JPH05103761A - Eyeground inspecting device - Google Patents

Eyeground inspecting device

Info

Publication number
JPH05103761A
JPH05103761A JP3296297A JP29629791A JPH05103761A JP H05103761 A JPH05103761 A JP H05103761A JP 3296297 A JP3296297 A JP 3296297A JP 29629791 A JP29629791 A JP 29629791A JP H05103761 A JPH05103761 A JP H05103761A
Authority
JP
Japan
Prior art keywords
fundus
light
polarized light
fiber layer
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3296297A
Other languages
Japanese (ja)
Other versions
JP3235853B2 (en
Inventor
Yoshi Kobayakawa
嘉 小早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP29629791A priority Critical patent/JP3235853B2/en
Publication of JPH05103761A publication Critical patent/JPH05103761A/en
Application granted granted Critical
Publication of JP3235853B2 publication Critical patent/JP3235853B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make a precise diagnosis of glaucoma by projecting the image of a retinal nerve fiber layer at a high contrast to easily find an abnormality of the fiber layer. CONSTITUTION:The light flux from a light source 1 is passed through a circularly polarizing plate 2, a lens 3, a bored mirror 4, and an objective lens 5 to light the eyeground Er of an eye E to be inspected with a circularly polarized light, and the reflected light from the eyeground Er is passed through the bored mirror 4, a lens 6, a circularly polarizing plate 7, a quick return mirror 8, a mirror 10, and a lens 11, and imaged on a telecamera 12. The projected image is once stored in a frame memory included in a signal processing part 13, and an eyeground image calculated by the signal processing part 13 is displayed on a television monitor 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、主として緑内障等の眼
科検診に使用される眼底検査装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fundus examination apparatus mainly used for ophthalmologic examination for glaucoma and the like.

【0002】[0002]

【従来の技術】従来、緑内障等の診断に使用されている
眼底検査装置には、網膜神経繊維層の走行方向とは無関
係に直線偏光を用いて眼底を照明する方式のものが知ら
れている。また、網膜神経繊維層を映像化する場合に、
色フィルタを用いるとか或いは直線偏光フィルタを用い
ることも行われている。
2. Description of the Related Art Conventionally, as a fundus examination apparatus used for diagnosing glaucoma and the like, there is known a system for illuminating the fundus using linearly polarized light regardless of the traveling direction of the retinal nerve fiber layer. .. Also, when visualizing the retinal nerve fiber layer,
It is also practiced to use a color filter or a linear polarization filter.

【0003】[0003]

【発明が解決しようとする課題】従来の直線偏光を用い
て眼底を照明する方式のものは、直線偏光に方向依存性
があるため、網膜神経繊維層の走行方向によって検査結
果が異なり易く、必ずしも正確な結果が得られないとい
う問題がある。また、色フィルタ等を用いて網膜神経繊
維層を映像化する場合は十分に鮮明な映像が得られない
し、更に網膜神経繊維層の走行方向とは無関係であり、
直線偏光フィルタを用いる方式は単に偏光子と検光子と
の組合わせによる映像であるから、同様に良好な映像が
得られないという問題を有している。
Since the conventional method of illuminating the fundus using linearly polarized light has a direction dependency on the linearly polarized light, the test result tends to differ depending on the running direction of the retinal nerve fiber layer, and There is a problem that accurate results cannot be obtained. Further, when the retinal nerve fiber layer is imaged using a color filter or the like, a sufficiently clear image cannot be obtained, and it is irrelevant to the running direction of the retinal nerve fiber layer.
The method using a linear polarization filter has a problem that a good image cannot be obtained because it is an image obtained by simply combining a polarizer and an analyzer.

【0004】本発明の目的は、網膜の神経繊維の走行方
向や眼底反射像等に影響されることなく、繊維層の厚さ
分布を正確に映像化して、網膜神経繊維層の異常を容易
に発見できるようにした眼底検査装置を提供することに
ある。
The object of the present invention is to accurately visualize the thickness distribution of the fiber layer without being influenced by the running direction of the nerve fiber of the retina or the reflection image of the fundus of the retina, thereby facilitating the abnormality of the retinal nerve fiber layer. An object of the present invention is to provide a fundus examination device that can be found.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
めの第1発明に係る眼底検査装置は、複数方向の成分を
備える偏光光による眼底照明光によって眼底を照明する
照明系と、複数方向の成分を備える偏光光による眼底撮
影光によって眼底を撮影する眼底撮影手段とを有するこ
とを特徴とするものである。
A fundus examination apparatus according to a first aspect of the invention for achieving the above object is an illumination system for illuminating a fundus with fundus illumination light by polarized light having components in a plurality of directions and a plurality of directions. And a fundus photographing means for photographing the fundus by the fundus photographing light with polarized light.

【0006】上述の目的を達成するための第2発明に係
る眼底検査装置は、網膜神経繊維層走行方向と45°の
関係にある直線偏光光による眼底照明光によって眼底を
照明する照明手段と、前記眼底照明光と垂直及び平行な
直線偏光子による眼底撮影光によって眼底を撮影する撮
影手段とを有することを特徴とするものである。
A fundus examination apparatus according to a second aspect of the present invention for achieving the above object is an illuminating means for illuminating a fundus with a fundus illumination light of linearly polarized light having a relationship of 45 ° with a running direction of a retinal nerve fiber layer. And a photographing means for photographing the fundus by the fundus photographing light by a linear polarizer perpendicular to and parallel to the fundus illumination light.

【0007】[0007]

【作用】上述の構成を有する眼底検査装置は、網膜神経
繊維層が神経繊維走行方向とそれに垂直な方向で屈折率
が異なるので、例えば眼底を照明した円偏光が楕円偏光
となって出射してくる現象を利用し、この楕円偏光の楕
円率から繊維層の厚さに関する位相分布を求め、繊維層
の厚さ分布を映像化する。
In the fundus examination apparatus having the above-mentioned structure, since the refractive index of the retinal nerve fiber layer is different between the nerve fiber running direction and the direction perpendicular thereto, for example, circularly polarized light illuminating the fundus becomes elliptically polarized light and is emitted. The distribution of the thickness of the fiber layer is visualized by obtaining the phase distribution related to the thickness of the fiber layer from the ellipticity of the elliptically polarized light by using the phenomenon of eclipse.

【0008】[0008]

【実施例】本発明を図示の実施例に基づいて詳細に説明
する。図1は第1の実施例を示し、1は光源であり、こ
の光源1から被検眼Eに至る光路には、円偏光板2、レ
ンズ3、穴開きミラー4、対物レンズ5が設けられてい
る。穴開きミラー4の後方には、レンズ6、円偏光板
7、クイックリターンミラー8、フィルム9が順次に配
列されている。また、クイックリターンミラー8の反射
方向には、ミラー10、レンズ11、テレビカメラ12
が設けられ、テレビカメラ12の出力は信号処理部13
を介してテレビモニタ14に接続されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail based on the illustrated embodiments. FIG. 1 shows a first embodiment, 1 is a light source, and a circularly polarizing plate 2, a lens 3, a perforated mirror 4, and an objective lens 5 are provided in an optical path from the light source 1 to an eye E to be inspected. There is. Behind the perforated mirror 4, a lens 6, a circularly polarizing plate 7, a quick return mirror 8 and a film 9 are sequentially arranged. Further, in the reflecting direction of the quick return mirror 8, the mirror 10, the lens 11, the television camera 12
Is provided, and the output of the TV camera 12 is the signal processing unit 13.
Is connected to the television monitor 14 via.

【0009】光源1から発せられた光束は円偏光板2、
レンズ3、穴開きミラー4及び対物レンズ5を通って、
被検眼Eの眼底Erを照明する。眼底Erにおける反射像
は、対物レンズ5、穴開きミラー4、レンズ6、円偏光
板7、クイックリターンミラー8、ミラー10、レンズ
11を通ってテレビカメラ12に眼底像を結像する。こ
の映像は信号処理部13に内蔵されたフレームメモリに
一旦格納され、信号処理部13で計算された眼底像はテ
レビモニタ14に表示される。また、フィルム9に撮像
する場合は、クイックリターンミラー8を上昇させれば
光束はフィルム9に導かれる。
The luminous flux emitted from the light source 1 is a circular polarization plate 2,
Through the lens 3, the perforated mirror 4 and the objective lens 5,
The fundus Er of the eye E to be examined is illuminated. The reflected image on the fundus Er passes through the objective lens 5, the perforated mirror 4, the lens 6, the circularly polarizing plate 7, the quick return mirror 8, the mirror 10 and the lens 11 to form a fundus image on the television camera 12. This image is temporarily stored in the frame memory built in the signal processing unit 13, and the fundus image calculated by the signal processing unit 13 is displayed on the television monitor 14. In the case of capturing an image on the film 9, the light flux is guided to the film 9 by raising the quick return mirror 8.

【0010】図2はテレビモニタ14上に写し出された
眼底像を例示し、神経繊維は乳頭Aから発して血管Bに
沿って走り黄斑Cに集まる。繊維層は殆ど透明である
が、走行方向とそれに垂直な方向とでは屈折率が異なり
複屈折性を有している。従って、円偏光で照明すると一
般には楕円偏光となって出射してくる。この楕円の方向
は神経繊維の走行方向に対して45度であり方向は眼底
位置により異なり、図2のP点とQ点では楕円の方向も
異なってくる。しかし、繊維層の厚さが同じであれば位
相差が同じなので楕円率は厚さのみに依存する。眼圧が
上昇して欠損帯Kが生ずると、その部分の複屈折性は無
くなるから楕円は生じない。同一方向の円偏光板を検光
子とすると理論的には透過光はなくなるが、実際には網
膜反射に種々の成分が混在しているので、透過光はなく
なることはない。
FIG. 2 exemplifies the fundus image projected on the television monitor 14, in which nerve fibers originate from the nipple A, run along the blood vessel B and gather at the macula C. Although the fiber layer is almost transparent, the refractive index is different between the running direction and the direction perpendicular to the running direction and has birefringence. Therefore, when illuminated with circularly polarized light, it generally comes out as elliptically polarized light. The direction of this ellipse is 45 ° with respect to the running direction of the nerve fiber, and the direction differs depending on the fundus position, and the direction of the ellipse also differs at points P and Q in FIG. However, if the fiber layers have the same thickness, the phase difference is the same, so the ellipticity depends only on the thickness. When the intraocular pressure rises and the defect zone K occurs, the birefringence of that portion disappears, so that no ellipse occurs. Theoretically, the transmitted light disappears when the circularly polarizing plates in the same direction are used as the analyzer, but in reality, since various components are mixed in the retina reflection, the transmitted light does not disappear.

【0011】図3は眼底Erにおける網膜反射の様子を示
し、照明光Iは先ず硝子体と網膜Dとの境界Fで反射す
る。これは鏡面反射であるから偏光は保たれ、まだ網膜
Dを通っていないので円偏光のままである。次に、網膜
Dと色素上皮層Gの境界で反射する。これも鏡面反射で
偏光は保たれるが網膜Dを通った分だけ楕円になる。更
に、色素上皮層Gで拡散反射される。この分が最も多い
が瞳方向に反射した成分のみが映像に寄与するので、先
の二者に比較して必ずしも多くはない。繊維層の映像を
作るには、円偏光板を偏光子、検光子として写真を撮っ
てもよいが、コントラストはそれほど高くできない。こ
のコントラストをより高くするには、図1に示す円偏光
板7を矢印のように出し入れして映像を記憶し、それを
使って計算するとよい。
FIG. 3 shows the state of retinal reflection at the fundus Er, and the illumination light I is first reflected at the boundary F between the vitreous body and the retina D. Since this is specular reflection, the polarized light is maintained, and since it has not passed through the retina D yet, it remains circularly polarized light. Next, the light is reflected at the boundary between the retina D and the pigment epithelium layer G. This is also specular reflection, and the polarization is maintained, but it becomes an ellipse as much as it passes the retina D. Further, it is diffusely reflected by the pigment epithelium layer G. This amount is the largest, but only the component reflected in the pupil direction contributes to the image, so it is not necessarily large compared to the former two. To make an image of the fiber layer, you can take a picture using a circularly polarizing plate as a polarizer and analyzer, but the contrast cannot be so high. In order to increase the contrast, the circularly polarizing plate 7 shown in FIG. 1 may be taken in and out as shown by an arrow to store an image, and the calculation may be performed using the image.

【0012】ここで、網膜Dの表裏面の反射率をそれぞ
れa、b、色素上皮層Gの反射率をc、入射光量をIi、
反射光量をIoとすると、反射率a、bは1に比して充分
に小さいから、次の(1) 式が成立する。 Io=a・Ii+b・Ii+c・Ii…(1)
Here, the reflectances of the front and back surfaces of the retina D are a and b, respectively, the reflectance of the pigment epithelium layer G is c, the incident light quantity is Ii,
Assuming that the amount of reflected light is Io, the reflectances a and b are sufficiently smaller than 1, so that the following equation (1) is established. Io = a ・ Ii + b ・ Ii + c ・ Ii ... (1)

【0013】ここで、Ioは検光子がない場合の各点にお
ける出力である。反射率aは眼底Erの各点でほぼ一定と
見做すことができるし、また反射率bも同様にほぼ一定
と考えてよい。しかし、色素上皮層Gの反射率cは位置
によって異なる。
Here, Io is the output at each point when there is no analyzer. The reflectance a can be considered to be substantially constant at each point on the fundus Er, and the reflectance b can be considered to be substantially constant as well. However, the reflectance c of the pigment epithelium layer G differs depending on the position.

【0014】受光系に同じ方向の円偏光板を入れて反射
光を受光すると、その光量Ifは次の(2) 式で表される。
前述の(1) 式の第1項のa・Iiは反射により逆方向の円
偏光となって消え、第2項のb・Iiは楕円になった分だ
け透過光を生ずる。これは位相差δに依存する。また、
第3項は1/2となる。即ち、 If=f(δ) ・b・Ii+(1/2)c・Ii…(2)
When a circularly polarizing plate of the same direction is placed in the light receiving system to receive the reflected light, the light quantity If is expressed by the following equation (2).
The first term a · Ii in the above equation (1) disappears as circularly polarized light in the opposite direction due to reflection, and the second term b · Ii produces transmitted light by the amount corresponding to the ellipse. This depends on the phase difference δ. Also,
The third term becomes 1/2. That is, If = f (δ) · b · Ii + (1/2) c · Ii ... (2)

【0015】(1) 式と(2) 式から、次の(3) 式が得られ
る。 f(δ) =(2If−Io)/2Ii・b−(a+b)/2b…(3)
From the equations (1) and (2), the following equation (3) is obtained. f (δ) = (2If−Io) / 2Ii · b− (a + b) / 2b ... (3)

【0016】従って、眼底Erの各点でf(δ) を計算すれ
ば、位相分布が分かることになる。(3) 式のf(δ) で画
面を構成すれば、神経繊維の状態を映像で表示すること
ができ、特に緑内障の診断に有効である。近似的には、
各点の反射率は独立になるが、実際には完全に除けず眼
底パターンは残るので、かえって位置関係が分かってよ
い。
Therefore, if f (δ) is calculated at each point of the fundus Er, the phase distribution can be known. If the screen is composed of f (δ) in the equation (3), the state of the nerve fiber can be displayed as an image, which is particularly effective for the diagnosis of glaucoma. Approximately,
Although the reflectances of the respective points are independent, the fundus pattern remains in reality without being completely removed, so that the positional relationship may be understood.

【0017】なお、図1に示す穴開きミラー4、クイッ
クリターンミラー8、ミラー10等の反射部材は、偏光
が乱れないように非偏光的反射面を持つことが望まし
く、また適当に使用波長帯を狭めると効率が良くなる。
The reflecting members such as the perforated mirror 4, the quick return mirror 8 and the mirror 10 shown in FIG. 1 preferably have a non-polarizing reflection surface so that the polarization is not disturbed, and the wavelength band is appropriately used. Narrowing down improves efficiency.

【0018】また、円偏光板2、7はその他の円偏光素
子で代用できることは云うまでもない。本実施例の場合
に、神経繊維の走行方向に関係なく眼底面で一様に繊維
層の厚さに関係する位相分布が求まり、また眼底Erの各
点の反射率に依存せずに位相分布が分かるので、網膜神
経繊維層の異常を容易に発見することが可能である。
Needless to say, the circularly polarizing plates 2 and 7 can be replaced with other circularly polarizing elements. In the case of this example, the phase distribution uniformly related to the thickness of the fiber layer on the fundus of the eye is obtained regardless of the running direction of the nerve fiber, and the phase distribution does not depend on the reflectance of each point of the fundus Er. Therefore, it is possible to easily detect an abnormality of the retinal nerve fiber layer.

【0019】図4は第2の実施例を示し、図1と同一の
符号は同等の部材を表している。この実施例では、レン
ズ6の背後に回転可能な直線偏光板21、撮像素子22
を備えたテレビカメラ23が配置されている。直線偏光
板21は図5に示すようにギア24を介してステップモ
ータ25により駆動するようにされている。また、信号
処理部26はテレビカメラ23、ステップモータ25、
テレビモニタ27に接続されている。
FIG. 4 shows a second embodiment, and the same reference numerals as those in FIG. 1 represent the same members. In this embodiment, a rotatable linear polarizing plate 21 and an image sensor 22 are provided behind the lens 6.
A television camera 23 including is arranged. The linear polarization plate 21 is driven by a step motor 25 via a gear 24 as shown in FIG. Further, the signal processing unit 26 includes a television camera 23, a step motor 25,
It is connected to the television monitor 27.

【0020】この実施例の場合も、光源1からの光束は
円偏光板2、レンズ3、穴開きミラー4及び対物レンズ
5を通って被検眼Eの眼底Erを照明する。眼底Erの網膜
内の繊維層は前述したように複屈折性を有するため、図
6に示すように円偏光Jで照明した場合には、一般に図
7に示すように楕円偏光Kとなって出てくる。なお、図
6、図7においてSは繊維層の走行方向を示している。
円偏光Jは走行方向Sとそれに垂直方向の直線偏光の間
に90度の位相差があると見做せるので、その差が網膜
を通って0度となれば、走行方向Sに45度の直線偏光
となり、その間であれば楕円偏光Kとなる。位相差は平
行と垂直方向の屈折力差と厚さに比例するので、屈折力
差を一定と仮定すれば厚さのみに比例する。従って、楕
円偏光Kの楕円率から位相差を求めればよい。図7に示
すように、楕円偏光Kの解析は、3方向の斜影P1、P2、
P3から計算することができる。
Also in this embodiment, the light flux from the light source 1 illuminates the fundus Er of the eye E through the circularly polarizing plate 2, the lens 3, the perforated mirror 4 and the objective lens 5. Since the fiber layer in the retina of the fundus Er has the birefringence as described above, when illuminated by the circularly polarized light J as shown in FIG. 6, the elliptically polarized light K generally appears as shown in FIG. Come on. 6 and 7, S indicates the running direction of the fiber layer.
The circularly polarized light J can be regarded as having a phase difference of 90 degrees between the traveling direction S and the linearly polarized light in the direction perpendicular to the traveling direction S. Therefore, if the difference becomes 0 degree through the retina, the circularly polarized light J becomes 45 degrees in the traveling direction S. It becomes linearly polarized light, and elliptically polarized light K between them. Since the phase difference is proportional to the difference in refractive power in the parallel and vertical directions and the thickness, if the difference in refractive power is assumed to be constant, it is proportional to only the thickness. Therefore, the phase difference may be obtained from the ellipticity of the elliptically polarized light K. As shown in FIG. 7, the analysis of the elliptically polarized light K is performed by the three-direction oblique shadows P1, P2,
It can be calculated from P3.

【0021】さて、図4において眼底Erからの反射光
は、穴開きミラー4、レンズ6及び直線偏光板21を通
って撮像素子22に眼底像を結像し、テレビカメラ23
で映像化される。ここで、直線偏光板21はステップモ
ータ25によって60度ずつ回転して3回撮像が行わ
れ、その撮像は信号処理部26に取り込まれ、計算によ
り眼底Erの各点の位相差が求められ、結果はテレビモニ
タ27上に表示される。この位相差を信号の強弱で表せ
ば、網膜神経繊維層の欠損部を濃淡によって表示するこ
とができる。神経繊維の走行方向は一定ではないが、円
偏光は方向性がないので望ましい。ただし、形成される
楕円の方向は走行方向によってまちまちとなるが、問題
とするのは位相差であり、それは楕円方向ではなく楕円
率から決定される。
Now, in FIG. 4, the reflected light from the fundus Er passes through the perforated mirror 4, the lens 6 and the linear polarizing plate 21 to form a fundus image on the image pickup device 22, and the television camera 23.
Is visualized in. Here, the linearly polarizing plate 21 is rotated by 60 degrees by the step motor 25 to perform imaging three times, the imaging is taken into the signal processing unit 26, and the phase difference at each point of the fundus Er is obtained by calculation. The result is displayed on the television monitor 27. If this phase difference is represented by the strength of the signal, the defective portion of the retinal nerve fiber layer can be displayed by shading. The running direction of the nerve fiber is not constant, but circularly polarized light is desirable because it has no directionality. However, the direction of the formed ellipse varies depending on the traveling direction, but the problem is the phase difference, which is determined not by the elliptic direction but by the ellipticity.

【0022】図8は別の実施例を示すものである。眼底
Erの狭い範囲を写すときは繊維層の走行方向は一定であ
ると見做し、それに45度の直線偏光で照明し、受光は
その方向と平行及び垂直な方向で行い、それらの差から
位相差を求めることができる。図8において、光源30
の光路には直線偏光板31、偏光特性のない光分割部材
32、対物レンズ33が設けられ、光分割部材32の後
方には、同様に偏光特性のない光分割部材34、直線偏
光板31と偏光方向が平行な偏光板35、テレビカメラ
36が配置されている。光分割部材34の反射方向には
直線偏光板31と偏光方向が垂直な偏光板35、テレビ
カメラ38が設けられ、テレビカメラ36、38の出力
は信号処理部39に接続されている。
FIG. 8 shows another embodiment. Fundus
When the narrow range of Er is photographed, the running direction of the fiber layer is considered to be constant, and it is illuminated with linearly polarized light of 45 degrees, and the light is received in the directions parallel and perpendicular to that direction, and the position is determined from the difference between them. The phase difference can be calculated. In FIG. 8, the light source 30
A linear polarization plate 31, a light splitting member 32 having no polarization characteristic, and an objective lens 33 are provided in the optical path of the light path, and a light splitting member 34 having no polarization property and a linear polarization plate 31 are provided behind the light splitting member 32. A polarizing plate 35 and a television camera 36 having parallel polarization directions are arranged. In the reflection direction of the light splitting member 34, a linear polarization plate 31, a polarization plate 35 having a polarization direction perpendicular to each other, and a TV camera 38 are provided, and outputs of the TV cameras 36 and 38 are connected to a signal processing unit 39.

【0023】この場合に、光源30からの光束は直線偏
光板31、光分割部材32、対物レンズ33を通って被
検眼Eの眼底Erを照明し、眼底Erからの反射光を光分割
部材34により偏光板35と偏光板35に分割し、それ
ぞれの像をテレビカメラ36、38に取り込み、信号処
理部39でその差から位相差分布を求めて映像化する。
この場合の表示は濃淡の他に、適当な凝似カラーにより
カラーテレビモニタに表示してもよい。
In this case, the light flux from the light source 30 passes through the linear polarizing plate 31, the light splitting member 32, and the objective lens 33 to illuminate the fundus Er of the eye E to be examined, and the reflected light from the fundus Er is split into the light splitting member 34. The image is divided into a polarizing plate 35 and a polarizing plate 35 by means of, and the respective images are taken into the television cameras 36 and 38, and the signal processing unit 39 obtains a phase difference distribution from the difference and visualizes it.
The display in this case may be displayed on a color television monitor in an appropriate similar color in addition to the light and shade.

【0024】図9は照明系の直線偏光M、図10は反射
光の楕円偏光Nを示している。眼底反射時に、偏光の崩
れた成分Q1、Q2が検出時に混入して撮像のコントラスト
を低下させるので、各画素のQ1/Q2を求め、Q1/Q2の最
小値を(Q1/Q2)minとしたとき、Q1/Q2−(Q1/Q2)min
を計算して表示すれば無偏光成分を除去する効果があ
り、コントラストの高い位相画像を得ることが可能であ
る。
FIG. 9 shows the linearly polarized light M of the illumination system, and FIG. 10 shows the elliptically polarized light N of the reflected light. Since polarized components Q1 and Q2 are mixed at the time of fundus reflection at the time of detection to reduce the contrast of imaging, Q1 / Q2 of each pixel is obtained, and the minimum value of Q1 / Q2 is set to (Q1 / Q2) min When Q1 / Q2- (Q1 / Q2) min
Is calculated and displayed, there is an effect of removing the non-polarized component, and it is possible to obtain a phase image with high contrast.

【0025】[0025]

【発明の効果】以上説明したように本発明に係る眼底検
査装置は、網膜神経繊維層を高コントラストで映像化で
きるため、繊維層の異常を容易に発見することができ、
特に緑内障の診断に効果的である。また、神経繊維の走
行方向に関係なく眼底面で一様に繊維層厚さに関係する
位相分布を求めることができ、眼底各点の反射率に依存
せずに位相分布を求めることが可能である。
As described above, since the fundus examination apparatus according to the present invention can visualize the retinal nerve fiber layer with high contrast, abnormality of the fiber layer can be easily detected,
It is especially effective in diagnosing glaucoma. In addition, it is possible to obtain the phase distribution uniformly related to the fiber layer thickness on the fundus irrespective of the running direction of the nerve fiber, and it is possible to obtain the phase distribution without depending on the reflectance at each fundus point. is there.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の実施例の構成図である。FIG. 1 is a configuration diagram of a first embodiment.

【図2】眼底像の説明図である。FIG. 2 is an explanatory diagram of a fundus image.

【図3】網膜での反射状態の説明図である。FIG. 3 is an explanatory diagram of a reflection state on the retina.

【図4】第2の実施例の構成図である。FIG. 4 is a configuration diagram of a second embodiment.

【図5】直線偏光板を光軸方向から見た正面図である。FIG. 5 is a front view of a linear polarizing plate viewed from the optical axis direction.

【図6】円偏光の説明図である。FIG. 6 is an explanatory diagram of circularly polarized light.

【図7】楕円偏光の説明図である。FIG. 7 is an explanatory diagram of elliptically polarized light.

【図8】第3の実施例の構成図である。FIG. 8 is a configuration diagram of a third embodiment.

【図9】照明系の直線偏光の説明図である。FIG. 9 is an explanatory diagram of linearly polarized light of an illumination system.

【図10】反射光の楕円偏光の説明図である。FIG. 10 is an explanatory diagram of elliptically polarized light of reflected light.

【符号の説明】[Explanation of symbols]

1 光源 2、7 円偏光板 4 穴開きミラー 8 クイックリターンミラー 9 フィルム 12、36、38 テレビカメラ 13、26、39 信号処理部 14、27 テレビモニタ 21、31 直線偏光板 23 ステップモータ 32、34 光分割部材 35、37 偏光板 1 light source 2, 7 circularly polarizing plate 4 perforated mirror 8 quick return mirror 9 film 12, 36, 38 TV camera 13, 26, 39 signal processing unit 14, 27 TV monitor 21, 31 linear polarizing plate 23 step motor 32, 34 Light splitting member 35, 37 Polarizing plate

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数方向の成分を備える偏光光による眼
底照明光によって眼底を照明する照明系と、複数方向の
成分を備える偏光光による眼底撮影光によって眼底を撮
影する眼底撮影手段とを有することを特徴とする眼底検
査装置。
1. An illumination system for illuminating a fundus with a fundus illumination light of polarized light having a plurality of directions of components, and a fundus photographing unit for photographing a fundus with a fundus photographing light of polarized light having a plurality of directions of components. A fundus examination apparatus characterized by:
【請求項2】 前記眼底照明光及び眼底撮影光は円偏光
とした請求項1に記載眼底検査装置。
2. The fundus examination apparatus according to claim 1, wherein the fundus illumination light and the fundus photographing light are circularly polarized light.
【請求項3】 前記眼底撮影手段はテレビカメラとし、
該テレビカメラで撮影した映像を一旦格納するフレーム
メモリと、複数の偏光状態で取り込んだ映像から網膜神
経繊維層を解析する手段を設けた請求項1に記載の眼底
検査装置。
3. The television camera is used as the fundus photographing means,
The fundus examination apparatus according to claim 1, further comprising a frame memory that temporarily stores an image captured by the television camera and a unit that analyzes a retinal nerve fiber layer from images captured in a plurality of polarization states.
【請求項4】 網膜神経繊維層走行方向と45°の関係
にある直線偏光光による眼底照明光によって眼底を照明
する照明手段と、前記眼底照明光と垂直及び平行な直線
偏光子による眼底撮影光によって眼底を撮影する撮影手
段とを有することを特徴とする眼底検査装置。
4. Illuminating means for illuminating the fundus with a fundus illumination light of linearly polarized light having a relationship of 45 ° with the running direction of the retinal nerve fiber layer, and fundus photographing light by a linear polarizer perpendicular and parallel to the fundus illumination light. A fundus examination apparatus, comprising:
JP29629791A 1991-10-15 1991-10-15 Fundus examination device Expired - Fee Related JP3235853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29629791A JP3235853B2 (en) 1991-10-15 1991-10-15 Fundus examination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29629791A JP3235853B2 (en) 1991-10-15 1991-10-15 Fundus examination device

Publications (2)

Publication Number Publication Date
JPH05103761A true JPH05103761A (en) 1993-04-27
JP3235853B2 JP3235853B2 (en) 2001-12-04

Family

ID=17831733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29629791A Expired - Fee Related JP3235853B2 (en) 1991-10-15 1991-10-15 Fundus examination device

Country Status (1)

Country Link
JP (1) JP3235853B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019971A (en) * 2010-07-15 2012-02-02 Chiba Univ Eye fundus observation apparatus
JP2012034724A (en) * 2010-08-03 2012-02-23 Topcon Corp Fundus photographing apparatus
WO2015105324A1 (en) * 2014-01-10 2015-07-16 국립암센터 Method for detecting defective zone of retinal nerve fiber layer
JP2016051147A (en) * 2014-09-02 2016-04-11 浜松ホトニクス株式会社 Optical modulation device and optical system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4563828B2 (en) 2005-01-27 2010-10-13 株式会社トプコン Fundus examination device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012019971A (en) * 2010-07-15 2012-02-02 Chiba Univ Eye fundus observation apparatus
JP2012034724A (en) * 2010-08-03 2012-02-23 Topcon Corp Fundus photographing apparatus
WO2015105324A1 (en) * 2014-01-10 2015-07-16 국립암센터 Method for detecting defective zone of retinal nerve fiber layer
JP2016051147A (en) * 2014-09-02 2016-04-11 浜松ホトニクス株式会社 Optical modulation device and optical system
US10527864B2 (en) 2014-09-02 2020-01-07 Hamamatsu Photonics K.K. Light modulation device and optical system having increased light use efficiency by correcting phase difference due to an optical path difference between two optical paths

Also Published As

Publication number Publication date
JP3235853B2 (en) 2001-12-04

Similar Documents

Publication Publication Date Title
US6394603B2 (en) Ophthalmic apparatus
JP3420597B2 (en) Anterior segment imaging device
US20020180929A1 (en) Apparatus and method for the kinetic analysis of tear stability
US20050162611A1 (en) Ophthalmic apparatus
US5719659A (en) Ophthalmic apparatus having light polarizing means
JP2001512994A (en) Ophthalmoscope that laser scans a wide field of view
JP6964250B2 (en) Eyeball imaging device and eyeball imaging method
JPH0361447B2 (en)
JPS6223570B2 (en)
US6540357B1 (en) Glaucoma diagnosis apparatus
JP3346618B2 (en) Optometry device
JPH0716207A (en) Optometry device
JP4563828B2 (en) Fundus examination device
JP7096020B2 (en) Mobile terminal and control method of mobile terminal
JP3235853B2 (en) Fundus examination device
JP2000005131A (en) Fundus camera
US4676612A (en) Eye examining apparatus
JPS60253429A (en) Ophthalmic examination apparatus
US6814441B2 (en) Apparatus for measurement of polarized distribution, polarizing filter for using therein and polarizing filter assembly
JP3576656B2 (en) Alignment detection device for ophthalmic instruments
JP2927505B2 (en) Fundus camera and image display method thereof
JPH11235316A (en) Optometrical device
JPH06292653A (en) Ophthalmoic device
JP2019200405A (en) Tri-spectroscopic optical module and optical device utilizing the same
JPH084572B2 (en) Eye refractive power measuring device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees