JPH0510451A - Magnetic fluid shaft sealing device - Google Patents

Magnetic fluid shaft sealing device

Info

Publication number
JPH0510451A
JPH0510451A JP3188132A JP18813291A JPH0510451A JP H0510451 A JPH0510451 A JP H0510451A JP 3188132 A JP3188132 A JP 3188132A JP 18813291 A JP18813291 A JP 18813291A JP H0510451 A JPH0510451 A JP H0510451A
Authority
JP
Japan
Prior art keywords
magnetic fluid
pressure
sealing device
shaft sealing
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3188132A
Other languages
Japanese (ja)
Inventor
Katsuhiko Ogiso
克彦 小木曽
Hiroshi Matsuura
弘 松浦
Satoru Numakura
知 沼倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Denki Co Ltd
Rigaku Corp
Original Assignee
Rigaku Denki Co Ltd
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Denki Co Ltd, Rigaku Corp filed Critical Rigaku Denki Co Ltd
Priority to JP3188132A priority Critical patent/JPH0510451A/en
Publication of JPH0510451A publication Critical patent/JPH0510451A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)

Abstract

PURPOSE:To provide a magnetic fluid shaft sealing device formed in such a way as to prevent a magnetic fluid from being splashed into a vacuum chamber. CONSTITUTION:Around a rotary shaft 2 disposed between a vacuum chamber V and atmospheric air A, plural yokes 4 are disposed at spaces apart along the axial direction of the rotary shaft 2. A magnetic fluid film 5 is formed between each yoke 4 and the rotary shaft 2 by magnetic force, and the rotary shaft 2 is sealed in the state of partial pressure chambers 6 being formed between the respectively adjacent fluid films 5. In this case, a communicating passage 7 for allowing the flow of air but impeding the flow of a magnetic fluid is provided between the vacuum chamber 6 and the partial pressure chamber 6a closest to the vacuum chamber V.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低圧領域と高圧領域と
の間に配置される運動軸、例えば回転軸、直動軸を密封
する軸封装置に関する。特に、磁性流体を用いて運動軸
を密封する磁性流体軸封装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shaft sealing device for sealing a motion shaft, such as a rotary shaft or a linear motion shaft, arranged between a low pressure region and a high pressure region. In particular, it relates to a magnetic fluid shaft sealing device that seals a motion shaft using a magnetic fluid.

【0002】[0002]

【従来の技】磁性流体軸封装置は、圧力差のある空間又
は液体内に配置される運動軸の軸上に設けられ、その圧
力差を維持した状態で、すなわち密封状態で運動軸を運
動させるための機械要素である。
2. Description of the Related Art A magnetic fluid shaft sealing device is provided on the axis of a motion shaft arranged in a space or liquid having a pressure difference, and moves the motion shaft while maintaining the pressure difference, that is, in a sealed state. It is a mechanical element for making.

【0003】上記の磁性流体軸封装置として、運動軸の
まわりに磁石、ヨーク及び磁性流体を配置し、ヨークと
運動軸との間に磁路を形成し、その磁路によって磁性流
体をヨークと運動軸の間に掛け渡して磁性流体膜を形成
し、この磁性流体膜によって運動軸を密封して、運動軸
のまわりの圧力差を維持するようにしたものが既に知ら
れている。通常、磁性流体膜は、運動軸の軸方向に沿っ
て複数カ所に設けられる。1つの磁性流体膜は約0.2
〜0.5Kg/cm2 の差圧に耐えられるようになって
いるので、これを複数カ所に設けれることにより、すな
わち多段にわたって運動軸の軸上に設けれることによ
り、大きな圧力差に耐えることを可能としている。
In the above magnetic fluid shaft sealing device, a magnet, a yoke and a magnetic fluid are arranged around a motion axis, and a magnetic path is formed between the yoke and the motion axis. It is already known that a magnetic fluid film is formed so as to extend between motion axes, and the motion axis is sealed by this magnetic fluid film to maintain a pressure difference around the motion axis. Usually, the magnetic fluid film is provided at a plurality of locations along the axial direction of the movement axis. One magnetic fluid film is about 0.2
Since it can withstand a differential pressure of up to 0.5 Kg / cm 2 , it can withstand a large pressure difference by being provided at multiple locations, that is, by being provided on the axis of the motion shaft in multiple stages. Is possible.

【0004】[0004]

【発明が解決しようとする課題】運動軸上に多段にわた
って設けられる各磁性流体膜の間には、空間である分圧
室が形成される。磁性流体軸封装置を運動軸上に組み付
ける際、これらの分圧室の内部には空気が封じ込まれ
る。この状態で、磁性流体軸封装置を境とした一方の領
域を、真空引きによって低圧にしてゆくと、場合によっ
ては、各分圧室内に封じ込まれた空気が磁性流体膜を突
き破って低圧側へ吹き出す現象が発生する。この場合、
低圧領域に最も近い分圧室から低圧側、すなわち低圧領
域に空気が吹き出すと、その分圧室を形成していた磁性
流体そのものが低圧領域の内部へ飛散して、該領域を汚
染する。
A pressure dividing chamber, which is a space, is formed between the magnetic fluid films provided in multiple stages on the axis of motion. When the magnetic fluid shaft sealing device is assembled on the movement shaft, air is sealed inside these pressure dividing chambers. In this state, if one region with the magnetic fluid shaft sealing device as a boundary is made to have a low pressure by vacuuming, the air trapped in each pressure dividing chamber may break through the magnetic fluid film and fall to the low pressure side. The phenomenon of blowing out to occurs. in this case,
When air blows out from the pressure dividing chamber closest to the low pressure region to the low pressure side, that is, the low pressure region, the magnetic fluid itself forming the pressure dividing chamber scatters inside the low pressure region and contaminates the region.

【0005】一般に低圧領域では、清潔な環境空間内で
実行されることが要求される各種の精密処理が行なわれ
る。従来の磁性流体軸封装置においては、上記のように
磁性流体が低圧領域内に飛散するという問題があったの
で、その精密処理に支障が生じる可能性が大きかった。
Generally, in the low pressure region, various precision processings required to be performed in a clean environment space are performed. The conventional magnetic fluid shaft sealing device has a problem that the magnetic fluid is scattered in the low-pressure region as described above, so that there is a large possibility that the precision processing thereof may be hindered.

【0006】本発明は、従来の磁性流体軸封装置におけ
る上記の問題点に鑑みてなされたものであって、磁性流
体が低圧領域内へ飛散することのない磁性流体軸封装置
を提供することを目的とする。
The present invention has been made in view of the above problems in the conventional magnetic fluid shaft sealing device, and provides a magnetic fluid shaft sealing device in which the magnetic fluid does not scatter into the low pressure region. With the goal.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明に係る磁性流体軸封装置は、低圧領域と高圧
領域との間に配置された運動軸のまわりに、その運動軸
の軸方向に沿って複数のヨークを互いに間隔をあけて配
列し、各ヨークと運動軸との間に磁力によって磁性流体
膜を形成し、各磁性流体膜の間に分圧室を形成させた状
態で運動軸を密封する磁性流体軸封装置において、上記
分圧室のうち低圧領域に最も近い分圧室と、低圧領域と
の間に、空気の通流を許容して低圧領域と分圧室とを互
いに等圧にする連通路を設けたことを特徴としている。
In order to achieve the above-mentioned object, a magnetic fluid shaft sealing device according to the present invention includes a magnetic fluid shaft sealing device around a movement shaft disposed between a low pressure region and a high pressure region. A state in which a plurality of yokes are arranged at intervals along the axial direction, a magnetic fluid film is formed by magnetic force between each yoke and the movement axis, and a pressure dividing chamber is formed between each magnetic fluid film. In a magnetic fluid shaft sealing device that seals a motion shaft with a low pressure region and a pressure dividing chamber by allowing air flow between the pressure dividing chamber closest to the low pressure region of the pressure dividing chamber and the low pressure region. It is characterized in that a communication passage for equalizing the pressures of and is provided.

【0008】[0008]

【作用】連通路を設けたことにより、低圧領域に最も近
い分圧室内に封じ込まれた空気はその連通穴を介して低
圧領域内へ流れ込み、分圧室と低圧領域とは互いに等圧
になる。従って、分圧室と低圧領域との間の圧力差は、
常に磁性流体膜の耐圧以下に保持される。これにより、
低圧領域に面している磁性流体膜が破裂して低圧領域内
が磁性流体粒子によって汚染されるという現象を確実に
回避できる。
By providing the communication passage, the air enclosed in the pressure-dividing chamber closest to the low-pressure region flows into the low-pressure region through the communication hole, so that the pressure-dividing chamber and the low-pressure region become equal in pressure to each other. Become. Therefore, the pressure difference between the partial pressure chamber and the low pressure region is
It is always kept below the pressure resistance of the magnetic fluid film. This allows
It is possible to reliably avoid the phenomenon that the magnetic fluid film facing the low pressure region is ruptured and the inside of the low pressure region is contaminated by the magnetic fluid particles.

【0009】[0009]

【実施例】図1は、本発明に係る磁性流体軸封装置の一
実施例を示している。磁性流体軸封装置1は、低圧領域
としての真空室Vと、高圧領域としての大気Aとの間に
設けられている運動軸、実施例の場合は矢印B方向へ回
転する回転軸2、を密封するために使用されている。つ
まり、磁性流体軸封装置1は、回転軸2が回転する間、
大気Aから真空室Vへと空気が漏れるのを防止して、圧
力差を維持する。
FIG. 1 shows an embodiment of a magnetic fluid shaft sealing device according to the present invention. The magnetic fluid shaft sealing device 1 includes a motion shaft provided between a vacuum chamber V serving as a low pressure region and an atmosphere A serving as a high pressure region, and a rotary shaft 2 rotating in a direction of an arrow B in the embodiment. Used to make a seal. That is, the magnetic fluid shaft sealing device 1 is
Air is prevented from leaking from the atmosphere A to the vacuum chamber V to maintain the pressure difference.

【0010】この磁性流体軸封装置1は、回転軸2のま
わりにその回転軸2の軸方向に沿って配列された複数、
実施例では5個の環状の磁石3と、各磁石3を取り囲む
複数、実施例では6個のヨーク4と、各ヨーク4と回転
軸2との間に充填された磁性流体5とを有している。磁
性流体5は、磁性を有する金属微粒子をベース溶液中に
分散させることによって作られたコロイド溶液である。
The magnetic fluid shaft sealing device 1 includes a plurality of magnetic fluid shaft sealing devices 1 arranged around the rotary shaft 2 in the axial direction of the rotary shaft 2.
In the embodiment, it has five annular magnets 3, a plurality of yokes 4 surrounding each magnet 3, six yokes 4 in the embodiment, and a magnetic fluid 5 filled between each yoke 4 and the rotary shaft 2. ing. The magnetic fluid 5 is a colloidal solution prepared by dispersing magnetic fine metal particles in a base solution.

【0011】各磁石3のN極から出た磁力線は、ヨーク
4、回転軸5、そしてヨーク4を通って各磁石3のS極
に到達して磁路を形成する。こうして形成された各磁路
に沿って、磁性流体5がヨーク4の先端と回転軸2との
間に膜状に掛け渡される。実施例の場合は、回転軸2の
軸方向に沿って11個の磁性流体膜5が形成されてい
る。各磁性流体膜5の間には、それらの磁性流体膜5に
よって密閉される空間である環状の分圧室6が形成され
る。実施例では、10個の分圧室が形成されている。
The magnetic field lines emitted from the N pole of each magnet 3 reach the S pole of each magnet 3 through the yoke 4, the rotary shaft 5, and the yoke 4 to form a magnetic path. The magnetic fluid 5 is laid in a film shape between the tip of the yoke 4 and the rotating shaft 2 along each magnetic path thus formed. In the case of the embodiment, eleven magnetic fluid films 5 are formed along the axial direction of the rotary shaft 2. An annular partial pressure chamber 6 which is a space sealed by the magnetic fluid films 5 is formed between the magnetic fluid films 5. In the embodiment, ten pressure dividing chambers are formed.

【0012】1つの磁性流体膜5は、約0.2〜0.5
Kg/cm2 の差圧を維持できる能力を持っている。従
って、各分圧室6内の圧力は、大気圧Aから真空Vに向
かって徐々に分圧されて下がってゆく。
One magnetic fluid film 5 is approximately 0.2 to 0.5.
It has the ability to maintain a differential pressure of Kg / cm 2 . Therefore, the pressure in each of the pressure dividing chambers 6 is gradually divided from the atmospheric pressure A toward the vacuum V and decreases.

【0013】各分圧室6のうち真空室Vに最も近い分圧
室、すなわち図の左端に位置する分圧室6aと、真空室
Vとの間には、径の細い連通路7が設けられている。こ
の連通路7は、ほぼ90度に曲がる形状に仕上げられて
いる。
A small-diameter communication passage 7 is provided between the vacuum chamber V and the pressure-dividing chamber closest to the vacuum chamber V in each of the pressure-dividing chambers 6, that is, the pressure-dividing chamber 6a located at the left end of the drawing. Has been. This communication passage 7 is finished in a shape that bends at approximately 90 degrees.

【0014】本実施例に係る磁性流体軸封装置は以上の
ように構成されているので、回転軸2が回転する間、各
磁性流体膜5によって圧力差が維持されて、真空室Vが
真空に保持される。真空に保持された真空室V内におい
て、各種の作業、例えば、フィラメントからの真空放電
や、真空薄膜形成処理等が行なわれる。この磁性流体軸
封装置1においては、磁性流体5を介して密封処理が行
なわれるので、回転軸2及びヨーク4の摩耗がほとんど
なく、長寿命が保証される。
Since the magnetic fluid shaft sealing device according to this embodiment is constructed as described above, the pressure difference is maintained by the magnetic fluid films 5 while the rotary shaft 2 rotates, and the vacuum chamber V is evacuated. Held in. In the vacuum chamber V held in vacuum, various operations such as vacuum discharge from filaments and vacuum thin film forming processing are performed. In this magnetic fluid shaft sealing device 1, since the sealing process is performed via the magnetic fluid 5, the rotating shaft 2 and the yoke 4 are hardly worn, and a long life is guaranteed.

【0015】ところで、磁性流体軸封装置1を回転軸2
に組み付ける際、各分圧室6の内部に空気が封じ込まれ
る。封じ込まれた空気は、通常、そのまま各分圧室6内
にとどまるか、又は磁性流体膜5を介して徐々に低圧側
へ抜け出てゆく。しかしながら、封じ込まれた空気の量
が多過ぎたり、大きな振動が加わったりすると、封じ込
まれた空気が磁性流体膜5を突き破って低圧側へ吹き出
す場合がある。特に、最も真空室Vに近い分圧室6a内
の空気が低圧側へ吹き出ると、真空室Vに面している磁
性流体膜6aが真空室V内へ飛散して、真空室6内が磁
性流体の飛散粒子で汚染されるおそれがある。こうなる
と、真空室V内で行なわれる各種の処理に異常が発生す
ることが考えられる。
By the way, the magnetic fluid shaft sealing device 1 is attached to the rotary shaft 2.
At the time of assembling to, the air is enclosed in each pressure dividing chamber 6. The enclosed air usually stays in each of the partial pressure chambers 6 as it is, or gradually escapes to the low pressure side through the magnetic fluid film 5. However, if the amount of trapped air is too large or if a large vibration is applied, the trapped air may break through the magnetic fluid film 5 and blow out toward the low pressure side. In particular, when the air in the partial pressure chamber 6a closest to the vacuum chamber V blows out toward the low pressure side, the magnetic fluid film 6a facing the vacuum chamber V scatters into the vacuum chamber V and the inside of the vacuum chamber 6 becomes magnetic. May be contaminated with flying particles of fluid. In this case, it is conceivable that an abnormality will occur in various processes performed in the vacuum chamber V.

【0016】上記の問題点を解決するため本実施例で
は、真空室Vに最も近い分圧室6aと真空室Vとの間に
連通路7を設けてある。この連通路7を設けたことによ
り、最下段分圧室6a内の空気はその連通路7を通って
真空室V内へと流れ出る。従って、その分圧室6a内の
圧力が異常に高圧になることがなく、磁性流体膜5aが
破裂することもない。こうして、真空室V内は常に清潔
な状態に維持される。
In order to solve the above problems, in this embodiment, the communication passage 7 is provided between the vacuum chamber V and the partial pressure chamber 6a closest to the vacuum chamber V. By providing this communication passage 7, the air in the lowermost partial pressure chamber 6a flows out into the vacuum chamber V through the communication passage 7. Therefore, the pressure in the partial pressure chamber 6a does not become abnormally high, and the magnetic fluid film 5a does not burst. In this way, the inside of the vacuum chamber V is always maintained in a clean state.

【0017】また、磁性流体は粘性の高い油脂状ベース
溶液に金属磁性粉が混合されたものであり、これが破裂
すると微細な磁性粉単体になるのではなく、粘性を有し
た固まりになって飛散する。仮に、分圧室6aを形成し
ている右側の磁性流体膜5が破裂すると、分圧室6a内
に上記の粘性の固まりが飛散する。飛散した固まりは、
連通路7へ導かれてその連通路の路壁に粘性により付着
したり、あるいは最下段の磁性流体膜5aに付着する。
こうして、真空室Vに面する最下段の磁性流体膜5aが
連鎖的に破裂することがなくなり、飛散粒子によって真
空室Vが汚されることもなくなる。
The magnetic fluid is a highly viscous oil-and-fat base solution mixed with metallic magnetic powder, and when it bursts, it does not become a fine magnetic powder alone, but becomes a viscous mass and scatters. To do. If the magnetic fluid film 5 on the right side, which forms the pressure dividing chamber 6a, is ruptured, the above-mentioned viscous mass is scattered in the pressure dividing chamber 6a. The scattered mass is
It is guided to the communication passage 7 and adheres to the wall of the communication passage due to viscosity, or adheres to the bottommost magnetic fluid film 5a.
In this way, the bottommost magnetic fluid film 5a facing the vacuum chamber V will not be ruptured in a chain, and the vacuum chamber V will not be contaminated by the scattered particles.

【0018】図2は、最下段分圧室6a(図1)と真空
室V(図1)とを連通させるための連通路に関する変形
実施例を示している。ここに示された連通路17は、回
転軸2を中心として環状に延びる形状を有している。図
示の実施例では、環状の連通路が2重に巻かれた形状と
なっているが、これを1重あるいは3重以上にすること
もできる。なお、符号17a及び17bは、連通路17
の両端開口である。
FIG. 2 shows a modified embodiment relating to a communication passage for communicating the lowermost partial pressure chamber 6a (FIG. 1) and the vacuum chamber V (FIG. 1). The communication passage 17 shown here has a shape that extends annularly around the rotation shaft 2. In the illustrated embodiment, the annular communication passage has a double-wound shape, but it may have a single or triple or more shape. The reference numerals 17a and 17b denote communication passages 17
It is an opening at both ends.

【0019】図1に示した実施例では、連通路7の路長
が短いので、最下段分圧室6a内に存在する磁性流体粒
子をその路壁に付着させて真空室V内への流出を阻止す
るという働きが十分でなくなることも考えられる。これ
に対し、図2の実施例のように環状の連通路17を用い
れば、路長が長くなり、しかも単なる直線状の連通路で
はなくて曲っているので、最下段分圧室6a内の残留空
気は連通路17を通って真空室V内へ流れ出るが、磁性
流体粒子は確実に連通路17の路壁に付着してその進行
が確実に阻止されて真空室V内へ放出されることはな
い。
In the embodiment shown in FIG. 1, since the path length of the communication passage 7 is short, the magnetic fluid particles existing in the lowermost pressure dividing chamber 6a are adhered to the path wall and flow out into the vacuum chamber V. It is also possible that the function of blocking is not sufficient. On the other hand, if the annular communication passage 17 is used as in the embodiment of FIG. 2, the length of the passage becomes long, and since it is not a mere linear communication passage, it is bent, so that the inside of the lowermost partial pressure chamber 6a is formed. The residual air flows out into the vacuum chamber V through the communication passage 17, but the magnetic fluid particles are surely adhered to the road wall of the communication passage 17 and their progress is surely blocked and discharged into the vacuum chamber V. There is no.

【0020】図3は、本発明に係る磁性流体軸封装置の
別の実施例の要部を示している。この実施例は、図1に
示した実施例における連通路7に改良を加えたものであ
る。図3において図していない部分は、図1の実施例と
全く同じ構成である。
FIG. 3 shows the essential parts of another embodiment of the magnetic fluid shaft sealing device according to the present invention. In this embodiment, the communication passage 7 in the embodiment shown in FIG. 1 is improved. The parts not shown in FIG. 3 have exactly the same configuration as the embodiment of FIG.

【0021】図3において、真空室Vに面する連通路7
の開口にフイルタ8が貼着されている。このフイルタ8
は、通気性を有すると共に磁性流体粒子のような粒状物
の通過を阻止する部材、例えば綿状部材、スポンジ、発
砲材等によって形成されている。このフイルタ8を設け
たことにより、路長の短い連通路7であっても磁性流体
粒子の真空室Vへの流出を確実に阻止できる。
In FIG. 3, the communication passage 7 facing the vacuum chamber V is shown.
A filter 8 is attached to the opening. This filter 8
Is formed of a member having air permeability and preventing passage of particulate matter such as magnetic fluid particles, for example, a cotton-like member, a sponge, a foam material, or the like. The provision of the filter 8 can reliably prevent the magnetic fluid particles from flowing out to the vacuum chamber V even in the communication path 7 having a short path length.

【0022】図4はさらに別の実施例の要部を示してい
る。この実施例も、図示されていない部分は図1に示し
た実施例と同じである。この実施例においては、連通路
7の内部にフイルタ18が充填されている。このフイル
タ18は図3におけるフイルタ8と同じ材質の材料、そ
の他活性炭のような通気性を有する充填物を用いること
ができる。この実施例においても、フイルタ18によっ
て磁性流体粒子の真空室Vへの流出を確実に阻止でき
る。
FIG. 4 shows the essential parts of another embodiment. This embodiment is also the same as the embodiment shown in FIG. 1 in the part not shown. In this embodiment, the inside of the communication passage 7 is filled with a filter 18. The filter 18 may be made of the same material as that of the filter 8 in FIG. 3, or other permeable filler such as activated carbon. Also in this embodiment, the filter 18 can surely prevent the magnetic fluid particles from flowing out to the vacuum chamber V.

【0023】以上、好ましいいくつかの実施例をあげて
本発明を説明したが、本発明はそれらの実施例に限定さ
れるものではない。例えば、磁石3及びヨーク4の形状
は図1に示したものに限定されない。また、それらの数
も特定の数に限定されない。
Although the present invention has been described with reference to some preferred embodiments, the present invention is not limited to these embodiments. For example, the shapes of the magnet 3 and the yoke 4 are not limited to those shown in FIG. Moreover, the number of them is not limited to a specific number.

【0024】[0024]

【発明の効果】本発明によれば、最下段分圧室内の残留
空気が磁性流体粒子を含まない状態で連通路を介して低
圧領域内へ送り込まれるので、その残留空気が低圧領域
に面する磁性粒子膜を突き破って低圧領域へ吹き出すこ
とがなくなり、その結果、低圧領域内への磁性流体の飛
散がなくなった。
According to the present invention, the residual air in the lowermost partial pressure chamber is sent into the low pressure region through the communication passage without containing the magnetic fluid particles, so that the residual air faces the low pressure region. It did not break through the magnetic particle film and blow out to the low pressure region, and as a result, there was no scattering of the magnetic fluid into the low pressure region.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る磁性流体軸封装置の一実施例を示
す側面断面図である。
FIG. 1 is a side sectional view showing an embodiment of a magnetic fluid shaft sealing device according to the present invention.

【図2】連通路の変形例を示す一部破断正面図である。FIG. 2 is a partially cutaway front view showing a modified example of the communication passage.

【図3】本発明に係る磁性流体軸封装置の他の実施例の
要部を示す断面図である。
FIG. 3 is a sectional view showing a main part of another embodiment of the magnetic fluid shaft sealing device according to the present invention.

【図4】本発明に係る磁性流体軸封装置のさらに他の実
施例の要部を示す断面図である。
FIG. 4 is a cross-sectional view showing the main parts of still another embodiment of the magnetic fluid shaft sealing device according to the present invention.

【符号の説明】[Explanation of symbols]

2 回転軸 3磁石 4 ヨーク 5磁性流体膜 6 分圧室 7連通路 8 フイルタ 18フイルタ V 真空室 A大気 2 rotating shaft 3 magnet 4 yoke 5 magnetic fluid film 6 partial pressure chamber 7 continuous passage 8 filters 18 filters V vacuum chamber A atmosphere

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 低圧領域と高圧領域との間に配置された
運動軸のまわりに、その運動軸の軸方向に沿って複数の
ヨークを互いに間隔をあけて配列し、各ヨークと運動軸
との間に磁力によって磁性流体膜を形成し、各磁性流体
膜の間に分圧室を形成させた状態で運動軸を密封する磁
性流体軸封装置において、 上記分圧室のうち低圧領域に最も近い分圧室と、低圧領
域との間に、空気の通流を許容して低圧領域と分圧室と
を互いに等圧にする連通路を設けたことを特徴とする磁
性流体軸封装置。
1. A plurality of yokes are arranged at intervals around an axis of motion disposed between a low pressure region and a high pressure region along the axial direction of the axis of motion, and each yoke and the axis of motion are arranged. In the magnetic fluid shaft sealing device that forms a magnetic fluid film by a magnetic force between the magnetic fluid films and seals the motion shaft in the state where the pressure dividing chamber is formed between each magnetic fluid film, in the low pressure region of the pressure dividing chamber, A magnetic fluid shaft sealing device, characterized in that a communication passage is provided between a pressure-dividing chamber and a low-pressure region that are close to each other, and allows passage of air to equalize the pressure in the low-pressure region and the pressure-dividing chamber.
【請求項2】 上記連通路は、運動軸を中心として環状
に延びることを特徴とする請求項1記載の磁性流体軸封
装置。
2. The magnetic fluid shaft sealing device according to claim 1, wherein the communication passage extends annularly around the movement axis.
【請求項3】 上記連通路の内部又は端部に、通気性を
有し、しかし粒状物質の通過を阻止するフイルタを設け
たことを特徴とする請求項1又は2記載の磁性流体軸封
装置。
3. The magnetic fluid shaft sealing device according to claim 1, wherein a filter having air permeability but blocking passage of particulate matter is provided inside or at the end of the communication passage. .
JP3188132A 1991-07-02 1991-07-02 Magnetic fluid shaft sealing device Pending JPH0510451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3188132A JPH0510451A (en) 1991-07-02 1991-07-02 Magnetic fluid shaft sealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3188132A JPH0510451A (en) 1991-07-02 1991-07-02 Magnetic fluid shaft sealing device

Publications (1)

Publication Number Publication Date
JPH0510451A true JPH0510451A (en) 1993-01-19

Family

ID=16218296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3188132A Pending JPH0510451A (en) 1991-07-02 1991-07-02 Magnetic fluid shaft sealing device

Country Status (1)

Country Link
JP (1) JPH0510451A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6736402B1 (en) 2002-05-22 2004-05-18 Ferrotec (Usa) Corporation Ferrofluidic seal with controlled leakage to minimize effects of seal stage bursting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6736402B1 (en) 2002-05-22 2004-05-18 Ferrotec (Usa) Corporation Ferrofluidic seal with controlled leakage to minimize effects of seal stage bursting

Similar Documents

Publication Publication Date Title
JP3792417B2 (en) Rotary shaft seal mechanism for vacuum chamber
JP3989260B2 (en) Degassing device for constant velocity joint
AU593646B2 (en) Spraying device
CA2244678C (en) Rotating sealing device
WO1998022736A9 (en) Rotating sealing device
JPH0510451A (en) Magnetic fluid shaft sealing device
GB2153453A (en) Ferrofluid seal apparatus and method of sealing a shaft element using ferrofluid
JPH09296825A (en) Static pressure gas bearing
JPH06117547A (en) Mechanical seal
US20040244851A1 (en) Rotary valve
JPS60150495A (en) Duplex type sealing device for root blower
JPH04366094A (en) Powder vacuum insulator
JP4595148B2 (en) Method for stabilizing performance of magnetic fluid seal device and magnetic fluid seal device
JPS6040871A (en) Sealing mechanism employing magnetic fluid
US4894007A (en) Apparatus for providing fluid to a rotatable member
JP3773132B2 (en) Magnetic seal device
JPH08320072A (en) Multistage magnetic fluid shaft sealing device
JP2928461B2 (en) Magnetic fluid sealing device
JPH09189363A (en) Shaft seal device for vacuum
JPH1019138A (en) Magnetic sealing device with exhaust chamber
JPH1137304A (en) Sealing device utilizing magnetic fluid
JPS62271992A (en) Annular blower
JPH07151147A (en) Static pressure gas bearing device
JPH0718411A (en) Rotating power transmitting mechanism for vacuum device
JPH07103339A (en) Magnetic fluid seal device