JPH0510555B2 - - Google Patents

Info

Publication number
JPH0510555B2
JPH0510555B2 JP59087545A JP8754584A JPH0510555B2 JP H0510555 B2 JPH0510555 B2 JP H0510555B2 JP 59087545 A JP59087545 A JP 59087545A JP 8754584 A JP8754584 A JP 8754584A JP H0510555 B2 JPH0510555 B2 JP H0510555B2
Authority
JP
Japan
Prior art keywords
straight pipe
branch
cross
pipe
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59087545A
Other languages
Japanese (ja)
Other versions
JPS61274196A (en
Inventor
Susumu Ninomya
Tadashi Aoki
Juji Horikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP59087545A priority Critical patent/JPS61274196A/en
Priority to US06/709,207 priority patent/US4708372A/en
Publication of JPS61274196A publication Critical patent/JPS61274196A/en
Publication of JPH0510555B2 publication Critical patent/JPH0510555B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、例えば沸騰水型原子炉の再循環系に
介装されているヘツダのようなクロス配管構造に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a cross piping structure such as a header installed in a recirculation system of a boiling water nuclear reactor, for example.

[発明の技術的背景] 第2図は一般的な沸騰水型原子炉の概略を示す
ものであり、原子炉圧力容器1内には上下方向に
おける中央位置よりやや下方に炉心2が形成され
ている。この炉心2の上方には気水分離器3が配
設されており、この気水分離器3により分離され
た蒸気は管路4によりタービン(図示せず)に供
給されるようになつている。また、図示しないタ
ービンからの蒸気凝縮水が管路6から原子炉圧力
容器1内に戻されるようになつている。さらに原
子炉圧力容器1内に管路6により給水がなされる
ようになつている。
[Technical Background of the Invention] Fig. 2 schematically shows a general boiling water reactor, in which a reactor core 2 is formed in a reactor pressure vessel 1 slightly below the center position in the vertical direction. There is. A steam separator 3 is disposed above the core 2, and the steam separated by the steam separator 3 is supplied to a turbine (not shown) through a pipe 4. . Further, steam condensed water from a turbine (not shown) is returned into the reactor pressure vessel 1 through a pipe 6. Furthermore, water is supplied into the reactor pressure vessel 1 through a pipe line 6.

前記原子炉圧力容器1内には炉心2を囲繞する
ように複数個のジエツトポンプ7が配設されてお
り、原子炉圧力容器1内の冷却材を炉心2を通過
するように循環せしめるようになつている。この
ため、原子炉圧力容器1外には、この容器1内の
冷却材をジエツトポンプ7に供給するための一対
の再循環系8が配設されており各再循環系8には
再循環ポンプ9が介装され、この再循環ポンプ9
の下流側には冷却材を各ジエツトポンプ7に分配
するためのヘツダ10が設けられている。
A plurality of jet pumps 7 are arranged in the reactor pressure vessel 1 so as to surround the reactor core 2, and are configured to circulate the coolant in the reactor pressure vessel 1 so as to pass through the reactor core 2. ing. For this reason, a pair of recirculation systems 8 are provided outside the reactor pressure vessel 1 for supplying the coolant in this vessel 1 to the jet pump 7, and each recirculation system 8 has a recirculation pump 9. is interposed, and this recirculation pump 9
A header 10 for distributing coolant to each jet pump 7 is provided downstream of the jet pump 7 .

前記ヘツダ10は、第3図および第4図に示す
ように円筒形の上流側直管11を有し、この直管
11の軸方向同一位置には直管11より小径の口
径からなる一対の第1および第2の分岐管12
A,12Bが接続され、直管11内にはクロス部
16が形成されている。そして、両分岐管12
A,12Bの直管11に対する接続位置は一方の
分岐管12Aが他方の分岐管12Bの軸線に対し
直管11の円周方向にずれるようになされてい
る。すなわち、第4図に詳示するように、両分岐
管12A,12Bの軸線LA,LBは直管11の直
径線Lに対し同方向に角度αだけずれるように接
続されている。
The header 10 has a cylindrical upstream straight pipe 11 as shown in FIGS. 3 and 4, and a pair of cylindrical upstream straight pipes 11 having a diameter smaller than that of the straight pipes 11 are located at the same position in the axial direction of the straight pipe 11. First and second branch pipes 12
A and 12B are connected, and a cross section 16 is formed within the straight pipe 11. And both branch pipes 12
The connection positions of A and 12B to the straight pipe 11 are such that one branch pipe 12A is offset in the circumferential direction of the straight pipe 11 with respect to the axis of the other branch pipe 12B. That is, as shown in detail in FIG. 4, the axes L A and L B of both branch pipes 12A and 12B are connected to the diameter line L of the straight pipe 11 so as to be deviated from each other by an angle α in the same direction.

前記直管11は下端を入口部13とされ、冷却
材は下方から上方に流れるようになつており、こ
の直管11における分岐管12A,12Bの接続
部位より下流側の出口部14はレデユーサ15に
より口径が漸減され、下流側直管17が接続され
ている。
The lower end of the straight pipe 11 is used as an inlet part 13, and the coolant flows from the bottom to the top.The outlet part 14 of the straight pipe 11 on the downstream side of the connecting part of the branch pipes 12A and 12B is a reducer 15. The diameter of the pipe is gradually reduced, and a straight pipe 17 on the downstream side is connected.

[背景技術の問題点] 前述したヘツダ10のようなクロス配管構造に
おいては、第5図A,B,Cに示すように、入口
部13、および両分岐管12A,12Bが直管1
1と交差するクロス部16における冷却材の偏流
aによりクロス部16から分岐管12A,12B
にかけて冷却材の旋回流bが生じる。また、この
旋回流bは、上流および下流における冷却材の流
れの乱れにより第5図Dに示すように分岐管12
A,12Bの直下位置の偏流cに変化し、旋回流
がなくなる状態になる。
[Problems with the Background Art] In a cross piping structure such as the header 10 described above, as shown in FIGS.
The branch pipes 12A, 12B are separated from the cross part 16 by the uneven flow a of the coolant in the cross part 16 that intersects with the cross part 1.
A swirling flow b of the coolant is generated throughout the period. Moreover, this swirling flow b is caused by the turbulence of the coolant flow in the upstream and downstream areas, as shown in FIG.
The current changes to a polarized flow c directly below A and 12B, and the swirling flow disappears.

したがつて、このようなクロス配管構造におい
ては、旋回流bの有無が不規則に繰返えされるの
で、分岐管12A,12B内における冷却材の流
れが大幅に変動し、安定した分岐流量を得ること
ができないという問題点があつた。
Therefore, in such a cross piping structure, the presence and absence of the swirling flow b is irregularly repeated, so the flow of coolant in the branch pipes 12A and 12B fluctuates significantly, making it difficult to maintain a stable branch flow rate. The problem was that I couldn't get it.

[発明の目的] 本発明は、このような点に鑑み、分岐管内にお
ける旋回流の有無の変動をなくして安定した分岐
流量を得ることのできるクロス配管構造を提供す
ることを目的とする。
[Object of the Invention] In view of the above points, an object of the present invention is to provide a cross piping structure that can eliminate fluctuations in the presence or absence of swirling flow in the branch pipe and obtain a stable branch flow rate.

[発明の概要] 本発明に係るクロス配管構造は、直管と、この
直管の軸方向同一位置に接続された一対の分岐管
とを有し、一方の分岐管は他方の分岐管の軸線に
対し直管の円周方向にずれた位置に接続されてい
るクロス配管構造において、液体が下方から上方
に沿つて流れる上流側直管と、この上流側直管の
下流側に直接接続された該上流側直管より小口径
の下流側直管と、前記上流側直管にその軸線とほ
ぼ直角方向にクロス部を有して分岐され該上流側
直管より小口径の第1および第2の分岐管と、前
記クロス部内面でかつ前記第1および第2の分岐
管の分岐部下端より下流側でかつこの分岐管の分
岐部上端上流側に形成され前記第1および第2の
分岐管の軸線と直角方向に縮径した絞り部とを具
備したことを特徴とする。
[Summary of the Invention] A cross piping structure according to the present invention has a straight pipe and a pair of branch pipes connected to the same position in the axial direction of the straight pipe, one branch pipe being connected to the axis of the other branch pipe. In a cross piping structure, the straight pipe is connected at a circumferentially offset position, with the upstream straight pipe through which liquid flows from below to the top, and the upstream straight pipe connected directly to the downstream side of this upstream straight pipe. a downstream straight pipe having a smaller diameter than the upstream straight pipe; and first and second first and second pipes having a smaller diameter than the upstream straight pipe and branched from the upstream straight pipe by having a cross section in a direction substantially perpendicular to its axis. and the first and second branch pipes formed on the inner surface of the cross portion, downstream from the lower ends of the branch of the first and second branch pipes, and upstream of the upper ends of the branch parts of the branch pipes. It is characterized by comprising a constricted part whose diameter is reduced in a direction perpendicular to the axis of the valve.

[発明の実施例] 以下、本発明を図面に示す実施例により説明す
る。なお、前述した従来のものと同一の構成につ
いては、図面中に同一の符号を付し、その説明は
省略する。
[Embodiments of the Invention] The present invention will be described below with reference to embodiments shown in the drawings. Note that the same components as those of the conventional device described above are denoted by the same reference numerals in the drawings, and the explanation thereof will be omitted.

第1図、第6図、第7図および第8図は本発明
の第1の実施例を示すものであり、クロス配管構
造の一例としてのヘツダ20における出口部14
の直管21の内径は第1図および第7図に示すよ
うにクロス部16内の中心軸線Lxから下流側が、
入口部13の上流側直管11の内径より縮径して
小口径になつた絞り部24が形成されている。ま
た、この出口部14の下流側直管21は入口部1
3の上流側直管11の中心線と同芯となつてい
る。
1, 6, 7, and 8 show a first embodiment of the present invention, and show an outlet portion 14 in a header 20 as an example of a cross piping structure.
The inner diameter of the straight pipe 21 is as shown in FIGS. 1 and 7 on the downstream side from the central axis L x in the cross section 16.
A constricted portion 24 having a smaller diameter than the inner diameter of the upstream straight pipe 11 of the inlet portion 13 is formed. Further, the straight pipe 21 on the downstream side of the outlet section 14 is connected to the inlet section 1.
It is concentric with the center line of the upstream straight pipe 11 of No. 3.

このような構造にすると第7図および第8図に
示すようにクロス部16の中心軸線Lx部に沿つ
て上流側直管11内で、第1図および第2図の分
岐管12A,12Bの軸線LA,LBの外側にフラ
ツト面22が形成される。このフラツト面22か
ら上方を絞り部24と称す。
With such a structure, as shown in FIGS. 7 and 8, the branch pipes 12A and 12B of FIGS . A flat surface 22 is formed outside the axes LA and LB. The portion above the flat surface 22 is called a constricted portion 24.

前述した構成によれば、上流側直管11の入口
部13から導入された冷却材は中心部では絞り部
24から出口部14の下流側直管21内を流れ、
下流側直管21の内径より外側の流れはフラツト
面22および、クロス部分岐管上面23A,23
Bに衝突し、分岐管12A,12Bに導入され
る。そして、この分岐管12A,12Bに導入さ
れる冷却材の流れは出口部14方向へ流れる冷却
材の干渉を受けないので、分岐管12A,12B
内において旋回流が生じることはない。
According to the above-described configuration, the coolant introduced from the inlet portion 13 of the upstream straight pipe 11 flows from the throttle portion 24 at the center inside the downstream straight pipe 21 of the outlet portion 14,
The flow outside the inner diameter of the downstream straight pipe 21 flows through the flat surface 22 and the cross section branch pipe upper surfaces 23A, 23.
B and is introduced into branch pipes 12A and 12B. Since the flow of the coolant introduced into the branch pipes 12A, 12B is not interfered with by the coolant flowing in the direction of the outlet section 14, the branch pipes 12A, 12B
There is no swirling flow inside.

したがつて分岐管内に旋回流が生じず分岐流量
は安定し、したがつて分岐流量の制御を簡単に行
なうことができるという効果を奏する。
Therefore, no swirling flow occurs in the branch pipe, and the branch flow rate is stabilized, so that the branch flow rate can be easily controlled.

第9図は本発明の第2の実施例を示すものであ
り、出口部14にテーパー部26を設け、このク
ロス部16から上方の下流側直管21と上部配管
27との間の流動をさらになめらかにし、かつ第
7図のフラツト面22を削除して側面をなめらか
な曲面に形成し、流動をよりスムーズにする形状
の絞り部27が形成されている。
FIG. 9 shows a second embodiment of the present invention, in which a tapered part 26 is provided at the outlet part 14 to prevent the flow between the downstream straight pipe 21 and the upper pipe 27 located above the cross part 16. Further, the flat surface 22 shown in FIG. 7 is removed to form a smooth curved side surface, and a constricted portion 27 is formed to make the flow smoother.

また第10図は前記第2の実施例の概念を立体
的に示したものである。
Further, FIG. 10 shows the concept of the second embodiment in three dimensions.

このような構成によつても前述した第1の実施
例と同様の作用効果を奏することができる。
Even with such a configuration, the same effects as those of the first embodiment described above can be achieved.

次に、第5図を用いて従来例での流動状況を第
1図、第6図から第7図を用いて本発明の一実施
例での流動状況を述べる。
Next, the flow situation in the conventional example will be described using FIG. 5, and the flow situation in an embodiment of the present invention will be described using FIG. 1 and FIGS. 6 to 7.

まず、第5図Aで上流側直管入口部13(区間
)から流れて来た水はクロス部16(区間)
で分岐管12A,12Bと下流側直管17の出口
部14(区間)に分かれる。
First, in Fig. 5A, the water flowing from the upstream straight pipe inlet section 13 (section) is transferred to the cross section 16 (section).
It is divided into branch pipes 12A, 12B and an outlet section 14 (section) of the downstream straight pipe 17.

このとき、出口部14に流れ込む水量は、入口
部13(区間)を流れる両の1/3以下になる。
At this time, the amount of water flowing into the outlet section 14 is less than 1/3 of the amount of water flowing through the inlet section 13 (section).

この場合、第4図AまたはBで示す様な従来例
では、出口部直管21の内径が入口部13の内径
と同じになつているために、一様な流速分布をも
つピストンフローで流れる場合にはこの出口部直
管21での流速はクロス部16の入口部13流速
に比べ1/3以下にならなければならない。
In this case, in the conventional example shown in FIG. 4A or B, the inner diameter of the outlet straight pipe 21 is the same as the inner diameter of the inlet section 13, so the flow is a piston flow with a uniform flow velocity distribution. In this case, the flow velocity at the outlet straight pipe 21 must be 1/3 or less compared to the flow velocity at the inlet 13 of the cross section 16.

しかし実際には、流体の慣性によつてあまり減
速されずにこの出口部直管21に水が入つて来る
為に、この区間の部分で逆流する成分が生じ、
第5図Bに示す様に旋回流が生じる。
However, in reality, water enters this outlet straight pipe 21 without being slowed down much due to the inertia of the fluid, so a component that flows backward occurs in this section.
A swirling flow is generated as shown in FIG. 5B.

またこの旋回流は第5図Cに示す様に分岐管1
2A,12Bの取付け角度が傾いていることや、
上流側の流れの乱れ成分などにより時々消滅し、
その時に流動変動が生じる。
Also, this swirling flow is caused by the branch pipe 1 as shown in Fig. 5C.
The installation angle of 2A and 12B is tilted,
Sometimes it disappears due to turbulence components in the upstream flow,
At that time, flow fluctuations occur.

次に第1図、第6図から第8図に示す様な本発
明の一実施例では第1図に示す様に入口部13の
管壁に沿つた流れはクロス部16で絞り部24が
形成されかつ出口部14が狭くなつている為に第
1および第2の分岐管12A,12Bへスムーズ
に流れる。
Next, in one embodiment of the present invention as shown in FIGS. 1, 6 to 8, the flow along the pipe wall of the inlet section 13 is controlled by the cross section 16 and the constriction section 24. Since the outlet portion 14 is narrow, it flows smoothly into the first and second branch pipes 12A and 12B.

すなわち、第7図から明らかなようにクロス部
16中央にフラツト面22による絞り部24が形
成されているため、入口部13の管壁に沿つた流
れは、フラツト面22に衝突して図に示す様に分
岐管12A,12Bに流れ込む。また、第11図
に示した曲面の絞り部27によつても同様の流動
状態が得られる。
In other words, as is clear from FIG. 7, since a constriction section 24 is formed by the flat surface 22 at the center of the cross section 16, the flow along the tube wall of the inlet section 13 collides with the flat surface 22 and is distorted as shown in the figure. As shown, it flows into branch pipes 12A and 12B. Further, a similar flow state can be obtained by the curved constriction portion 27 shown in FIG.

従つて第5図に示した従来例の様に入口部13
の管壁に沿つた流れで出口部14配管へ流れ込む
流量は無くなり、かつクロス部16中央から上部
配管が絞られている為に出口部14配管へ流れ込
む水の流速は入口部13から変化することなくス
ムーズに流れる。従つて旋回渦の無い安定した流
動が得られる。
Therefore, as in the conventional example shown in FIG.
The flow rate of water flowing into the outlet section 14 piping due to the flow along the pipe wall disappears, and since the upper piping is constricted from the center of the cross section 16, the flow rate of water flowing into the outlet section 14 piping changes from the inlet section 13. Flows smoothly. Therefore, stable flow without swirling vortices can be obtained.

[発明の効果] 以上説明したように、本発明に係るクロス配管
構造はこのクロス配管のクロス部内面に分岐管の
分岐部下端より下流側でかつこの分岐管の分岐部
上端より上流側に分岐管の軸線と直角方向に縮径
した絞り部を形成した事により分岐管内に旋回流
が生じず、分岐流量は安定し、従つて分岐流量の
制御を簡単に行なうことができるという効果を奏
する。
[Effects of the Invention] As explained above, the cross piping structure according to the present invention has a branch on the inner surface of the cross portion of the cross piping downstream from the lower end of the branch of the branch pipe and upstream from the upper end of the branch portion of the branch pipe. By forming the constricted part whose diameter is reduced in the direction perpendicular to the axis of the pipe, swirling flow does not occur in the branch pipe, the branch flow rate is stabilized, and therefore the branch flow rate can be easily controlled.

なお、本発明が原子炉のヘツダ以外の種々のも
のにも適用できることはもちろんである。
It goes without saying that the present invention can also be applied to various things other than nuclear reactor headers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るクロス配管構造の一実施
例を示す縦断面図、第2図は一般的な沸騰水型原
子炉を示す縦断面図、第3図は従来のクロス配管
構造を示す斜視図、第4図は第3図の平面図、第
5図A〜Dは第3図および第4図のクロス配管構
造の作用を示す図で、第5図Aは正面図、第5図
BおよびDは左側面図、第5図Cは平面図、第6
図から第8図は本発明に係るクロス配管構造の第
1の実施例を説明するための図で、第6図は第1
図のA−A矢視断面図、第7図は第1図のB−B
矢視断面図、第8図は第1図を上流側から見た
図、第9図は本発明の第2の実施例を示す縦断面
図、第10図は第9図を一部切欠して示す立体図
である。 1……原子炉圧力容器、2……炉心、7……ジ
エツトポンプ、8……再循環系、10,20……
ヘツダ、11……上流側直管、12A,12B…
…分岐管、13……入口部、14……出口部、1
6……クロス部、21……下流側直管、22……
フラツト面、23A,23B……クロス部分岐
管、12A,12B……上面、24,27……絞
り部、25……径違い段部、26……テーパ部。
Fig. 1 is a longitudinal cross-sectional view showing an embodiment of the cross piping structure according to the present invention, Fig. 2 is a longitudinal cross-sectional view showing a general boiling water reactor, and Fig. 3 is a longitudinal cross-sectional view showing a conventional cross piping structure. 5 is a perspective view, FIG. 4 is a plan view of FIG. 3, FIGS. 5A to 5D are views showing the action of the cross piping structure of FIGS. B and D are left side views, Fig. 5 C is a plan view, Fig. 6
8 to 8 are diagrams for explaining the first embodiment of the cross piping structure according to the present invention, and FIG.
A cross-sectional view taken along the line A-A in the figure, and Figure 7 is a cross-sectional view taken along the line B-B in Figure 1.
8 is a view of FIG. 1 viewed from the upstream side, FIG. 9 is a longitudinal sectional view showing the second embodiment of the present invention, and FIG. 10 is a partially cutaway view of FIG. 9. FIG. 1... Reactor pressure vessel, 2... Reactor core, 7... Jet pump, 8... Recirculation system, 10, 20...
Header, 11... Upstream straight pipe, 12A, 12B...
... Branch pipe, 13 ... Inlet section, 14 ... Outlet section, 1
6...Cross part, 21...Downstream straight pipe, 22...
Flat surface, 23A, 23B... cross section branch pipe, 12A, 12B... upper surface, 24, 27... constricted part, 25... diameter step part, 26... taper part.

Claims (1)

【特許請求の範囲】 1 液体が下方から上方に沿つて流れる上流側直
管と、この上流側直管の下流側に直接接続された
該上流側直管より小口径の下流側直管と、前記上
流側直管にその軸線とほぼ直角方向にクロス部を
有して分岐され該上流側直管より小口径の第1お
よび第2の分岐管と、前記クロス部内面でかつ前
記第1および第2の分岐管の分岐部下端より下流
側でかつこの分岐管の分岐部上端より上流側に形
成され前記第1および第2の分岐管の軸線と直角
方向に縮径した絞り部とを具備したことを特徴と
するクロス配管構造。 2 絞り部はクロス部内で分岐管の軸線方向に沿
つてフラツト面が形成されたものからなることを
特徴とする特許請求の範囲第1項記載のクロス配
管構造。 3 絞り部はクロス部内面に下流側直管方向に沿
つて順次縮径された曲率面が形成されていること
を特徴とする特許請求の範囲第1項記載のクロス
配管構造。
[Scope of Claims] 1. An upstream straight pipe through which liquid flows from below to above, and a downstream straight pipe having a smaller diameter than the upstream straight pipe and directly connected to the downstream side of the upstream straight pipe. first and second branch pipes having a cross section in a direction substantially perpendicular to the axis of the upstream straight pipe and having a smaller diameter than the upstream straight pipe; A constricted part is formed downstream of the lower end of the branch of the second branch pipe and upstream of the upper end of the branch part of the branch pipe, and has a reduced diameter in a direction perpendicular to the axes of the first and second branch pipes. Cross piping structure characterized by 2. The cross piping structure according to claim 1, wherein the constricted portion has a flat surface formed within the cross portion along the axial direction of the branch pipe. 3. The cross piping structure according to claim 1, wherein the throttle portion has a curvature surface whose diameter is gradually reduced along the downstream straight pipe direction on the inner surface of the cross portion.
JP59087545A 1984-04-28 1984-04-28 Cross piping structure Granted JPS61274196A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59087545A JPS61274196A (en) 1984-04-28 1984-04-28 Cross piping structure
US06/709,207 US4708372A (en) 1984-04-28 1985-03-07 Cross piping construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59087545A JPS61274196A (en) 1984-04-28 1984-04-28 Cross piping structure

Publications (2)

Publication Number Publication Date
JPS61274196A JPS61274196A (en) 1986-12-04
JPH0510555B2 true JPH0510555B2 (en) 1993-02-10

Family

ID=13917950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59087545A Granted JPS61274196A (en) 1984-04-28 1984-04-28 Cross piping structure

Country Status (1)

Country Link
JP (1) JPS61274196A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59220685A (en) * 1983-05-30 1984-12-12 株式会社日立製作所 Pipeline for recirculation circulation of reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59220685A (en) * 1983-05-30 1984-12-12 株式会社日立製作所 Pipeline for recirculation circulation of reactor

Also Published As

Publication number Publication date
JPS61274196A (en) 1986-12-04

Similar Documents

Publication Publication Date Title
JP3569888B2 (en) Orifice plate
US4708372A (en) Cross piping construction
JPH0510555B2 (en)
US4993454A (en) Piping branch structure
JPH0582517B2 (en)
JPS60164297A (en) Crossed piping structure
JPS6148697A (en) Crossed piping structure
JPH08135883A (en) Piping joint
JPS61160695A (en) Crossed piping structure
JPS60164296A (en) Crossed piping structure
JPH01275993A (en) Piping system having branch pipe with closed tip
JPS60146195A (en) Recirculating piping system for coolant of nuclear power plant
JPS6152489A (en) Crossed piping structure
Shimizu et al. Studies on Performance and Internal Flow of Twisted S-Shaped Bend Diffuser—The So-Called Coiled Bend Diffuser: 1st Report
JPH0415391A (en) Flow passage structure
JPS60164295A (en) Crossed piping structure
JPS6233205A (en) Asymmetric branch pipe
RU2781580C1 (en) Underwater apparatus for mixing gas and liquid flows
JPS60164298A (en) Crossed piping structure
JPH0814501A (en) Connecting tube
JPH0612165B2 (en) Gas-liquid two-phase fluid distributor
JP2740053B2 (en) Outlet piping for reactor pressure vessel
JPH03105295A (en) Cross-branch pipe
JPH0642178Y2 (en) Vortex flowmeter
JP3122983B2 (en) Throttle flow meter

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term