JPH0510337B2 - - Google Patents

Info

Publication number
JPH0510337B2
JPH0510337B2 JP59053574A JP5357484A JPH0510337B2 JP H0510337 B2 JPH0510337 B2 JP H0510337B2 JP 59053574 A JP59053574 A JP 59053574A JP 5357484 A JP5357484 A JP 5357484A JP H0510337 B2 JPH0510337 B2 JP H0510337B2
Authority
JP
Japan
Prior art keywords
acid
reduction
catalyst
reaction
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59053574A
Other languages
Japanese (ja)
Other versions
JPS60199864A (en
Inventor
Ryuichi Mita
Toshio Kato
Chojiro Higuchi
Teruhiro Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59053574A priority Critical patent/JPS60199864A/en
Publication of JPS60199864A publication Critical patent/JPS60199864A/en
Publication of JPH0510337B2 publication Critical patent/JPH0510337B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明はN−アシルフエニルアラニン類の改良
された製造法に関する。N−アシルフエニルアラ
ニン類はフエニルアラニン類製造時の中間体とし
て重要な化合物であり、とくに無置換のN−アシ
ルフエニルアラニンは、必須アミノ酸の一つであ
り、近年、人工甘味剤アスパルテームの原料とし
て伸長著しいL−フエニルアラニン製造時の前駆
体として重要な化合物である。即ち、N−アセチ
ルフエニルアラニンに酵素アシラーゼを作用させ
ると、このものは容易に不斉加水分解されてL−
フエニルアラニンが生成する。 従来、N−アシルフエニルアラニン類はN−ア
シルグリシンとベンズアルデヒド類との縮合反応
によつて比較的容易に製造される2−置換−4−
(置換)ベンジリデン−5−オキサゾロンまたは
その加水分解生成物であるα−アシルアミノ桂皮
酸類を還元して製造する方法が一般的である。還
元方法としては種々の方法が提案されているが、
工業的見地から不均一系の還元触媒の存在下に接
触還元する方法が現実的である。例えば、T.O−
Kuda and Y.Fujii,Bull.Chem.Soc.(Japan),
30,698(1957)によれば、置換または未置換の2
−メチル−4−ベンジリデン−5−オキサゾロン
をアルカリ水溶液中、ラネ−ニツケルを触媒とし
て40〜70Kg/cm2の圧力下に接触還元してN−アセ
チル−フエニルアラニン類を製造している。ま
た、白金またはパラジウム系の貴金属触媒を使用
した例としてはR.M.Herbst and D.Shemin,
Organic Synthesis,Coll.Vol..491頁の方法、
すなわち酸化白金を触媒としてα−アセトアミド
桂皮酸を酢酸中、常圧下に接触還元してN−アセ
チルフエニルアラニンを製造する方法が知られて
いる。しかしながら、前者の方法は高圧下で還元
するので、工業的には装置上の制約があり、しか
も触媒のラネ−ニツケルを比較的多量に使用する
ので、その廃棄により公害問題を生じる方法であ
る。また、後者の方法は溶媒として酢酸を使用し
ているので、還元後、生成物の単離は溶媒を濃縮
または留去しなければならず操作が繁雑になる欠
点を有する方法である。 接触還元に使用する触媒として、近年、パラジ
ウムまたは白金系の貴金属触媒が頻繁に使用され
ている。これは、これらの触媒が高価ではある
が、その使用量が少なくて済み、かつ、容易に再
生でき、再利用ができるので、触媒の廃棄がなく
なるなどの利点があることによる。一方、N−ア
シルフエニルアラニン類を対応するα−アシルア
ミノ桂皮酸類から製造する際の溶媒としては、単
離プロセスを簡素化する意味で、工業的には水溶
媒が望ましい。例えば、α−アセチルアミノ桂皮
酸を水酸化ナトリウム水溶液に溶解しパラジウム
炭素触媒の存在下に接触還元を行えば、常圧下で
比較的容易に還元されてN−アセチルフエニルア
ラニンが生成する。しかしながら、本発明者ら
は、(1)α−アシルアミノ桂皮酸類を単に強アルカ
リ性水溶液に溶解して還元を行なうと、反応後
過操作によつて回収した還元触媒は触媒の活性が
低下すること、その為、(2)循環使用すると新触媒
を使用した場合に比較して還元時間が著しく長く
かかるだけでなく、反応の途中で触媒が失活して
しまうこと、また(3)この回収した触媒は有機溶媒
での洗浄または希塩酸等の酸による洗浄操作を施
しても触媒活性は復元しないこと等を見出した。 このことは、高価な貴金属触媒は、工業的には
回収して循環使用するという常識に反するもので
ある。 本発明者らは、前記の知見にもとづいて、α−
アシルアミノ桂皮酸類をパラジウムまたは白金系
の貴金属触媒の存在下に水溶液中で還元するに際
して、触媒の活性を低下または失活させることな
く効率良く循環使用できる方法は鋭意検討した結
果、還元時の水溶液のPHが触媒の活性、さらには
回収触媒の不可逆的活性低下の原因であることを
見出し、本発明を完成するに至つた。 即ち、本発明α−アシルアミノ桂皮酸類をパラ
ジウムまたは白金系の還元触媒の存在下に接触還
元して対応するN−アシルフエニルアラニン類を
製造する方法において、還元反応をPH5〜9の水
溶液中で行うことを特徴とするN−アシルフエニ
ルアラニン類の製造方法である。 本発明の方法によれば、強アルカリ性水溶液で
の還元反応に比較して還元に要する時間が著しく
短縮でき、かつ、還元後過操作により回収した
還元触媒はそのまま循環使用しても活性の低下は
認められず、新触媒を使用した場合とほぼ同一の
時間で還元反応が進行する。 本発明の方法において用いられる原料のα−ア
シルアミノ桂皮酸類は、 一般式〔1〕 (式中、R1およびR2はそれぞれ独立して水素
原子、低級アルキル基、低級アルコキシ基、水酸
基、ハロゲン原子またはアリールオキシ基を示
し、またR3はメチル基またはフエニル基を示す)
で表わされる化合物であり、置換または無置換の
α−アシルアミノ桂皮酸である。具体的にはα−
アセチルアミノ桂皮酸、α−ベンゾイルアミノ桂
皮酸、α−アセチルアミノ−p−メチル桂皮酸、
α−ベンゾイルアミノ−p−メチル桂皮酸、α−
アセチルアミノ−p−エチル桂皮酸、α−ベンゾ
イルアミノ−p−エチル桂皮酸、α−アセチルア
ミノ−p−メトキシ桂皮酸、α−ベンゾイルアミ
ノ−p−メトキシ桂皮酸、α−アセチルアミノ−
3,4−メチレンジオキシ桂皮酸、α−ベンゾイ
ルアミノ−3,4−メチレンジオキシ桂皮酸、α
−アセチルアミノ−p−ヒドロキシ桂皮酸、α−
ベンゾイルアミノ−p−ヒドロキシ桂皮酸、α−
アセチルアミノ−3,4−ジヒドロキシ桂皮酸、
α−ベンゾイルアミノ−3,4−ジヒドロキシ桂
皮酸、α−アセチルアミノ−p−クロル桂皮酸、
α−ベンゾイルアミノ−p−クロル桂皮酸、α−
アセチルアミノ−3,4−ジクロル桂皮酸、α−
ベンゾイルアミノ−3,4−ジクロル桂皮酸、α
−アセチルアミノ−m−フエノキシ桂皮酸または
α−ベンゾイルアミノ−m−フエノキシ桂皮酸な
どを挙げることができる。これらの原料はN−ア
セチルグリシンまたはN−ベンゾイルグリシン
(馬尿酸)とベンズアルデヒド類とを無水酢酸中、
酢酸ナトリウムの存在下に縮合(Erlenmeyer反
応)させることによつて得られる2−メチル(ま
たはフエニル)−4−ベンジリデン(または置換
ベンジリデン)−5−オキサゾロン類を加水分解
することによつて容易に製造することができる。 本発明の方法に使用される還元触媒としてのパ
ラジウムまたは白金系の貴金属触媒は不均一系の
触媒であれば特に制限はなく、具体的な例として
はパラジウム炭素、パラジウムブラツク、パラジ
ウム硫酸バリウム、コロイドパラジウム、酸化白
金、白金炭素または白金シリカゲルなどを挙げる
ことができるが、勿論これらに限定されるもので
はない。これらの触媒の使用量は、通常、原料の
α−アシルアミノ桂皮酸類に対して0.1重量%以
上であり、使用量が多い程還元反応の時間は短縮
されるが、経済的な面ならびに反射操作上α−ア
シルアミノ桂皮酸類に対して30重量%以下で使用
するのが良い。好適には0.5〜10重量%の範囲で
使用するのが良い。 還元反応は水溶媒中で実施される。勿論還元反
応に対して不活性で、かつ、水と混和する有機溶
媒の併用下に反応を行つても差支えないが、生成
物を単離するに際して、有機溶媒を留去しなけれ
ばならず、操作が繁雑化する欠点がある。 反応の実施態様としては、原料のα−アシルア
ミノ桂皮酸類1重量部を水1〜100重量部、反応
操作ならびに容積効率の点から好ましくは2〜50
重量部に懸濁または溶解し、次に塩基を添加して
PHを5〜9の範囲、好ましくは5.5〜8.5の範囲に
調整する。その後触媒を添加し水素を用いて還元
反応を行えば良い。反応液のPHが9を越えると前
記のように回収触媒の循環使用に際して活性の低
下または失活をきたすだけでなく、新触媒使用時
でも本発明のPH範囲での還元反応に比較して反応
時間が長くなる傾向がある。またPHが5より低い
と、原料のα−アシルアミノ桂皮酸類の溶解度が
小さくなり、懸濁状態での還元反応となり、反応
を完了させるに要する時間が長く、工業的に好ま
しくない。 本発明の方法において、所定のPHに調整するの
に用いる塩基としては、無機塩基または有機塩基
であつて、還元反応に不活性なものであれば特に
限定はないが、通常は、アルカリ金属またはアル
カリ土類金属の水酸化物、酸化物、炭酸塩または
重炭酸塩あるいはアンモニアが多用される。勿
論、トリエチルアミンなどで代表される有機塩基
を用いてもよい。 還元反応の温度、時間は還元触媒の使用量によ
り多少変化するが、通常、0〜100℃、0.5〜30時
間で反応は完結する。また、反応時の圧力は常圧
または加圧下のいずれでもよい。 反応生成物のN−アシルフエニルアラニン酸を
反応混合物より単離するには、触媒を別除去し
たのち、液を塩酸などの酸で酸析しすればよ
い。回収した触媒は何ら処理操作を施す必要はな
く、そのまま循環使用するだけで、何ら活性の低
下はなく還元反応を進行させることができる。 実施例 1 100mlのガラス製密閉容器にα−アセチルアミ
ノ桂皮酸10.25gと水30mlを仕込み攪拌下に45%
水酸化ナトリウム水溶液4.4gを添加してPHが6.8
の水溶液とした。次に5%パラジウム炭素0.2g
を添加し反応容器内を窒素置換、つづいて水素置
換してから常圧下40〜45℃で接触還元を行つた。
反応時間は水素の吸収が停止するまで約80分であ
り、この間1モル比(対α−アセチルアミノ桂皮
酸)の水素吸収量が認められた。反応後容器内を
窒素置換してから触媒を過し、少量の水で洗浄
した。洗液は一緒にして30〜35℃で35%塩酸を
添加してPHを1にし、0〜5℃に冷却ののち析出
している結晶を過し、冷水で洗浄後乾燥するこ
とによりN−アセチルフエニルアラニンの白色結
晶を得た。収量9.84g(収率95.0%/対α−アセ
チルアミノ桂皮酸)融点150〜151℃ 実施例 2 実施例1において回収したパラジウム炭素触媒
をそのまま使用し、実施例1と同様にα−アセチ
ルアミノ桂皮酸の還元反応を行い触媒の循環使用
を5回実施した。結果は表−1の通りでいずれの
場合も還元反応は80〜85時間で終了し、実施例1
とほとんど変わらなかつた。 【表】 比較例 100mlのガラス製密閉容器にα−アセチルアミ
ノ桂皮酸10.25gと水30mlを仕込み、次に45%水
酸化ナトリウム水溶液4.9gを添加して溶解した。
水溶液のPHは11.4であつた。この溶液に5%パラ
ジウム炭素0.2gを装入し反応容器内を窒素置換、
つづいて水素置換してから40〜45℃で常圧下に還
元を実施した。還元時間はおよそ3時間要した。
還元後は実施例1と同様に処理することによつて
N−アセチルフエニルアラニンの白色結晶9.84g
を得た。融点150〜151℃ここに回収された触媒を
循環使用する以外は全く同様にα−アセチルアミ
ノ桂皮酸の還元反応を実施した結果、還元に要し
た時間は循環使用1回目が5時間、2回目が9時
間であり、3回目は反応の途中で水素の吸収がス
トツプした。 実施例 3〜4 実施例1においてPHを変える以外は実施例1と
同様に還元反応を行つた結果を表−2に示す。ま
たこれらの実験で回収した触媒を循環使用した
所、循環使用3回まで還元に要した時間は新触媒
を用いた時とほとんど変わらなかつた。 【表】 実施例 5 実施例1において5%パラジウム炭素の代わり
に5%白金炭素0.2gを用い、また温度を30〜35
℃にする他は実施例1と同様に行つた。還元に要
した時間は135分であつた。ここで回収された触
媒を同一の反応条件下に3回循環使用したが還元
時間は130〜140分であり、ほとんど差が認められ
なかつた。 実施例 6〜12 種々の置換α−アシルアミノ桂皮酸を用いて実
施例1に準じて還元した結果を表−3に示す。反
応後生成物の単離は実施例1と同様に行つた。 【表】 施 〓
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for producing N-acylphenylalanines. N-acylphenylalanines are important compounds as intermediates in the production of phenylalanines. In particular, unsubstituted N-acylphenylalanine is one of the essential amino acids, and in recent years, it has been used as an artificial sweetener aspartame. It is an important compound as a precursor for the production of L-phenylalanine, which is rapidly expanding as a raw material for L-phenylalanine. That is, when the enzyme acylase is applied to N-acetylphenylalanine, it is easily asymmetrically hydrolyzed to L-
Phenylalanine is produced. Conventionally, N-acylphenylalanines are 2-substituted-4- which are relatively easily produced by a condensation reaction between N-acylglycine and benzaldehydes.
A common method is to reduce (substituted) benzylidene-5-oxazolone or its hydrolysis product, α-acylaminocinnamic acid. Various methods have been proposed as reduction methods, but
From an industrial standpoint, a method of catalytic reduction in the presence of a heterogeneous reduction catalyst is practical. For example, TO−
Kuda and Y.Fujii, Bull.Chem.Soc. (Japan),
30, 698 (1957), substituted or unsubstituted 2
-Methyl-4-benzylidene-5-oxazolone is catalytically reduced in an alkaline aqueous solution using Raney nickel as a catalyst under a pressure of 40 to 70 kg/cm 2 to produce N-acetyl-phenylalanine. In addition, examples using platinum or palladium-based precious metal catalysts include R.M.Herbst and D.Shemin,
Organic Synthesis, Coll.Vol. 2 . 491 pages of methods;
That is, a method is known in which N-acetylphenylalanine is produced by catalytically reducing α-acetamidocinnamic acid in acetic acid under normal pressure using platinum oxide as a catalyst. However, since the former method involves reduction under high pressure, there are restrictions on industrial equipment, and furthermore, since a relatively large amount of Raney nickel is used as a catalyst, its disposal causes pollution problems. Furthermore, since the latter method uses acetic acid as a solvent, the product must be isolated after reduction by concentrating or distilling off the solvent, making the process complicated. In recent years, palladium or platinum-based noble metal catalysts have been frequently used as catalysts for catalytic reduction. This is because, although these catalysts are expensive, they can be used in small quantities and can be easily regenerated and reused, which eliminates the need for catalyst waste. On the other hand, as a solvent for producing N-acylphenylalanines from the corresponding α-acylaminocinnamic acids, an aqueous solvent is industrially preferable in the sense of simplifying the isolation process. For example, if α-acetylaminocinnamic acid is dissolved in an aqueous sodium hydroxide solution and subjected to catalytic reduction in the presence of a palladium-carbon catalyst, it is relatively easily reduced under normal pressure to produce N-acetylphenylalanine. However, the present inventors have discovered that (1) if α-acylaminocinnamic acids are simply dissolved in a strong alkaline aqueous solution and reduced, the activity of the reduced catalyst recovered by a sieve operation after the reaction is reduced; Therefore, (2) when recycled, not only does the reduction time take significantly longer than when using a new catalyst, but also the catalyst becomes deactivated during the reaction, and (3) this recovered catalyst found that the catalytic activity was not restored even after washing with an organic solvent or with an acid such as dilute hydrochloric acid. This is contrary to the common sense that expensive precious metal catalysts are industrially recovered and recycled. Based on the above findings, the present inventors have determined that α-
After extensive research into a method for efficiently recycling acylaminocinnamic acids in the presence of a palladium or platinum-based noble metal catalyst without reducing or deactivating the catalyst, we found that The present invention was completed by discovering that PH is the cause of an irreversible decrease in the activity of the catalyst and furthermore, the activity of the recovered catalyst. That is, in the method of the present invention for producing the corresponding N-acylphenylalanines by catalytic reduction of α-acylaminocinnamic acids in the presence of a palladium- or platinum-based reduction catalyst, the reduction reaction is carried out in an aqueous solution with a pH of 5 to 9. This is a method for producing N-acylphenylalanines, which is characterized by carrying out the following steps. According to the method of the present invention, the time required for reduction can be significantly shortened compared to the reduction reaction using a strongly alkaline aqueous solution, and the reduction catalyst recovered by the filtration operation after reduction can be used for recycling as it is without any decrease in activity. This was not observed, and the reduction reaction proceeded in approximately the same time as when using the new catalyst. The raw material α-acylaminocinnamic acids used in the method of the present invention has the general formula [1] (In the formula, R 1 and R 2 each independently represent a hydrogen atom, a lower alkyl group, a lower alkoxy group, a hydroxyl group, a halogen atom, or an aryloxy group, and R 3 represents a methyl group or a phenyl group)
This compound is a substituted or unsubstituted α-acylaminocinnamic acid. Specifically, α−
acetylaminocinnamic acid, α-benzoylaminocinnamic acid, α-acetylamino-p-methylcinnamic acid,
α-Benzoylamino-p-methylcinnamic acid, α-
Acetylamino-p-ethylcinnamic acid, α-benzoylamino-p-ethylcinnamic acid, α-acetylamino-p-methoxycinnamic acid, α-benzoylamino-p-methoxycinnamic acid, α-acetylamino-
3,4-methylenedioxycinnamic acid, α-benzoylamino-3,4-methylenedioxycinnamic acid, α
-acetylamino-p-hydroxycinnamic acid, α-
Benzoylamino-p-hydroxycinnamic acid, α-
acetylamino-3,4-dihydroxycinnamic acid,
α-benzoylamino-3,4-dihydroxycinnamic acid, α-acetylamino-p-chlorocinnamic acid,
α-Benzoylamino-p-chlorocinnamic acid, α-
Acetylamino-3,4-dichlorocinnamic acid, α-
Benzoylamino-3,4-dichlorocinnamic acid, α
Examples include -acetylamino-m-phenoxycinnamic acid and α-benzoylamino-m-phenoxycinnamic acid. These raw materials are made by combining N-acetylglycine or N-benzoylglycine (hippuric acid) and benzaldehydes in acetic anhydride.
Easily produced by hydrolyzing 2-methyl (or phenyl)-4-benzylidene (or substituted benzylidene)-5-oxazolones obtained by condensation (Erlenmeyer reaction) in the presence of sodium acetate. can do. The palladium or platinum-based noble metal catalyst used as a reduction catalyst in the method of the present invention is not particularly limited as long as it is a heterogeneous catalyst, and specific examples include palladium on carbon, palladium black, palladium barium sulfate, colloid. Examples include palladium, platinum oxide, platinum carbon, platinum silica gel, etc., but are not limited to these, of course. The amount of these catalysts used is usually 0.1% by weight or more based on the raw material α-acylaminocinnamic acids, and the larger the amount used, the shorter the reduction reaction time, but from an economical standpoint and reflection operation. It is preferable to use it in an amount of 30% by weight or less based on α-acylaminocinnamic acids. It is preferably used in a range of 0.5 to 10% by weight. The reduction reaction is carried out in an aqueous medium. Of course, the reaction may be carried out in combination with an organic solvent that is inert to the reduction reaction and miscible with water, but when isolating the product, the organic solvent must be distilled off. The disadvantage is that the operation becomes complicated. In an embodiment of the reaction, 1 part by weight of α-acylaminocinnamic acid as a raw material is mixed with 1 to 100 parts by weight of water, preferably 2 to 50 parts by weight from the viewpoint of reaction operation and volumetric efficiency.
Suspend or dissolve in parts by weight, then add a base to
Adjust the pH to a range of 5 to 9, preferably 5.5 to 8.5. After that, a catalyst may be added and a reduction reaction may be performed using hydrogen. If the pH of the reaction solution exceeds 9, not only will the activity decrease or deactivate when recycling the recovered catalyst as described above, but also the reaction will be lower than the reduction reaction in the pH range of the present invention even when using a new catalyst. It tends to take longer. Furthermore, if the pH is lower than 5, the solubility of the raw material α-acylaminocinnamic acid will be low, the reduction reaction will take place in a suspended state, and the time required to complete the reaction will be long, which is industrially unfavorable. In the method of the present invention, the base used to adjust the pH to a predetermined level is not particularly limited as long as it is an inorganic base or an organic base and is inert to the reduction reaction, but it is usually an alkali metal or an organic base. Alkaline earth metal hydroxides, oxides, carbonates or bicarbonates or ammonia are frequently used. Of course, an organic base such as triethylamine may also be used. Although the temperature and time of the reduction reaction vary somewhat depending on the amount of reduction catalyst used, the reaction is usually completed at 0 to 100°C in 0.5 to 30 hours. Further, the pressure during the reaction may be either normal pressure or increased pressure. In order to isolate the reaction product N-acylphenylalanic acid from the reaction mixture, the catalyst may be separately removed and the solution may be precipitated with an acid such as hydrochloric acid. There is no need to perform any treatment on the recovered catalyst, and the reduction reaction can proceed without any reduction in activity by simply recycling it as it is. Example 1 10.25 g of α-acetylaminocinnamic acid and 30 ml of water were placed in a 100 ml glass sealed container and mixed to 45%
Add 4.4g of sodium hydroxide aqueous solution and the pH becomes 6.8
was made into an aqueous solution. Next, 0.2g of 5% palladium on carbon
was added and the inside of the reaction vessel was replaced with nitrogen, followed by hydrogen, and then catalytic reduction was performed at 40 to 45°C under normal pressure.
The reaction time was approximately 80 minutes until hydrogen absorption stopped, and during this period, a hydrogen absorption amount of 1 molar ratio (to α-acetylaminocinnamic acid) was observed. After the reaction, the inside of the container was purged with nitrogen, and the catalyst was filtered and washed with a small amount of water. The washing liquids are combined and heated to 30-35°C by adding 35% hydrochloric acid to bring the pH to 1. After cooling to 0-5°C, the precipitated crystals are filtered out, washed with cold water and dried to obtain N- White crystals of acetylphenylalanine were obtained. Yield 9.84g (yield 95.0%/based on α-acetylaminocinnamic acid) Melting point 150-151°C Example 2 Using the palladium carbon catalyst recovered in Example 1 as it was, α-acetylaminocinnamic acid was prepared in the same manner as in Example 1. The acid reduction reaction was carried out and the catalyst was recycled five times. The results are shown in Table 1. In all cases, the reduction reaction was completed in 80 to 85 hours, and Example 1
There was almost no difference. [Table] Comparative Example 10.25 g of α-acetylaminocinnamic acid and 30 ml of water were placed in a 100 ml sealed glass container, and then 4.9 g of 45% aqueous sodium hydroxide solution was added and dissolved.
The pH of the aqueous solution was 11.4. 0.2 g of 5% palladium on carbon was charged into this solution, and the inside of the reaction vessel was replaced with nitrogen.
Subsequently, after hydrogen substitution, reduction was carried out at 40 to 45°C under normal pressure. The reduction time required approximately 3 hours.
After reduction, 9.84 g of white crystals of N-acetylphenylalanine were obtained by the same treatment as in Example 1.
I got it. Melting point: 150-151℃ The reduction reaction of α-acetylaminocinnamic acid was carried out in exactly the same manner except that the recovered catalyst was recycled. As a result, the time required for reduction was 5 hours for the first cycle and 5 hours for the second cycle. The reaction time was 9 hours, and the absorption of hydrogen stopped in the middle of the third reaction. Examples 3 to 4 A reduction reaction was carried out in the same manner as in Example 1 except that the pH was changed. The results are shown in Table 2. Furthermore, when the catalyst recovered in these experiments was recycled, the time required for reduction up to three cycles was almost the same as when using a new catalyst. [Table] Example 5 In Example 1, 0.2 g of 5% platinum carbon was used instead of 5% palladium carbon, and the temperature was changed from 30 to 35.
The same procedure as in Example 1 was carried out except that the temperature was changed to .degree. The time required for reduction was 135 minutes. The catalyst recovered here was recycled and used three times under the same reaction conditions, but the reduction time was 130 to 140 minutes, with almost no difference observed. Examples 6 to 12 Table 3 shows the results of reduction according to Example 1 using various substituted α-acylaminocinnamic acids. Isolation of the product after the reaction was carried out in the same manner as in Example 1. [Table] 〓

Claims (1)

【特許請求の範囲】[Claims] 1 α−アシルアミノ桂皮酸類をパラジウムまた
は白金系の還元触媒の存在下に還元して対応する
N−アシルフエニルアラニン類を製造する方法に
おいて、該還元反応をPH5〜9の水溶液中で行う
ことを特徴とするN−アシルフエニルアラニン類
の製造方法。
1. In a method for producing a corresponding N-acylphenylalanine by reducing α-acylaminocinnamic acids in the presence of a palladium- or platinum-based reduction catalyst, the reduction reaction is carried out in an aqueous solution with a pH of 5 to 9. Characteristic method for producing N-acylphenylalanines.
JP59053574A 1984-03-22 1984-03-22 Production of n-acylphenylalanine or the like Granted JPS60199864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59053574A JPS60199864A (en) 1984-03-22 1984-03-22 Production of n-acylphenylalanine or the like

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59053574A JPS60199864A (en) 1984-03-22 1984-03-22 Production of n-acylphenylalanine or the like

Publications (2)

Publication Number Publication Date
JPS60199864A JPS60199864A (en) 1985-10-09
JPH0510337B2 true JPH0510337B2 (en) 1993-02-09

Family

ID=12946601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59053574A Granted JPS60199864A (en) 1984-03-22 1984-03-22 Production of n-acylphenylalanine or the like

Country Status (1)

Country Link
JP (1) JPS60199864A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3736861A1 (en) * 1987-10-30 1989-05-11 Hoechst Ag METHOD FOR PRODUCING N-ACETYLPHENYLALANINE
JP4560309B2 (en) * 2004-03-03 2010-10-13 大塚化学株式会社 Method for producing optically active amino acid derivative
CN115956564B (en) * 2022-11-18 2024-09-27 温州大学 Application of tric mycin in pathogen control and plant fresh-keeping

Also Published As

Publication number Publication date
JPS60199864A (en) 1985-10-09

Similar Documents

Publication Publication Date Title
JPH0542422B2 (en)
JPH0510337B2 (en)
JP3273578B2 (en) Method for producing salt of ornithine with acidic amino acids or keto acids
JPS61167642A (en) Production of 3,3',4,4'-biphenyltetracarboxylic acid salt
US4675439A (en) Preparation process of N-acylphenylalanines
JP4271348B2 (en) Process for producing di-tert-butyl 1,3-adamantane dicarboxylate
JPS61227555A (en) Production of n-acylphenylalanine compound
US4980505A (en) Organic synthesis
JPH0542424B2 (en)
CN116120213B (en) Synthesis method of trans-4- (tert-butoxycarbonylamino) cyclohexane carboxylic acid
CN116003277A (en) Preparation method of contrast agent intermediate iodide
WO2007055180A1 (en) Method for producing optically active trans-2-aminocyclohexanol and derivative thereof
JP2537528B2 (en) Process for producing 2- (0-aminophenyl) ethanol
JPH0142935B2 (en)
JPH0542425B2 (en)
JPH0542423B2 (en)
JPS61251659A (en) Production of 2-or 3-aminomethylpiperidine
JPH0853394A (en) Production of phenyllactic acid derivative
JPS6372649A (en) Production of 3,3',4,4'-biphenyltetracarboxylic acid
JP2003206253A (en) Method for producing alkoxy-substituted 2-tetralone
JPS6130656B2 (en)
JPS63233967A (en) Production of p-cyano benzoic acid salt
JP2000178239A (en) Production of n-acetylcyclohexylglycine compound
JPH11310558A (en) Production of 2-amino-4,5,3',4'-tetramethoxybenzophenone
JPH07233127A (en) Production of 4,6-diaminoresorcin and its salt