され、水溶
液の濃度は例えば食塩では1%前後、エタノール
では5%以下である。 また、冷媒としては、下記表に示すような物性
を有する、水に難溶性で水と反応して気体水和物
を形成しない有機化合物が使用される。
[Technical Field of the Invention] The present invention relates to an ice cold storage device, and more specifically, an organic compound-based refrigerant is directly blown into an aqueous solution of salt or alcohol, the refrigerant is evaporated, and ice is formed in the solution by the latent heat of evaporation. This invention relates to an ice cold storage device that stores cold heat by crystallizing crystals and increasing the content of this ice. [Prior Art] There are two types of conventional technologies related to ice cold storage devices, depending on the method of crystallizing ice within the device. One of them is the direct expansion type, in which the heat transfer tubes installed in the cold storage device are directly connected to the refrigerator, the refrigerant is evaporated within the heat transfer tubes, and the heat of evaporation is used to freeze the outer walls of the heat transfer tubes, thereby storing the cold. The other method is an indirect cold storage method in which cooling brine obtained by a refrigerator is flowed into the heat transfer tube and ice is frozen on the outer wall of the heat transfer tube to store cold in the same manner as above. [Object of the Invention] Unlike the above-mentioned conventional technology, the present invention separates a crystallization tank for crystallizing ice and a cold storage tank for storing crystallized ice, does not provide a heat transfer tube in the crystallization tank, and uses a refrigerant. (liquid) is directly blown into the aqueous solution in the crystallization tank, granular ice is crystallized in the solution while evaporating the refrigerant, the evaporated refrigerant is liquefied by a compressor and condenser, and then returned to the crystallization tank. The purpose of the present invention is to provide a high-performance ice cold storage device with a high cold storage capacity by making it possible to continuously blow and efficiently crystallize ice and at the same time successively storing the crystallized ice in a cold storage tank. [Structure of the Invention] The ice cold storage device of the present invention that achieves the above object directly blows an organic compound-based refrigerant that is poorly soluble in water and does not react with water into an aqueous solution of salt or alcohol, evaporates the refrigerant, and cools the refrigerant. A crystallization tank that crystallizes ice in the solution using the latent heat of vaporization of the refrigerant, a cold storage tank that stores the ice crystallized in the crystallization tank, a compressor for the refrigerant, and a condenser and liquefaction for the compressed refrigerant. It consists of a refrigerant storage tank, and a solution circulation pipe is provided between the crystallization tank and the cold storage tank, and the crystallization tank, compressor, refrigerant condenser, and refrigerant storage tank are connected in this order to perform the crystallization again. A refrigerant circulation line leading to the tank is formed, and an unfrozen solution circulation line is further provided from the cold storage tank to the cold storage tank and the crystallization tank via a heat exchanger. The present invention will be described below based on embodiments shown in the drawings. In FIG. 1, an ice cold storage device 1 of the present invention is composed of a crystallization tank 2, a cold storage tank 3, a refrigerant compressor 4, a compressed refrigerant condenser 5, and a liquefied refrigerant storage tank 12. A crystallization tank 2 is located between the cold storage tank 3 and the cold storage tank 3.
A pipe 6 leading from the cold storage tank 3 to the crystallization tank 2, a pipe 14 leading from the cold storage tank 3 to the crystallization tank 2, a circulation pump 8, and a pipe 9
A solution circulation line consisting of: In addition, from the crystallization tank 2 to the pipe line 10, the demister 1
1, a compressor 4, a refrigerant condenser 5, a refrigerant storage tank 12, a pipe 13, an expansion valve 20, and a refrigerant circulation pipe that leads back to the crystallization tank 2. Further, there is a circulation pipe for the unfrozen solution from the cold storage tank 3 to the crystallization tank 2 via a pipe 9 through a pipe 14, a circulation pump 8, and a heat exchanger 15, and from the heat exchanger 15 to the cold storage tank 3 via a pipe 7. A road is provided. Here, in the present invention, an aqueous solution of salt or alcohol is used as the solution, and the salt is common salt, potassium chloride, sodium sulfate, etc., and preferably common salt is used, and the alcohol is methanol,
Lower aliphatic alcohols such as ethanol and propanol are used, preferably ethanol, and the concentration of the aqueous solution is, for example, about 1% for common salt and 5% or less for ethanol. Further, as the refrigerant, an organic compound having the physical properties shown in the table below, which is sparingly soluble in water and does not react with water to form a gaseous hydrate, is used.

〔発明の効果〕〔Effect of the invention〕

本発明の氷蓄冷装置においては、晶析槽には伝
熱管群がなく、冷媒の蒸発や氷の結晶化に伴う熱
移動は溶液中に蒸発する冷媒と氷の結晶粒子間で
溶液を介して直接行なうことができる。 この結果、冷媒は3℃以下の温度差(溶液温度
と操作圧力下の冷媒飽和温度との差)で激しく蒸
発し、同時に溶液中に氷の結晶粒子が効率よく晶
析するこことを可能にしている。 しかしながら、冷媒を溶液中に直接吹き込む直
接接触法による晶析操作において、晶析槽内の氷
の結晶化率は約30%まで可能であるが、結晶化率
が20%以上に達すると、溶液の撹拌状態が悪化
し、液界面や槽壁にしばしば氷塊が形成され、ま
た冷媒の蒸発が妨げられ、槽内に未蒸発の液状冷
媒の増加が観察された。 そこで本発明においては、晶析操作を連続して
行いながら、氷の懸濁液を別の容器、すなわち蓄
冷槽内に取り出し、晶析槽内の結晶化率(または
氷含有率)を20%前後に保持するとともに、氷の
浮力を利用して、蓄冷槽上部に逐次、氷の含有率
を高めて蓄積し、一方、蓄冷槽3下部からまたは
蓄冷槽3Aにおいては過器32をもちいて未凍
液を取り出すことによつて容易に蓄冷槽内に氷の
含有率を50%前後まで高めることを可能にした。 氷蓄冷装置内の冷熱量は、冷熱として利用でき
る温度範囲内での溶液の持つ顕熱と氷の潜熱との
和で与えられる。 第3図に本発明の氷蓄冷装置内の氷含有率に対
する有効容積(曲線A)および蓄冷熱容量(曲線
B)との関係を示す。 ただし第3図は、冷熱利用温度を0〜10℃の範
囲にとり、氷蓄冷装置の有効容積には蓄冷熱量10
×103Kcal、すなわち有効容積1m3における水の
顕熱のみによる蓄冷熱容量を基準にして求めたも
のである。 第3図から、氷含有率0.3(または30%)におけ
る有効容積は約0.3m3、蓄冷熱容量は約33×
103Kcal/m3となるが、氷含有率0.5(または50%)
においては、有効容積は0.21m3、すなわち水の顕
熱のみによる蓄冷装置に比較して装置容積は約5
分の1に縮小し、またこの時の蓄冷熱量は48×
103Kcal/m3となり、氷蓄冷装置においては、で
きるだけ氷含有率を増加させて蓄冷することが有
利となる。 本発明は冷媒を溶液中に直接吹き込み、氷を晶
析させる氷蓄冷装置において、晶析槽と蓄冷槽と
を分離して、晶析槽では氷の晶析操作を高効率化
し、その容積を小さくし、蓄冷槽においては、晶
析槽内で晶析した粒状の氷を逐次蓄積して、氷の
含有率を高めて蓄冷する高性能の氷蓄冷装置を提
供するものである。
In the ice cold storage device of the present invention, there is no heat transfer tube group in the crystallization tank, and heat transfer accompanying evaporation of the refrigerant and crystallization of ice occurs between the refrigerant evaporating into the solution and the ice crystal particles through the solution. It can be done directly. As a result, the refrigerant evaporates violently with a temperature difference of 3°C or less (difference between the solution temperature and the refrigerant saturation temperature under operating pressure), and at the same time allows ice crystal particles to efficiently crystallize in the solution. ing. However, in crystallization operations using the direct contact method in which a refrigerant is directly blown into the solution, the crystallization rate of ice in the crystallization tank can be up to about 30%, but when the crystallization rate reaches 20% or more, the The stirring condition deteriorated, ice blocks often formed on the liquid interface and tank walls, and evaporation of the refrigerant was hindered, and an increase in unevaporated liquid refrigerant was observed in the tank. Therefore, in the present invention, while performing the crystallization operation continuously, the ice suspension is taken out into another container, that is, a cold storage tank, and the crystallization rate (or ice content rate) in the crystallization tank is reduced to 20%. At the same time, the buoyancy of the ice is used to gradually increase the ice content and accumulate it in the upper part of the cold storage tank.On the other hand, from the bottom of the cold storage tank 3 or in the cold storage tank 3A, a filter 32 is used to collect the ice. By taking out the frozen liquid, it was possible to easily increase the ice content in the cold storage tank to around 50%. The amount of cold heat in the ice cold storage device is given by the sum of the sensible heat of the solution and the latent heat of the ice within the temperature range that can be used as cold heat. FIG. 3 shows the relationship between the effective volume (curve A) and the cold storage heat capacity (curve B) with respect to the ice content in the ice cold storage device of the present invention. However, in Figure 3, the cold energy utilization temperature is set in the range of 0 to 10℃, and the effective volume of the ice cold storage device has a cold storage heat capacity of 10℃.
×10 3 Kcal, that is, it was determined based on the cold storage heat capacity due only to the sensible heat of water in 1 m 3 of effective volume. From Figure 3, the effective volume at ice content of 0.3 (or 30%) is approximately 0.3 m 3 and the cold storage heat capacity is approximately 33×
10 3 Kcal/m 3 but ice content 0.5 (or 50%)
In this case, the effective volume is 0.21 m 3 , that is, compared to a cold storage device that uses only the sensible heat of water, the device volume is approximately 5.
The amount of cold storage heat at this time is 48×
10 3 Kcal/m 3 , and in an ice cold storage device, it is advantageous to increase the ice content as much as possible to store cold. The present invention is an ice cold storage device that directly blows a refrigerant into a solution to crystallize ice.The crystallization tank and the cold storage tank are separated, and the ice crystallization operation in the crystallization tank is made highly efficient, and its volume is reduced. The purpose of the present invention is to provide a high-performance ice cold storage device in which the ice storage tank is made small in size, and granular ice crystallized in the crystallization tank is accumulated one after another to increase the ice content and store cold.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の氷蓄冷装置の概要を示す説明
図、第2図Aは本発明で使用される蓄冷槽の実施
例を示す概要図、第2図BはそのA−A矢視断面
図、第3図は本発明における氷蓄冷槽の有効容
積、氷含有率および蓄冷熱容量との関係を示す図
である。 1……氷蓄冷装置、2……晶析槽、3……蓄冷
槽、4……圧縮機、5……冷媒凝縮器、8……循
環ポンプ、12……冷媒貯槽、15……熱交換
器、31……濾過管、32……濾過器。
FIG. 1 is an explanatory diagram showing an overview of the ice cold storage device of the present invention, FIG. 2A is a schematic diagram showing an embodiment of the cold storage tank used in the present invention, and FIG. 2B is a cross section taken along the line A-A of the present invention. 3 are diagrams showing the relationship between the effective volume of the ice cold storage tank, the ice content rate, and the cold storage heat capacity in the present invention. 1...Ice cold storage device, 2...Crystallization tank, 3...Cold storage tank, 4...Compressor, 5...Refrigerant condenser, 8...Circulation pump, 12...Refrigerant storage tank, 15...Heat exchange vessel, 31... filter tube, 32... filter.

Claims (1)

【特許請求の範囲】[Claims] 1 水に難溶性で水と反応しない有機化合物系の
冷媒を、塩またはアルコールの水溶液中に直接吹
き込み、該冷媒を蒸発させ、該冷媒の蒸発潜熱に
よつて該溶液中に氷を晶析させる晶析槽、該晶析
槽で晶析した氷を蓄える蓄冷槽、前記冷媒の圧縮
機および冷媒の凝縮器と冷媒の貯槽からなり、前
記晶析槽と蓄冷槽との間に溶液循環管路を設ける
と共に、前記晶析槽、圧縮機および冷媒凝縮器と
冷媒貯槽をこの順で連結して再び前記晶析槽に至
る冷媒循環管路を形成し、更に前記蓄冷槽から熱
交換器を経て前記蓄冷槽および前記晶析槽に至る
未凍結溶液の循環管路を設けたことを特徴とする
氷蓄冷装置。
1 A refrigerant based on an organic compound that is poorly soluble in water and does not react with water is directly blown into an aqueous solution of salt or alcohol, the refrigerant is evaporated, and ice is crystallized in the solution by the latent heat of vaporization of the refrigerant. It consists of a crystallization tank, a cold storage tank for storing ice crystallized in the crystallization tank, a refrigerant compressor, a refrigerant condenser, and a refrigerant storage tank, and a solution circulation pipe is provided between the crystallization tank and the cold storage tank. At the same time, the crystallization tank, the compressor, the refrigerant condenser, and the refrigerant storage tank are connected in this order to form a refrigerant circulation pipe leading to the crystallization tank again, and further from the regenerator tank via a heat exchanger. An ice cold storage device, characterized in that an ice cold storage device is provided with a circulation pipe for unfrozen solution leading to the cold storage tank and the crystallization tank.
JP8754886A 1986-04-16 1986-04-16 Ice cold accumulator Granted JPS62242778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8754886A JPS62242778A (en) 1986-04-16 1986-04-16 Ice cold accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8754886A JPS62242778A (en) 1986-04-16 1986-04-16 Ice cold accumulator

Publications (2)

Publication Number Publication Date
JPS62242778A JPS62242778A (en) 1987-10-23
JPH0510582B2 true JPH0510582B2 (en) 1993-02-10

Family

ID=13918039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8754886A Granted JPS62242778A (en) 1986-04-16 1986-04-16 Ice cold accumulator

Country Status (1)

Country Link
JP (1) JPS62242778A (en)

Also Published As

Publication number Publication date
JPS62242778A (en) 1987-10-23

Similar Documents

Publication Publication Date Title
US5065598A (en) Ice thermal storage apparatus
EP0491402B1 (en) Latent heat storage solution
US4254635A (en) Installation for the storage of continuously generated coldness and for the intermittent emission of at least a portion of the stored cold
JP3043408B2 (en) Method and apparatus for cooling and purifying water
US4223535A (en) Absorption solar powered air conditioning system with storage capacity
CN108939603B (en) Method for directly cooling and crystallizing in process of separating sodium sulfate and ammonium sulfate
US5448892A (en) Methods and apparatuses for providing cool thermal storage and/or water purification
JPH0510582B2 (en)
JPH0399177A (en) Ice heat accumulating device
US3616653A (en) Refrigeration in cycles of freezing and melting
JPS63163735A (en) Cold and heat accumulation method utilizing liquid enclosure hydrate
JPH0144229B2 (en)
JPH0794938B2 (en) Ice storage method and equipment for heat storage
JP2876893B2 (en) Absorption type ice cold storage device
US2089467A (en) Refrigerant brine
JP2556223B2 (en) Method and apparatus for generating chemical cold heat
JPS6014146Y2 (en) horizontal capacitor
JP2556222B2 (en) Chemical refrigeration equipment
JPH0438178Y2 (en)
JPS5838936Y2 (en) Water-lithium salt absorption refrigerator
JPS63217170A (en) Ice making method and device for accumulating heat
JPH08136170A (en) Heat pipe type cooler
JP2668063B2 (en) Absorbent composition for absorption air conditioner
JPH0551823B2 (en)
JP3160338B2 (en) Super cooling water production equipment

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term