JPH05103937A - Gas separator - Google Patents
Gas separatorInfo
- Publication number
- JPH05103937A JPH05103937A JP3269655A JP26965591A JPH05103937A JP H05103937 A JPH05103937 A JP H05103937A JP 3269655 A JP3269655 A JP 3269655A JP 26965591 A JP26965591 A JP 26965591A JP H05103937 A JPH05103937 A JP H05103937A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- adsorption
- adsorption tank
- pressure
- tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Separation Of Gases By Adsorption (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はPSA式(Pressure Swi
ng Adsorption )の気体分離装置に係り、特により高純
度の製品ガスを能率良く生成するよう構成した気体分離
装置に関する。The present invention relates to a PSA type (Pressure Swi
ng Adsorption) gas separation device, and more particularly to a gas separation device configured to efficiently generate a product gas of higher purity.
【0002】[0002]
【従来の技術】一般に、PSA式気体分離装置は、分子
ふるいカーボンやゼオライトなどからなる吸着剤を用い
て空気を窒素と酸素に分離し、いずれか一方を製品ガス
として取出し、使用するものである。2. Description of the Related Art Generally, a PSA type gas separation apparatus separates air into nitrogen and oxygen using an adsorbent composed of molecular sieving carbon, zeolite, etc., and extracts one of them as a product gas for use. ..
【0003】このため、例えば窒素ガスを取り出すPS
A式気体分離装置にあっては、吸着剤が充填された吸着
槽にコンプレッサからの圧縮空気を導入して吸着剤に酸
素分子を吸着させる吸着工程と、吸着剤により分離生成
された窒素を取出す取出工程と、該吸着槽内を大気解放
しまたは真空ポンプで減圧して吸着剤を再生する再生工
程とを繰返す。即ち、取出工程では、吸着槽内の窒素を
外部に取出し、一方再生工程では吸着された酸素を脱着
し、次の吸着工程に備えるようになっている。Therefore, for example, PS for taking out nitrogen gas
In the A-type gas separation device, an adsorption step in which compressed air from a compressor is introduced into an adsorption tank filled with an adsorbent to adsorb oxygen molecules in the adsorbent, and nitrogen separated and produced by the adsorbent is taken out. The extraction step and the regeneration step of regenerating the adsorbent by releasing the atmosphere in the adsorption tank to the atmosphere or reducing the pressure with a vacuum pump are repeated. That is, in the extraction step, the nitrogen in the adsorption tank is taken out to the outside, while in the regeneration step, the adsorbed oxygen is desorbed to prepare for the next adsorption step.
【0004】また、一対の吸着槽を有する装置では、一
方の吸着槽で取出工程が完了し、他方の吸着槽で再生工
程が完了した後、均圧工程を行う。この均圧工程では、
両吸着槽間を連通させて取出工程の後の吸着槽に残留す
るガスを再生工程の吸着槽へ供給して均圧化を図り、よ
り高純度の製品ガスを生成するようにしている。Further, in an apparatus having a pair of adsorption tanks, one of the adsorption tanks completes the take-out step and the other adsorption tank completes the regeneration step, and then the pressure equalization step is performed. In this pressure equalization process,
The gas remaining in the adsorption tank after the extraction step is connected to the adsorption tank in the regeneration step by communicating the two adsorption tanks with each other to equalize the pressure and generate a higher purity product gas.
【0005】[0005]
【発明が解決しようとする課題】ところが、上記のよう
に均圧工程を行う際は、取出工程が完了した一方の吸着
槽にはかなりの圧力が残っているのに対し再生工程が完
了した他方の吸着槽は略大気圧まで減圧されている。そ
のため、均圧工程開始時は高圧側の一方の吸着槽内のガ
スが一気に低圧側の他方の吸着槽へ送出される。However, when performing the pressure equalizing step as described above, a considerable pressure remains in one of the adsorption tanks in which the extraction step is completed, while the other in which the regeneration step is completed. The adsorption tank is depressurized to approximately atmospheric pressure. Therefore, at the start of the pressure equalization step, the gas in one of the adsorption tanks on the high pressure side is suddenly sent to the other adsorption tank on the low pressure side.
【0006】このように短時間に圧力が減圧されると、
一方の吸着槽に充填された吸着剤に吸着されている酸素
分子が均圧工程開始時に脱着されてしまい、取出工程後
に残された高純度の窒素ガスだけでなく吸着剤より脱着
された酸素分子も他方の吸着槽へ供給されてしまい、窒
素純度の低いガスが供給されることとなるといった課題
がある。When the pressure is reduced in such a short time,
Oxygen molecules adsorbed on the adsorbent filled in one of the adsorption tanks were desorbed at the start of the pressure equalization process, and not only the high-purity nitrogen gas left after the extraction process but also the oxygen molecules desorbed from the adsorbent However, there is a problem in that the gas is supplied to the other adsorption tank, and a gas having a low nitrogen purity is supplied.
【0007】そのため、均圧工程を行っても高純度の製
品ガスが得られないことになり、その分高純度の製品ガ
ス発生量が減少するとともに再起動時間が長くなる。Therefore, even if the pressure equalizing step is performed, a high-purity product gas cannot be obtained, and the amount of high-purity product gas generated is reduced and the restart time becomes longer.
【0008】そこで、本発明は上記課題を解決した気体
分離装置を提供することを目的とする。Therefore, an object of the present invention is to provide a gas separation device which solves the above problems.
【0009】[0009]
【課題を解決するための手段】本発明は、一の気体分子
を吸着する吸着剤が充填された複数の吸着槽を有し、該
吸着槽の製品ガス取出側間に各吸着槽内の圧力を均圧化
するため均圧用配管を配設してなる気体分離装置におい
て、前記均圧用配管途中に、前記一の吸着槽から他の吸
着槽へ送出される均圧用気体中の一の気体分子を吸着す
る吸着手段を設けてなる。The present invention has a plurality of adsorption tanks filled with an adsorbent for adsorbing one gas molecule, and the pressure in each adsorption tank between the product gas extraction sides of the adsorption tanks. In a gas separation device provided with a pressure equalizing pipe for equalizing the pressure equalization, one gas molecule in the pressure equalizing gas sent from the one adsorption tank to another adsorption tank in the middle of the pressure equalizing pipe. Adsorption means for adsorbing
【0010】[0010]
【作用】均圧工程時均圧配管の吸着手段により一方の吸
着槽から他方の吸着槽へ送出される気体中の一の気体分
子を吸着することができるので、他方の吸着槽へ高純度
のガスを供給して均圧工程による製品ガス生成効率を高
められる。In the pressure equalizing step, since one gas molecule in the gas sent from one adsorption tank to the other adsorption tank can be adsorbed by the adsorption means of the pressure equalizing pipe, the other adsorption tank of high purity can be adsorbed. By supplying gas, the product gas generation efficiency in the pressure equalization process can be improved.
【0011】[0011]
【実施例】図1乃至図3に本発明になる気体分離装置を
示す。1 to 3 show a gas separation device according to the present invention.
【0012】各図中、気体分離装置1は圧縮空気から窒
素を製品ガスとして生成するPSA式の窒素発生装置で
あり、スタート信号の入来により作動開始する。制御装
置2は冷凍式ドライヤ3,コンプレッサ5を有する空気
供給ユニット6,吸着ユニット7及び貯蔵ユニット8の
各バルブV1 〜V11を制御する。In each figure, a gas separation device 1 is a PSA type nitrogen generator which produces nitrogen from compressed air as a product gas, and starts its operation when a start signal comes in. The control device 2 controls the valves V 1 to V 11 of the air supply unit 6 having the refrigeration dryer 3, the compressor 5, the adsorption unit 7, and the storage unit 8.
【0013】コンプレッサ5からの圧縮空気は冷凍式ド
ライヤ3で除湿され、乾燥した清浄な圧縮空気として吸
着ユニット7に供給される。空気供給ユニット6と吸着
ユニット7とは配管9を介して接続されている。従っ
て、ドライヤ3で乾燥された圧縮空気は配管9を通って
吸着ユニット7で分岐した給気側の配管10,11を介
して分子ふるいカーボンよりなる吸着剤が充填された第
1,第2の吸着槽7A,7Bに供給される。又配管1
0,11には排気用の配管12,13が分岐している。The compressed air from the compressor 5 is dehumidified by the refrigerating dryer 3 and supplied to the adsorption unit 7 as dry and clean compressed air. The air supply unit 6 and the adsorption unit 7 are connected via a pipe 9. Therefore, the compressed air dried by the dryer 3 passes through the pipe 9 and is branched through the adsorption unit 7 through the air supply side pipes 10 and 11 to fill the first and second adsorbents made of molecular sieving carbon. It is supplied to the adsorption tanks 7A and 7B. Again piping 1
Exhaust pipes 12 and 13 are branched to 0 and 11.
【0014】吸着槽7A,7Bの上部には取出側の配管
14,15が接続されており、両配管14,15間には
両吸着槽7A,7Bを接続する均圧用の配管16が横架
されている。又、上記配管14,15は吸着ユニット7
と貯蔵ユニット8とを接続する配管17に接続されてい
る。Extraction side pipes 14 and 15 are connected to the upper portions of the adsorption tanks 7A and 7B, and a pressure equalizing pipe 16 that connects the adsorption tanks 7A and 7B is horizontally installed between the pipes 14 and 15. Has been done. The pipes 14 and 15 are used for the adsorption unit 7.
And the storage unit 8 are connected to a pipe 17.
【0015】均圧用配管16途中には後述する均圧工程
時バルブV4 ,V8 の開弁により吸着槽7A又は7Bか
ら送出されたガスに含まれている酸素分子を吸着する吸
着剤が充填された均圧用吸着槽(均圧用吸着手段)18
が設けられている。この吸着槽18は前述した窒素ガス
生成用の吸着槽7A,7Bとは異なり、すでに一の吸着
槽7A,7Bで酸素分子を除去された高純度の窒素ガス
が供給され、窒素ガス中に含まれた酸素分子をさらに吸
着してより高純度の窒素ガスを他の吸着槽7B,7Aへ
送出して均圧工程の効率を高めるものである。そのた
め、吸着槽18は他の吸着槽7A,7Bより小形化され
た容量の小さいものとなっている。An adsorbent for adsorbing oxygen molecules contained in the gas delivered from the adsorption tank 7A or 7B is filled in the middle of the pressure equalizing pipe 16 by opening valves V 4 and V 8 in the pressure equalizing process, which will be described later. Pressure equalizing adsorption tank (pressure equalizing adsorption means) 18
Is provided. Unlike the above-mentioned adsorption tanks 7A and 7B for generating nitrogen gas, this adsorption tank 18 is already supplied with high-purity nitrogen gas from which oxygen molecules have been removed in one adsorption tank 7A, 7B and contained in the nitrogen gas. The oxygen molecules thus generated are further adsorbed and higher-purity nitrogen gas is sent to the other adsorption tanks 7B and 7A to enhance the efficiency of the pressure equalizing step. Therefore, the adsorption tank 18 is smaller than the other adsorption tanks 7A and 7B and has a smaller capacity.
【0016】又、吸着槽18には排気用の配管19が接
続され、配管19の端部にはサイレンサ20が設けられ
ている。又、給気用の配管10,11との間を接続する
排気用の配管12,13にもサイレンサ22が設けられ
ている。An exhaust pipe 19 is connected to the adsorption tank 18, and a silencer 20 is provided at the end of the pipe 19. A silencer 22 is also provided on the exhaust pipes 12 and 13 that connect the air supply pipes 10 and 11.
【0017】貯蔵ユニット8は製品ガスとしてのN2 ガ
スが蓄圧される窒素槽23と、窒素槽23内の酸素濃度
を計測する酸素センサ24とよりなる。窒素槽23の下
部には上記配管17が接続されており、吸着槽7A,7
Bで分離された高純度のN2 ガスは配管17を介して窒
素槽23に供給される。又、窒素槽23の上部にはN 2
ガスを取り出す取出配管25が接続されている。この取
出配管25は下流側のN2 ガスを使用する装置(図示せ
ず)へ延在している。The storage unit 8 contains N as a product gas.2Moth
Nitrogen tank 23 where the gas is stored, and the oxygen concentration in the nitrogen tank 23
And an oxygen sensor 24 for measuring. Under the nitrogen tank 23
The pipe 17 is connected to the adsorption section 7A, 7A
High-purity N separated by B2Gas is removed via pipe 17.
It is supplied to the base tank 23. In addition, the upper portion of the nitrogen tank 23 is N 2
An extraction pipe 25 for extracting gas is connected. This take
The outlet pipe 25 is N on the downstream side.2Device using gas (not shown)
No.).
【0018】又、酸素センサ24は配管26を介して窒
素槽23と接続されている。The oxygen sensor 24 is connected to the nitrogen tank 23 via a pipe 26.
【0019】又、上記各配管10〜16,25,26に
は常閉形の電磁弁V1 〜V11が配設されており、各電磁
弁V1 〜V8 は後述するように制御装置2からの信号に
より還流、吸着、再生、取出し、均圧の各工程に応じて
選択的に開弁する。Further, normally closed solenoid valves V 1 to V 11 are provided in the respective pipes 10 to 16, 25 and 26, and the solenoid valves V 1 to V 8 are controlled by the control unit 2 as will be described later. The signal from the valve selectively opens the valve in accordance with the steps of reflux, adsorption, regeneration, removal, and pressure equalization.
【0020】上記気体分離装置1においては、スタート
スイッチ(図示せず)の操作によりコンプレッサ5が起
動して空気ドライヤ3に圧縮空気を供給する。In the gas separation device 1, the compressor 5 is activated by operating a start switch (not shown) to supply compressed air to the air dryer 3.
【0021】吸着ユニット7では第1,第2の吸着槽7
A,7B内に上記空気ドライヤ3により乾燥された圧縮
空気が供給されて、昇圧、減圧を繰り返しながら原料空
気から窒素と酸素とを分離する。尚、吸着ユニット7で
は製品ガスとしての窒素を安定供給するため、第1の吸
着槽7Aが昇圧されて吸着工程のとき第2の吸着槽7B
では減圧されて再生工程が行なわれ、又、第1の吸着槽
7Aが再生工程のとき第2の吸着槽7Bは吸着工程とな
る。In the adsorption unit 7, the first and second adsorption tanks 7
Compressed air dried by the air dryer 3 is supplied into A and 7B, and nitrogen and oxygen are separated from the raw material air while repeating pressurization and depressurization. Since the adsorption unit 7 stably supplies nitrogen as a product gas, the pressure in the first adsorption tank 7A is raised and the second adsorption tank 7B is used during the adsorption step.
Then, the regeneration process is performed under reduced pressure, and when the first adsorption tank 7A is in the regeneration process, the second adsorption tank 7B is in the adsorption process.
【0022】従って、制御装置2は予め入力されたプロ
グラムに基づいて吸着槽7A,7Bが交互に窒素ガスを
生成するように吸着ユニット7の各バルブV1 〜V11を
開閉制御する。Therefore, the control device 2 controls the opening and closing of the valves V 1 to V 11 of the adsorption unit 7 so that the adsorption tanks 7A and 7B alternately generate the nitrogen gas based on the program inputted in advance.
【0023】尚、吸着槽7A,7Bで分離生成されたN
2 ガスは窒素槽23内に蓄えられる。装置1の起動当初
は窒素槽23内のO2 濃度が高くなっているので取出配
管25のV10は閉弁したままである。吸着槽7A,7B
で生成されたN2 ガスが次第に窒素槽23に蓄積される
とともに、窒素槽23内のN2 濃度が高まり、O2 濃度
が相対的に低下する。The N separated and produced in the adsorption tanks 7A and 7B
The 2 gas is stored in the nitrogen tank 23. Since the O 2 concentration in the nitrogen tank 23 is high at the beginning of the start-up of the apparatus 1, V 10 of the extraction pipe 25 remains closed. Adsorption tank 7A, 7B
The N 2 gas generated in 1 is gradually accumulated in the nitrogen tank 23, the N 2 concentration in the nitrogen tank 23 increases, and the O 2 concentration relatively decreases.
【0024】従って、貯蔵ユニット8においては、起動
時配管25のバルブV10が閉弁され、酸素センサ24へ
分岐した分岐配管26のバルブV11が開弁している。Therefore, in the storage unit 8, the valve V 10 of the starting pipe 25 is closed and the valve V 11 of the branch pipe 26 branching to the oxygen sensor 24 is opened.
【0025】そのため、酸素センサ24は窒素槽23内
のO2 濃度を検出することができる。よって、窒素槽2
3内のO2 濃度が目標値に達すると同時にバルブV10が
開弁され、下流側へのN2 ガス供給が開始される。Therefore, the oxygen sensor 24 can detect the O 2 concentration in the nitrogen tank 23. Therefore, nitrogen tank 2
At the same time when the O 2 concentration in 3 reaches the target value, the valve V 10 is opened and the supply of N 2 gas to the downstream side is started.
【0026】ここで、上記構成になる気体分離装置にお
いて、各工程ごとに開閉する吸着ユニット7の各バルブ
V1 〜V9 の動作について説明する。The operation of the valves V 1 to V 9 of the adsorption unit 7 that opens and closes in each step in the gas separating apparatus having the above-mentioned structure will be described.
【0027】図2は各工程ごとの動作を示す。同図中、
各バルブV1 〜V9 は「白抜き」が開弁状態であり、
「黒塗り」が閉弁状態であることを示す。 第1工程(吸着槽A=環流・吸着、吸着槽B=再
生、吸着槽C=再生) 図2において、バルブV1 ,V3 ,V6 ,V9 が開弁す
る。そのため、吸着槽7Aにはドライヤ3からの圧縮空
気が下方から供給されるとともに、窒素槽23からの窒
素ガスが上方から還流される。これにより、吸着槽7A
は昇圧し、内部に充填された吸着剤が酸素分子を吸着す
る。FIG. 2 shows the operation of each process. In the figure,
Each valve V 1 ~V 9 is a "white" is the open state,
"Black coating" indicates that the valve is closed. First step (adsorption tank A = reflux / adsorption, adsorption tank B = regeneration, adsorption tank C = regeneration) In FIG. 2, valves V 1 , V 3 , V 6 and V 9 are opened. Therefore, the compressed air from the dryer 3 is supplied to the adsorption tank 7A from below, and the nitrogen gas from the nitrogen tank 23 is recirculated from above. As a result, the adsorption tank 7A
Is pressurized and the adsorbent filled inside adsorbs oxygen molecules.
【0028】多孔質の分子ふるいカーボンよりなる吸着
剤は、吸着槽7A内の圧力にほぼ比例して酸素分子を吸
着し、減圧されるとその圧力差により酸素分子を脱着す
る。即ち、吸着剤は図3に示すような特性を有してお
り、圧縮空気が供給されると窒素よりも分子径の小さな
酸素を先に吸着する。従って、吸着槽7A内の窒素濃度
が高まる。The adsorbent made of porous molecular sieving carbon adsorbs oxygen molecules almost in proportion to the pressure in the adsorption tank 7A, and when depressurized, desorbs oxygen molecules due to the pressure difference. That is, the adsorbent has the characteristics shown in FIG. 3, and when compressed air is supplied, it adsorbs oxygen having a smaller molecular diameter than nitrogen first. Therefore, the nitrogen concentration in the adsorption tank 7A increases.
【0029】他の吸着槽7BではバルブV6 の開弁によ
り残存ガスが大気中に排気されて減圧される。そのた
め、吸着槽7B内に充填された充填剤は前回の吸着工程
で吸着した酸素分子が脱着されて再生される。[0029] Other residual gas by opening the adsorption vessel 7B in valve V 6 is reduced is exhausted to the atmosphere. Therefore, the filler filled in the adsorption tank 7B is regenerated by desorbing the oxygen molecules adsorbed in the previous adsorption step.
【0030】そして、均圧用配管16に設けられた吸着
槽18は排気用の配管19のバルブV9 が開弁している
ので、内部が大気圧に減圧されて吸着剤が再生される。 第2工程(吸着槽A=取出し、吸着槽B=再生、吸
着槽C=再生) 図2において、前記第1工程と同様バルブV1 ,V3 ,
V6 ,V9 が開弁している。Since the valve V 9 of the exhaust pipe 19 is opened in the adsorption tank 18 provided in the pressure equalizing pipe 16, the inside is depressurized to atmospheric pressure and the adsorbent is regenerated. Second step (adsorption tank A = takeout, adsorption tank B = regeneration, adsorption tank C = regeneration) In FIG. 2, valves V 1 , V 3 ,
V 6, V 9 is open.
【0031】吸着槽7AではバルブV1 の開弁により圧
縮空気が供給され続けられているため、やがてコンプレ
ッサ5の供給圧力近くまで昇圧する。そして、吸着剤に
より分離生成された窒素ガスがバルブV3 を介して窒素
槽23へ取出される。In the adsorption tank 7A, since the compressed air is continuously supplied by opening the valve V 1 , the pressure rises to near the supply pressure of the compressor 5 in due time. Then, the nitrogen gas separated and generated by the adsorbent is taken out to the nitrogen tank 23 via the valve V 3 .
【0032】尚、他方の吸着槽7BはバルブV6 の開弁
により再生工程であり、均圧用の吸着槽18もバルブV
9 の開弁により再生工程である。 第3工程(吸着槽A,吸着槽B=均圧、吸着槽C=
吸着) 図2において、上記バルブV1 ,V3 ,V6 ,V9 が閉
弁した後、均圧用配管16のバルブV4 ,V8 が開弁す
る。The other adsorption tank 7B is in the regeneration process by opening the valve V 6 , and the adsorption tank 18 for pressure equalization is also operated by the valve V 6.
It is a regeneration process by opening the valve 9 . Third step (adsorption tank A, adsorption tank B = pressure equalization, adsorption tank C =
Adsorption) In FIG. 2, after the valves V 1 , V 3 , V 6 and V 9 are closed, the valves V 4 and V 8 of the pressure equalizing pipe 16 are opened.
【0033】一方の吸着槽7Aでは取出工程が完了した
ため、略コンプレッサ5からの供給圧力まで昇圧してい
るのに対し、他方の吸着槽7Bでは再生工程が完了して
いるので略大気圧まで減圧されている。又、均圧用配管
16に設けられた吸着槽18も再生工程が完了して減圧
されている。Since the extraction process is completed in one adsorption tank 7A, the supply pressure from the compressor 5 is raised, while the regeneration process is completed in the other adsorption tank 7B, so the pressure is reduced to about atmospheric pressure. Has been done. Further, the adsorption tank 18 provided in the pressure equalizing pipe 16 is also decompressed after the regeneration process is completed.
【0034】そのため、吸着槽7A内には窒素濃度の高
いN2 ガスが加圧された状態で残存している。Therefore, N 2 gas having a high nitrogen concentration remains in the adsorption tank 7A in a pressurized state.
【0035】均圧用の吸着槽18の両側に配設された上
記バルブV4 ,V8 が開弁すると、吸着槽7A内のN2
ガスが均圧用ガスとしてバルブV4 を介して吸着槽18
に供給される。そして、吸着槽18内が昇圧すると均圧
用ガス中に含まれている酸素分子が吸着剤に吸着され
る。When the valves V 4 and V 8 arranged on both sides of the pressure equalizing adsorption tank 18 are opened, N 2 in the adsorption tank 7A is opened.
The gas is used as a pressure equalizing gas via the valve V 4 in the adsorption tank
Is supplied to. When the pressure in the adsorption tank 18 is increased, oxygen molecules contained in the pressure equalizing gas are adsorbed by the adsorbent.
【0036】さらに、吸着槽18により分離生成された
均圧用ガスは吸着槽7Aから取出したときよりも高純度
のN2 ガスとなって吸着槽7Bへ送出される。従って、
吸着槽7Bは吸着槽18を介して供給された高純度のN
2ガスにより加圧状態となり、次の吸着工程に備える。Further, the pressure equalizing gas separated and produced by the adsorption tank 18 is sent to the adsorption tank 7B as N 2 gas having a higher purity than when it is taken out from the adsorption tank 7A. Therefore,
The adsorption tank 7B is a high-purity N supplied through the adsorption tank 18.
It becomes a pressurized state by 2 gases and prepares for the next adsorption step.
【0037】このように、均圧工程においてはバルブV
4 ,V8の開弁により昇圧された一方の吸着槽7Aが急
速に減圧されるため、前回の吸着工程で吸着剤に吸着さ
れた酸素分子が脱着されてしまう。そのため、均圧用ガ
スの窒素濃度が低下するが、均圧用配管16に設けられ
た吸着槽18に充填された吸着剤により均圧用ガス中の
酸素分子が吸着されるので、均圧工程による高純度のN
2 ガス生成効率が高められる。よって、高純度のN2 ガ
ス発生量が増加し、再起動時間をより短縮することがで
きる。Thus, in the pressure equalizing step, the valve V
4, since one of the adsorption tank 7A which has been boosted by the opening of the V 8 is rapidly reduced pressure, the oxygen molecules adsorbed on the adsorbent in the previous adsorption step would be desorbed. Therefore, the nitrogen concentration of the pressure equalizing gas decreases, but since the adsorbent filled in the adsorption tank 18 provided in the pressure equalizing pipe 16 adsorbs the oxygen molecules in the pressure equalizing gas, the high purity by the pressure equalizing step is obtained. N
2 Gas generation efficiency is improved. Therefore, the amount of high-purity N 2 gas generated is increased, and the restart time can be further shortened.
【0038】又、従来は一方の吸着槽7Aの残存ガスが
均圧用配管16を介して直接他方の吸着槽7Bに送出さ
れたため、吸着槽7AではバルブV4 ,V8 の開弁によ
り急速に減圧されてしまい吸着剤に吸着されていた酸素
分子が脱着されやすかった。しかし、本実施例では均圧
用の配管16に吸着剤が充填された吸着槽18が介在す
るため、吸着槽7Aの圧力が急激に減圧されず、酸素分
子の脱着も抑制される。Further, conventionally, the residual gas in one adsorption tank 7A was sent directly to the other adsorption tank 7B through the pressure equalizing pipe 16, so that in the adsorption tank 7A, the valves V 4 and V 8 were opened rapidly. The pressure was reduced and the oxygen molecules adsorbed by the adsorbent were easily desorbed. However, in this embodiment, since the adsorption tank 18 filled with the adsorbent is interposed in the pressure equalizing pipe 16, the pressure in the adsorption tank 7A is not sharply reduced, and desorption of oxygen molecules is also suppressed.
【0039】又、図2に示す第1〜第3工程が完了する
と吸着槽7Aと7Bとが入れ換わるように上記第1〜第
3工程が実行される。When the first to third steps shown in FIG. 2 are completed, the first to third steps are carried out so that the adsorption tanks 7A and 7B are exchanged.
【0040】尚、上記実施例では一対の吸着槽7A,7
Bが設けられているが、2個以上の吸着槽を有する装置
にも適用できるのは勿論である。In the above embodiment, a pair of adsorption tanks 7A, 7A
Although B is provided, it goes without saying that it can be applied to an apparatus having two or more adsorption tanks.
【0041】又、上記実施例では各吸着槽が酸素分子を
吸着する構成であるが、各吸着槽が他の気体分子を吸着
する構成(例えば酸素発生装置等)にも適用できるのは
勿論である。Further, in the above embodiment, each adsorption tank is configured to adsorb oxygen molecules, but it is needless to say that it can be applied to a configuration in which each adsorption tank adsorbs other gas molecules (for example, an oxygen generator). is there.
【0042】[0042]
【発明の効果】上述の如く、本発明になる気体分離装置
は、均圧用配管途中に均圧用気体中の一の気体分子を吸
着する吸着手段を設けることにより、均圧工程時一方の
吸着槽から送出された均圧用気体中に吸着剤から脱着さ
れた気体分子が含まれていても、これを吸着して他方の
吸着槽へ高純度の均圧用気体を供給することができる。
そのため、均圧工程による高純度の製品ガス生成効率を
より高めることができ、その結果製品ガス発生量を増加
することができるとともに、再起動時間を短縮すること
ができる等の特長を有する。As described above, the gas separating apparatus according to the present invention is provided with an adsorbing means for adsorbing one gas molecule in the pressure equalizing gas in the middle of the pressure equalizing pipe, so that one of the adsorption tanks during the pressure equalizing step Even if the gas for pressure equalization sent from the device contains gas molecules desorbed from the adsorbent, it is possible to adsorb the gas molecules and supply the high-purity pressure equalizing gas to the other adsorption tank.
Therefore, the production efficiency of high-purity product gas in the pressure equalization step can be further enhanced, and as a result, the product gas generation amount can be increased and the restart time can be shortened.
【図1】本発明になる気体分離装置の一実施例の概略構
成図である。FIG. 1 is a schematic configuration diagram of an embodiment of a gas separation device according to the present invention.
【図2】各工程のバルブ動作及び各吸着槽の圧力変化を
示す工程図である。FIG. 2 is a process diagram showing a valve operation in each process and a pressure change in each adsorption tank.
【図3】吸着剤の特性(圧力−吸着量)を示す図であ
る。FIG. 3 is a diagram showing characteristics (pressure-adsorption amount) of an adsorbent.
1 気体分離装置 2 制御装置 3 冷凍式ドライヤ 5 コンプレッサ 6 空気供給ユニット 7 吸着ユニット 7A,7B 吸着槽 8 貯蔵ユニット 16 均圧用配管 18 均圧用吸着槽 23 窒素槽 24 酸素センサ 1 Gas Separation Device 2 Control Device 3 Refrigeration Dryer 5 Compressor 6 Air Supply Unit 7 Adsorption Unit 7A, 7B Adsorption Tank 8 Storage Unit 16 Pressure Equalization Pipe 18 Equalization Adsorption Tank 23 Nitrogen Tank 24 Oxygen Sensor
Claims (1)
れた複数の吸着槽を有し、該吸着槽の製品ガス取出側間
に各吸着槽内の圧力を均圧化するため均圧用配管を配設
してなる気体分離装置において、 前記均圧用配管途中に、前記一の吸着槽から他の吸着槽
へ送出される均圧用気体中の一の気体分子を吸着する吸
着手段を設けてなることを特徴とする気体分離装置。1. A pressure equalizing device having a plurality of adsorption tanks filled with an adsorbent for adsorbing one gas molecule, for equalizing the pressure in each adsorption tank between the product gas outlet sides of the adsorption tanks. In a gas separation device provided with a pipe, in the middle of the pressure equalizing pipe, an adsorption means for adsorbing one gas molecule in the pressure equalizing gas sent from the one adsorption tank to another adsorption tank is provided. A gas separation device characterized by the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03269655A JP3073061B2 (en) | 1991-10-17 | 1991-10-17 | Gas separation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03269655A JP3073061B2 (en) | 1991-10-17 | 1991-10-17 | Gas separation device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05103937A true JPH05103937A (en) | 1993-04-27 |
JP3073061B2 JP3073061B2 (en) | 2000-08-07 |
Family
ID=17475379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03269655A Expired - Fee Related JP3073061B2 (en) | 1991-10-17 | 1991-10-17 | Gas separation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3073061B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013069768A1 (en) * | 2011-11-10 | 2013-05-16 | 大陽日酸株式会社 | Method for producing nitrogen gas, method for separating gas and device for producing nitrogen gas |
-
1991
- 1991-10-17 JP JP03269655A patent/JP3073061B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013069768A1 (en) * | 2011-11-10 | 2013-05-16 | 大陽日酸株式会社 | Method for producing nitrogen gas, method for separating gas and device for producing nitrogen gas |
JP2013103841A (en) * | 2011-11-10 | 2013-05-30 | Taiyo Nippon Sanso Corp | Nitrogen gas manufacturing method, gas separation method and nitrogen gas manufacturing apparatus |
KR20140078725A (en) | 2011-11-10 | 2014-06-25 | 다이요 닛산 가부시키가이샤 | Method for producing nitrogen gas, method for separating gas and device for producing nitrogen gas |
US9359203B2 (en) | 2011-11-10 | 2016-06-07 | Taiyo Nippon Sanso Corporation | Method for producing nitrogen gas, method for separating gas and device for producing nitrogen gas |
Also Published As
Publication number | Publication date |
---|---|
JP3073061B2 (en) | 2000-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100260001B1 (en) | Pressure swing adsorption process | |
KR100254295B1 (en) | Pressure swing adsorption process with a single adsorbent bed | |
US6156101A (en) | Single bed pressure swing adsorption process and system | |
KR930012040B1 (en) | Pressure swing adsorption for dividing gas mixtures | |
US4813977A (en) | Adsorptive nitrogen generation utilizing multiple adsorption beds | |
US4715867A (en) | Auxiliary bed pressure swing adsorption molecular sieve | |
EP1004342B1 (en) | Pressure swing adsorption gas separation process and system using single adsorber and product recycle | |
EP1018359A2 (en) | Pressure swing adsorption process and system with product storage tank(s) | |
CA2255526C (en) | Psa process and system using simultaneous top and bottom evacuation of adsorbent bed | |
JPH01258721A (en) | Adsorptive separation using dual adsorbing bed | |
JPH09103630A (en) | Method and apparatus for pressure swing adsorption | |
JPH08239204A (en) | Method for recovering enriched oxygen | |
JPH07745A (en) | Gas separation | |
US5997611A (en) | Single vessel gas adsorption system and process | |
JPS60150814A (en) | Process for separating supplied gaseous mixture stream by pressure swing adsorption | |
JP3073061B2 (en) | Gas separation device | |
JPH11267439A (en) | Gas separation and gas separator for performing same | |
JPH01184016A (en) | Apparatus for gas separation | |
TW587955B (en) | Pressure swing adsorption process with controlled internal depressurization flow | |
JPH0938443A (en) | Gas separator | |
JPH10194708A (en) | Oxygen enricher | |
KR100228239B1 (en) | Apparatus and process for producing nitrogen using psa system depending on nitrogen concentration in the product | |
JPH0631129A (en) | Gas separator | |
JPH09141038A (en) | Gas separator | |
JP3755622B2 (en) | Mixed gas separation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090602 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |