JPH05103271A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPH05103271A
JPH05103271A JP3281995A JP28199591A JPH05103271A JP H05103271 A JPH05103271 A JP H05103271A JP 3281995 A JP3281995 A JP 3281995A JP 28199591 A JP28199591 A JP 28199591A JP H05103271 A JPH05103271 A JP H05103271A
Authority
JP
Japan
Prior art keywords
image
objective lens
image pickup
signal processing
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3281995A
Other languages
Japanese (ja)
Other versions
JP2984954B2 (en
Inventor
Kimihiko Nishioka
公彦 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP3281995A priority Critical patent/JP2984954B2/en
Publication of JPH05103271A publication Critical patent/JPH05103271A/en
Application granted granted Critical
Publication of JP2984954B2 publication Critical patent/JP2984954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)
  • Endoscopes (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Abstract

PURPOSE:To validly display a picture at a high-vision television or the like by providing a rotary asymmetrical refracted face in an objective lens, and transforming an image by a signal processing means. CONSTITUTION:This device is equipped with an objective lens 2 which forms the image of an object, solid image pickup element 1 which receives the image from the objective lens 2, signal processing means (sampling circuit 3, hold circuit 4, and video signal preparing circuit 5) which prepares an output signal from the image pickup element 1, and a display means (television monitor 6 and long sideway display part 7) which displays the image of the object from a video signal. Then, the objective lens 2 having the rotary asymmetrical refracted face expressed by an expression I, projects the transformed image of the object on the solid image pickup element 1, and the signal processing means 3-5 further transforms the transformed image, and displays it. In the expression I, (x)-(z) are the coordinate values of (x), (y) and (z) coordinates at the time of defining an optical axial direction as an (x)-axis, and the vertex of the screen as an origin. Therefore, the long sideway display part of the television monitor of the television with the high fidelity can be validly utilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子内視鏡用撮像装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image pickup device for an electronic endoscope.

【0002】[0002]

【従来の技術】従来の電子内視鏡は、図16に示すよう
にほぼ正方形のCCD1に円形のレンズ系2によって物
体像を結像させ、これを映像処理回路3を径てテレビモ
ニター4の表示部5上に画像6を映し出すものが多かっ
た。
2. Description of the Related Art In a conventional electronic endoscope, an object image is formed on a CCD 1 having a substantially square shape by a circular lens system 2 as shown in FIG. In many cases, the image 6 was displayed on the display unit 5.

【0003】現行のテレビ方式(NTSC方式)では、
テレビモニターの表示部5のアスペクト比は、H:V=
4:3である。そのため図 に示すように表示部5の一
部に画像6を正方形表示しても、テレビ画面が無駄にな
ることは少なかった。
In the current television system (NTSC system),
The aspect ratio of the display section 5 of the TV monitor is H: V =
4: 3. Therefore, even if the image 6 is displayed in a square shape on a part of the display unit 5 as shown in the figure, the television screen is rarely wasted.

【0004】しかしながら、高品位テレビは、表示部7
のアスペクト比がH:V=16:9で横長である。その
ため高品位テレビの電子内視鏡を考えると、その横長の
表示部に図 のような電子内視鏡による正方形の映像を
映したのでは、表示部の無駄が多くなる。
However, the high-definition television has a display unit 7
Has an aspect ratio of H: V = 16: 9 and is horizontally long. Therefore, when considering an electronic endoscope for a high-definition television, displaying a square image by the electronic endoscope as shown in the figure on the horizontally long display portion results in a large waste of the display portion.

【0005】又横長の固体撮像素子を用いればよいが、
内視鏡内に横長の撮像素子を配置すると、内視鏡の太さ
が大になり好ましくない。
Although a horizontally long solid-state image pickup device may be used,
Arranging a horizontally long image pickup device in the endoscope undesirably increases the thickness of the endoscope.

【0006】[0006]

【発明が解決しようとする課題】本発明は、高品位テレ
ビのテレビモニターの横長の表示部を有効に利用した迫
力のある画像を観察できるようにした電子内視鏡の撮像
素子を提供することを目的とするものである。
SUMMARY OF THE INVENTION The present invention provides an image pickup device for an electronic endoscope capable of observing a powerful image by effectively utilizing a horizontally long display portion of a television monitor of a high definition television. The purpose is.

【0007】[0007]

【課題を解決するための手段】本発明の撮像装置は、ほ
ぼ正方形のCCD等の固体撮像素子と、光軸に対して非
対称な非球面を有する対物レンズと、電気的な伸長手段
とを備えている。
The image pickup device of the present invention comprises a solid-state image pickup element such as a CCD having a substantially square shape, an objective lens having an aspherical surface asymmetric with respect to the optical axis, and an electric expansion means. ing.

【0008】図1は、本発明の撮像素子の構成を示す図
で、1は撮像素子、2は対物光学系、3はサンプリング
回路、4はホールド回路、5は映像信号作製回路、6は
テレビモニター、7は横長表示部、8は光源、9はライ
トガイドである。
FIG. 1 is a view showing the arrangement of an image pickup device of the present invention. 1 is an image pickup device, 2 is an objective optical system, 3 is a sampling circuit, 4 is a hold circuit, 5 is a video signal producing circuit, and 6 is a television. A monitor, 7 is a horizontally long display, 8 is a light source, and 9 is a light guide.

【0009】又対物光学系中には光軸に対して非回転対
称の非球面レンズが設けられており、ほぼ長方形の物体
をほぼ平方形の固体撮像素子1上に結像する。
Further, an aspherical lens which is not rotationally symmetric with respect to the optical axis is provided in the objective optical system, and an image of a substantially rectangular object is formed on the substantially square solid-state image pickup device 1.

【0010】撮像素子1よりの信号を、サンプリング回
路3にて読み出し、その際横方向(CCDの水平走査方
向)の読み出し速度を通常の場合より遅くすることによ
って画像を横方向に伸長させる。
The signal from the image pickup device 1 is read by the sampling circuit 3, and the image is expanded in the horizontal direction by making the reading speed in the horizontal direction (the horizontal scanning direction of the CCD) slower than usual.

【0011】Bv を物体の垂直方向の寸法、BH を物体
の水平方向の寸法、CV をCCD1の垂直方向の寸法、
H をCCD1の水平方向の寸法、NH をCCD1の水
平方向の画素数、NV をCCD1の垂直方向の画素数と
すると物体は、対物光学系2によって下記の式(1)に
示すk倍だけ縮められてCCD1に結像される。 (CH/BH )/(CV/BV )≡k (1) ここでCv/CH >V/Hである。したがって1/k倍だ
けCCD1の読み出し速度を遅くすればよい。
B v is the vertical dimension of the object, B H is the horizontal dimension of the object, C V is the vertical dimension of CCD 1,
When C H is the horizontal dimension of the CCD 1, N H is the number of horizontal pixels of the CCD 1, and N V is the number of vertical pixels of the CCD 1, the object is represented by the following formula (1) by the objective optical system 2. The image is contracted by a factor of 2 and imaged on the CCD 1. (C H / B H ) / (C V / B V ) ≡k (1) where C v / C H > V / H. Therefore, the reading speed of the CCD 1 may be reduced by 1 / k times.

【0012】高品位テレビの水平走査時間をTH (≒3
3μs)、高品位テレビのアスペクト比をA(≒16/9)
とし、テレビモニター6上の表示部7上のNV 本の走査
線にCCD1の縦画素が対応するとすれば、水平方向に
伸長がない。つまり通常のCCD1の使い方をすると、
CCDの画素の読み出し時間間隔tH は、次の式(2)
で与えられる。 tH ≒ NV/NHD・CH/CV ・1/A・TH/NH (2) ただし水平、垂直走査のブランキング期間は充分小さい
と仮定する。
The horizontal scanning time of a high definition television is set to T H (≈3
3μs), aspect ratio of high-definition TV is A (≒ 16/9)
If the vertical pixels of the CCD 1 correspond to the N V scanning lines on the display unit 7 on the television monitor 6, there is no horizontal expansion. In other words, if you use normal CCD1,
The readout time interval t H of the CCD pixel is calculated by the following equation (2).
Given in. t H ≒ N V / N HD · C H / C V · 1 / A · T H / N H (2) provided that the horizontal blanking period of the vertical scanning assumed that the sufficiently small.

【0013】ここでNHDは高品位テレビの垂直方向走査
線数で、日本では1.125本である。
Here, N HD is the number of vertical scanning lines of a high definition television, which is 1.125 in Japan.

【0014】したがってCCDを1画素当り1/k・tH
間隔で読み出せば水平方向にk倍だけ伸長した画像が得
られる。
Therefore, the CCD has 1 / k · t H per pixel.
If read out at intervals, an image expanded by k times in the horizontal direction can be obtained.

【0015】サンプリング回路3でサンプリングされた
信号は、ホールド回路4でホールドされ、映像信号作製
回路5で輝度信号,色差信号となり表示部7に表示され
る。
The signal sampled by the sampling circuit 3 is held by the hold circuit 4 and is displayed on the display unit 7 as a luminance signal and a color difference signal by the video signal producing circuit 5.

【0016】図2は一方向にk倍縮小されて撮像した画
像を1/k倍に拡大するための他の例である。
FIG. 2 shows another example for enlarging a picked-up image in one direction by k times to 1 / k times.

【0017】固体撮像素子1から取り出した画像を一度
メモリー10にたくわえて、このメモリー10内の画像
をコンピューターによる画像処理回路11によって1/k
倍に拡大する方法である。
The image taken out from the solid-state image pickup device 1 is once stored in the memory 10, and the image in the memory 10 is 1 / k by an image processing circuit 11 by a computer.
It is a method of doubling.

【0018】この方法では、画像処理回路により1/k倍
に画像を拡大するだけでなく、レンズ系の歪曲収差(非
回転対称の像の歪曲収差も含めて)も補正できる。その
ため、図1に示す構成に比べてより正しい画像が得られ
る。更に自由に変形された画像が得られる。ここで、映
像作成回路で作成されたR.G.B方式の信号はテレビ
モニター上に表示される。次にレンズ系2の構成につい
て説明する。
According to this method, the image processing circuit can not only enlarge the image 1 / k times, but also correct the distortion aberration of the lens system (including the distortion aberration of the non-rotationally symmetric image). Therefore, a more correct image can be obtained as compared with the configuration shown in FIG. Further, a freely transformed image can be obtained. Here, the R.D. G. The B format signal is displayed on the TV monitor. Next, the configuration of the lens system 2 will be described.

【0019】前述のようにレンズ系2は、水平方向と垂
直方向とで倍率が異なっており次の式(4)の関係を満
足する。 βzy ≒k (4) ただしβz は水平方向の倍率、βy は垂直方向の倍率で
ある。
As described above, the lens system 2 has different magnifications in the horizontal direction and the vertical direction, and satisfies the relationship of the following expression (4). β z / β y ≈k (4) where β z is the horizontal magnification and β y is the vertical magnification.

【0020】例えば図5のアナルモフィック光学系で、
(A)は水平走査方向から見た断面図、(B)は垂直方
向から見た断面図で、レトロフォーカスタイプのレンズ
系で絞りの前と絞りの後ろとに夫々1面以上の非回転対
称非球面(AS )を設けた構成である。この非球面(A
S )は図3(A)においては、曲率半径が小で、(B)
においては曲率半径が大である。
For example, in the analmorphic optical system of FIG.
(A) is a cross-sectional view as seen from the horizontal scanning direction, and (B) is a cross-sectional view as seen from the vertical direction. In a retrofocus type lens system, one or more non-rotationally symmetrical front and rear iris planes, respectively. This is a configuration in which an aspherical surface (A S ) is provided. This aspherical surface (A
S) in the FIG. 3 (A), the radius of curvature small, (B)
Has a large radius of curvature.

【0021】この非球面レンズは、図4のようにラグビ
ーボールのような形状をしており、次の式(5)で表わ
される。
This aspherical lens is shaped like a rugby ball as shown in FIG. 4, and is expressed by the following equation (5).

【0022】この式でiは面の番号を示している。この
式においてy,zの奇数次の項がないのは、水平方向断
面と垂直方向断面に関して非球面が対称であるためであ
る。又Ri は球面の半径であり、第1項は軸対称球面の
成分を表わす。図4の原点は非球面の面頂である。また
面頂における接放物楕円体のy方向、z方向の曲率R
y ,Rz は夫々次の式(6)、(7)で与えられる。 1/Ry =2By (6) 1/Rz =2Bz (7) 前記の式(5)で与えられる非球面は、レンズ系中に少
なくとも一つ設ける必要があり、また図3に示すように
絞りをはさんで2面以上設ければ、非点収差、像面湾曲
の補正および光軸上の非点収差Δの補正のために有利で
ある。
In this equation, i represents the surface number. The reason that there is no odd-order term of y and z in this equation is that the aspherical surface is symmetrical with respect to the horizontal section and the vertical section. R i is the radius of the spherical surface, and the first term represents the component of the axisymmetric spherical surface. The origin of FIG. 4 is the apex of the aspherical surface. Also, the curvature R in the y and z directions of the paraboloid of the parabola at the crest
y and R z are given by the following equations (6) and (7), respectively. 1 / R y = 2B y (6) 1 / R z = 2B z (7) It is necessary to provide at least one aspherical surface given by the above formula (5) in the lens system, and as shown in FIG. If two or more surfaces are provided with a diaphragm in between, it is advantageous for correction of astigmatism, curvature of field and correction of astigmatism Δ on the optical axis.

【0023】この光軸上の非点収差Δとは水平方向の近
軸像点と垂直方向の近軸像点との差で、この値が充分小
さくないと画面全体にわたって像がぼける。
The astigmatism Δ on the optical axis is the difference between the paraxial image point in the horizontal direction and the paraxial image point in the vertical direction. If this value is not sufficiently small, the image will be blurred over the entire screen.

【0024】このΔが小さくてかつ水平方向に像を縮小
し得るための条件は次の通りである。
The conditions under which this Δ is small and the image can be reduced in the horizontal direction are as follows.

【0025】図4に示すようなアナモルフィック面(ト
ーリック面)が絞りの前のi面と絞りの後のj面にある
とし、i面の前後の媒質の屈折率を夫々ni-1 およびn
i又j面の前後の媒質の屈折率を夫々nj-1 およびnj
とした時、i面,j面の水平方向(z方向)と垂直方向
(y方向)のパワーを次の式のように定義する。 φyi=2(ni −ni-1 )Byi (10) φzi=2(ni −ni-1 )Bzi (11) φyj=2(nj −nj-1 )Byj (12) φzj=2(nj −nj-1 )Bzj (13) 上記式でφyiは垂直方向のi面のパワー、φziは水平方
向のi面のパワー、φyjは垂直方向のj面のパワー、φ
zjは水平方向のj面のパワーである。
Assuming that an anamorphic surface (toric surface) as shown in FIG. 4 exists on the i-plane before the diaphragm and the j-plane after the diaphragm, the refractive index of the medium before and after the i-plane is n i-1 respectively. And n
The refractive index of the medium before and after the i- or j-plane is n j-1 and n j, respectively.
Then, the power in the horizontal direction (z direction) and the vertical direction (y direction) of the i-plane and the j-plane are defined by the following equation. φ yi = 2 (n i −n i −1 ) B yi (10) φ zi = 2 (n i −n i −1 ) B zi (11) φ y j = 2 (n j −n j −1 ) B yj (12) φ zj = 2 (n j −n j-1 ) B zj (13) In the above equation, φ yi is the vertical i-plane power, φ zi is the horizontal i-plane power, and φ yj is Vertical j-plane power, φ
zj is the power of the j surface in the horizontal direction.

【0026】水平方向の画像を縮小するためには、絞り
の前では式(14)を又絞りの後では式(15)を満足
すればよい。 φyi>φzi (14) φyj<φzj (15) i面、j面としては、マージナル光線高より主光線高の
高い面である最も物体側のレンズあるいは最も像側のレ
ンズの近傍に設ければよい。
In order to reduce the image in the horizontal direction, it is sufficient to satisfy the formula (14) before the diaphragm and the formula (15) after the diaphragm. φ yi > φ zi (14) φ yjzj (15) As the i- and j-planes, which are surfaces having a principal ray height higher than the marginal ray height, are located near the object-side lens or the image-side lens. It should be provided.

【0027】一方Δの値を0にするためには近軸光線に
対する収束作用を考え、次の式(16)を満足しなけれ
ばならない。 (φzi−φyi)(φzj−φyj)<0(16) 上記式(16)は、式(14),(15)が満足されれ
ば成立つ。
On the other hand, in order to reduce the value of Δ to 0, it is necessary to consider the converging action on paraxial rays and satisfy the following expression (16). (Φ zi −φ yi ) (φ zj −φ yj ) <0 (16) The above equation (16) is satisfied if the equations (14) and (15) are satisfied.

【0028】したがって、絞りの前後に式(14),
(15)を満足するアナモルフィック面を設ければ、Δ
の値の小さい水平方向に像を縮小して撮像する光学系が
得られる。
Therefore, before and after the diaphragm,
If an anamorphic surface satisfying (15) is provided, Δ
It is possible to obtain an optical system that reduces the image in the horizontal direction and has a small value of.

【0029】又絞りの前後に少なくとも各1面設け合わ
せて3面以上のアナモルフィック面を設ける場合、水平
方向(z方向)の縮小を行なうためにはいずれか一つの
面が式(14)又は式(15)を満足する必要がある。
When three or more anamorphic surfaces are provided by providing at least one surface each before and after the diaphragm, one of the surfaces is expressed by the formula (14) in order to perform the reduction in the horizontal direction (z direction). Alternatively, it is necessary to satisfy the formula (15).

【0030】Δ=0であるためには、少なくとも1組の
面m,nについて式(17)を満足する必要がある。 (φzm−φym)(φzn−φyn)<0(17) ここでφzmはm面のz方向のパワー、φymはm面のy方
向のパワー、φznはn面のz方向のパワー、φynはn面
のy方向のパワーである。
In order for Δ = 0, it is necessary to satisfy the equation (17) for at least one set of surfaces m and n. (Φ zm −φ ym ) (φ zn −φ yn ) <0 (17) where φ zm is the power of the m plane in the z direction, φ ym is the power of the m plane in the y direction, and φ zn is the z power of the n plane. The power in the direction, φ yn, is the power in the y direction of the n-plane.

【0031】或は、式(14)および式(15)の代わ
りに夫々次の式(18)および式(19)を満足する必
要がある。 又Δ=0のために式(17)を満足する代わりに次
に式(20)を満足するようにしてもよい。 ただしhzn,hynはそれぞれz方向、y方向のn面
での近軸光線高である。この式(20)は、z方向とy
方向とで近軸光線に対する屈折角の和がほぼ0になると
いう意味であり、Δ=0のために必要な条件である。し
かし実用的には、式(21)の代りに次の式(22)を
満足すれば十分である。
Alternatively, instead of equations (14) and (15), it is necessary to satisfy the following equations (18) and (19), respectively. Further, since Δ = 0, the following expression (20) may be satisfied instead of satisfying the expression (17). However, h zn and h yn are paraxial ray heights on the n plane in the z direction and the y direction, respectively. This equation (20) is expressed in the z direction and the y direction.
This means that the sum of the refraction angles for paraxial rays in the direction becomes approximately 0, which is a necessary condition for Δ = 0. However, practically, it is sufficient to satisfy the following expression (22) instead of the expression (21).

【0032】 ここでφz =1/fZ、φy =1/fyで、fz ,fy は夫
々z方向,y方向の焦点距離、hz0、hy0は夫々z方向
およびy方向の第1面の近軸入射光線高である。
[0032] Here, φ z = 1 / f Z , φ y = 1 / f y , f z and f y are focal lengths in the z direction and y direction, respectively , and h z0 and h y0 are the first in the z direction and the y direction, respectively. It is the paraxial incident ray height of the surface.

【0033】この光学系で、絞りの前だけ又は絞りの後
だけにアナモルフィック面をおいた場合、1面では水平
方向の像の縮小と、Δ=0とは両立しないがアナモルフ
ィック面のマージナル光線の高さが、アナモルフィック
面の主光線の高さに比べ小さい場合には近似的にΔ≒0
となるので一応満足できる効果がでる。そのためにはア
ナモルフィック面を絞りから離れた面つまりレンズ系の
最も物体側の面の近傍あるいは最も像側の面の近傍にお
けばよい。そして絞りの前の面のときは式(14)を又
絞りの後の面のときは式(15)のいずれかを満足すれ
ばよい。
In this optical system, when the anamorphic surface is provided only before the diaphragm or only after the diaphragm, the reduction of the image in the horizontal direction and Δ = 0 are not compatible with one surface, but the anamorphic surface is not compatible. If the height of the marginal ray of is smaller than the height of the chief ray on the anamorphic surface, then Δ≈0
As a result, there is a satisfactory effect. For that purpose, the anamorphic surface may be placed on the surface away from the stop, that is, in the vicinity of the most object side surface of the lens system or in the vicinity of the most image side surface. Then, either the expression (14) should be satisfied for the front surface of the diaphragm, or the expression (15) should be satisfied for the rear surface of the diaphragm.

【0034】絞りの前だけ又は絞りの後だけにアナモル
フィック面を2面以上設ける場合は、水平方向の縮小と
Δ=0とを両立させることは、次の条件をみたせば可能
である。即ち、水平方向の縮小条件は、絞りの前では少
なくとも一つの面が条件(14)を満たすことであり、
絞りの後では式(15)を満足することである。
When two or more anamorphic surfaces are provided only before the diaphragm or only after the diaphragm, it is possible to satisfy both the reduction in the horizontal direction and Δ = 0 by satisfying the following conditions. .. That is, the reduction condition in the horizontal direction is that at least one surface satisfies the condition (14) before the diaphragm,
After squeezing, the expression (15) should be satisfied.

【0035】又Δ=0を実現するためには、少なくとも
一組の面k,lについて式(22)を満足する必要があ
る。
In order to realize Δ = 0, it is necessary to satisfy the equation (22) for at least one set of surfaces k and l.

【0036】アナモルフィック面の形状としては、水平
方向断面形状又は垂直方向断面形状の少なくともいずれ
かが円形でない方がよい。なぜなら、非球面形状を自由
に選べるようになり、収差補正を良好に行ない得るから
である。 (φzk−φyk)(φzl−φzl)<0 (22) 以上述べた例におけるΔの許容値は、次の(23)に示
す通りである。
As for the shape of the anamorphic surface, it is preferable that at least one of the horizontal sectional shape and the vertical sectional shape is not circular. This is because the aspherical shape can be freely selected and the aberration can be corrected well. (Φ zk −φ yk ) (φ zl −φ zl ) <0 (22) The allowable value of Δ in the above-described example is as shown in the following (23).

【0037】ただしFNoy ,FNoz は夫々y方向,z方
向のFナンバー、PV ,PH はCCDの1画素の垂直方
向,水平方向の長さである。
However, F Noy and F Noz are the F numbers in the y and z directions, respectively, and P V and P H are the vertical and horizontal lengths of one pixel of the CCD.

【0038】CCD1の光軸上の位置としては、水平方
向の近軸結像点と垂直方向の近軸結像点との中央付近、
あるいは像面湾曲を考慮してそれよりもややレンズ寄り
におくのがよい。
The position of the CCD 1 on the optical axis is near the center between the paraxial image forming point in the horizontal direction and the paraxial image forming point in the vertical direction,
Alternatively, it is preferable to set it slightly closer to the lens in consideration of the field curvature.

【0039】[0039]

【実施例】次に本発明の各実施例を示す。 実施例1 (z方向) fz =1.000 ,FN0z =4.218 ,NA=-0.0105 ,ω=43.874° IH=0.7280 ,βz =-0.08859 ,φz =1.0 物体距離=-10.8696 r1 =∞ d1 =0.3304 n1 =1.88300 ν1 =40.78 r2 =0.6783 d2 =0.6000 r3 =3.5348 d3 =1.3652 n2 =1.72916 ν2 =54.68 r4 =-1.3600 d4 =0.0870 r5 =∞(絞り) d5 =0.3478 n3 =1.52287 ν3 =59.89 r6 =∞ d6 =0.0261 r7 =∞ d7 =0.5391 n4 =1.52000 ν4 =74.00 r8 =∞ d8=0.1391 r9=2.9104 d9=1.2609 n5 =1.69680 ν5 =55.52 r10=-0.9191 d10=0.2609 n6 =1.84666 ν6 =23.78 r11=-3.8252 d11=0.0870 r12=∞ d12=0.3478 n7 =1.52287 ν7 =59.89 r13=∞ d13=0.5739 r14=∞ d14=0.8696 n8 =1.51633 ν8 =64.15 r15=∞ 近軸光線高 k Y 1 0.114130 2 0.115973 3 0.212861 4 0.305687 5 0.301659 6 0.291079 7 0.289870 8 0.273440 9 0.266996 10 0.185074 11 0.173763 12 0.163457 13 0.136384 14 0.068359 15 0.000386 (y方向) fy =1.404 ,FNoy =6.100 ,NA=-0.0105 ,ω=27.596° IH=0.7280 ,βy =-0.12852 ,φy =0.7122 ,Δ=0.003 物体距離=-10.8696 r1 =∞(非球面) d1 =0.3304 n1 =1.88300 ν1 =40.78 r2 =0.6783 d2 =0.6000 r3 =3.5348 d3 =1.3652 n2 =1.72916 ν2 =54.68 r4 =-1.3600 d4 =0.0870 r5 =∞(絞り) d5 =0.3478 n3 =1.52287 ν3 =59.89 r6 =∞ d6 =0.0261 r7 =∞ d7 =0.5391 n4 =1.52000 ν4 =74.00 r8 =∞ d8 =0.1391 r9=2.9104 d9=1.2609 n5 =1.69680 ν5 =55.52 r10=-0.9191 d10=0.2609 n6 =1.84666 ν6 =23.78 r11=-3.8252 d11=0.0870 r12=∞ d12=0.3478 n7 =1.52287 ν7 =59.89 r13=∞(非球面) d13=0.5739 r14=∞ d14=0.8696 n8 =1.51633 ν8 =64.15 r15=∞ 非球面係数 (第1面)B=0.14670 ,(第13面)B=0.25000 近軸光線高 k Y 1 0.114503 2 0.111146 3 0.186486 4 0.255252 5 0.250925 6 0.239561 7 0.238263 8 0.220616 9 0.213693 10 0.138704 11 0.127643 12 0.118377 13 0.094040 14 0.046998 15 −0.000008 Ei =0 ,Fi =0 ,Gi =0 ,φy1=0.25907 ,φy14 =-0.2614 φz1=0 ,φz14 =0 (φzi−φyi)・(φzj−φyj)=(−φ1 )・(−φ14)=-0.06772<0 Σ(φznzn−φynyn)=0.00508 ,1/3(φzzo+φyhyo)=0.0653 φy1y1=0.02966 ,φz1 hz1 =0, φy14 hy14 =-0.02458, φz14 hz14 =0, hyo =hzo =0.114503, φyhyo =0.08155, φzhzo =0.1145 実施例2 (z方向) fz =1.000 ,FN0z =5.906 ,NA=-0.0075 ,ω=57.282° IH=0.8948 ,βz =-0.08859 物体距離=-10.8696 r1 =∞ d1 =0.3304 n1 =1.88300 ν1 =40.78 r2 =0.6783 d2 =0.6000 r3 =3.5348 d3 =1.3652 n2 =1.72916 ν2 =54.68 r4 =-1.3600 d4 =0.0870 r5 =∞(絞り) d5 =0.3478 n3 =1.52287 ν3 =59.89 r6 =∞ d6 =0.0261 r7 =∞ d7 =0.5391 n4 =1.52000 ν4 =74.00 r8 =∞ d8=0.1391 r9=2.9104 d9=1.2609 n5 =1.69680 ν5 =55.52 r10=-0.9191 d10=0.2609 n6 =1.84666 ν6 =23.78 r11=-3.8252 d11=0.0870 r12=∞ d12=0.3478 n7 =1.52287 ν7 =59.89 r13=∞ d13=0.5739 r14=∞ d14=0.8696 n8 =1.51633 ν8 =64.15 r15=∞ 近軸光線高 k Y 1 0.081522 2 0.082838 3 0.152044 4 0.218348 5 0.215471 6 0.207913 7 0.207050 8 0.195315 9 0.190711 10 0.132196 11 0.124117 12 0.116755 13 0.097417 14 0.048828 15 0.000276 (y方向) fy =1.000 ,FN0y =5.924 ,NA=-0.0075 ,ω=41.248° IH=0.8948 ,βy =-0.08859 ,Δ=0 ,物体距離=-10.8696 r1 =∞(非球面) d1 =0.3304 n1 =1.88300 ν1 =40.78 r2 =0.6783 d2 =0.6000 r3 =3.5348 d3 =1.3652 n2 =1.72916 ν2 =54.68 r4 =-1.3600 d4 =0.0870 r5 =∞(絞り) d5 =0.3478 n3 =1.52287 ν3 =59.89 r6 =∞ d6 =0.0261 r7 =∞ d7 =0.5391 n4 =1.52000 ν4 =74.00 r8 =∞ d8 =0.1391 r9=2.9104 d9=1.2609 n5 =1.69680 ν5 =55.52 r10=-0.9191 d10=0.2609 n6 =1.84666 ν6 =23.78 r11=-3.8252 (非球面)d11=0.0870 r12=∞ d12=0.3478 n7 =1.52287 ν7 =59.89 r13=∞ d13=0.5739 r14=∞ d14=0.8696 n8 =1.51633 ν8 =64.15 r15=∞ 非球面係数 (第1面)E=0.13000 ,(第11面)E=0.18000 近軸光線高 k Y 1 0.081275 2 0.082587 3 0.151583 4 0.217686 5 0.214818 6 0.207284 7 0.206423 8 0.194723 9 0.190134 10 0.131796 11 0.123741 12 0.116401 13 0.097122 14 0.048680 15 0.000275 By1=Bz1=Fj1=Gj1・・・・・=0,E11=0.13, E21=0.065, E31=
0, E114=0.18, E214=0.09, E314=0,By14=Bz14 =Fj14=G
j14・・・・=0 (j=1,2,3,・・・・) ただしr1 ,r2 ,・・・ はレンズ各面の曲率半径、d
1 ,d2 ,・・・ は各レンズの肉厚およびレンズ間隔、n
1 ,n2 ,・・・ は各レンズの屈折率、ν1 ,ν2 ,・・・
は各レンズのアッベ数である。
EXAMPLES Next, examples of the present invention will be shown. Example 1 (z-direction) f z = 1.000, F N0z = 4.218, NA = -0.0105, ω = 43.874 ° IH = 0.7280, β z = -0.08859, φ z = 1.0 object distance = -10.8696 r 1 = ∞ d 1 = 0.3304 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.6783 d 2 = 0.6000 r 3 = 3.5348 d 3 = 1.3652 n 2 = 1.72916 ν 2 = 54.68 r 4 = -1.3600 d 4 = 0.0870 r 5 = ∞ ) D 5 = 0.3478 n 3 = 1.52287 ν 3 = 59.89 r 6 = ∞ d 6 = 0.0261 r 7 = ∞ d 7 = 0.5391 n 4 = 1.52000 ν 4 = 74.00 r 8 = ∞ d 8 = 0.1391 r 9 = 2.9104 d 9 = 1.2609 n 5 = 1.69680 ν 5 = 55.52 r 10 = -0.9191 d 10 = 0.2609 n 6 = 1.84666 ν 6 = 23.78 r 11 = -3.8252 d 11 = 0.0870 r 12 = ∞ d 12 = 0.3478 n 7 = 1.52287 ν 7 = 59.89 r 13 = ∞ d 13 = 0.5739 r 14 = ∞ d 14 = 0.8696 n 8 = 1.51633 ν 8 = 64.15 r 15 = ∞ paraxial ray height k Y 1 0.114130 2 0.115973 3 0.212861 4 0.305687 5 0.301659 6 0.291079 7 0.28987 0 8 0.273440 9 0.266996 10 0.185074 11 0.173763 12 0.163457 13 0.136384 14 0.068359 15 0.000386 (y direction) f y = 1.404, F Noy = 6.100, NA = -0.0105, ω = 27.596 ° IH = 0.7280, β y = -0.12852, φ y = 0.7122, Δ = 0.003 Object distance = -10.8696 r 1 = ∞ (aspherical surface) d 1 = 0.3304 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.6783 d 2 = 0.6000 r 3 = 3.5348 d 3 = 1.3652 n 2 = 1.72916 ν 2 = 54.68 r 4 = -1.3600 d 4 = 0.0870 r 5 = ∞ (aperture) d 5 = 0.3478 n 3 = 1.52287 ν 3 = 59.89 r 6 = ∞ d 6 = 0.0261 r 7 = ∞ d 7 = 0.5391 n 4 = 1.52000 ν 4 = 74.00 r 8 = ∞ d 8 = 0.1391 r 9 = 2.9104 d 9 = 1.2609 n 5 = 1.69680 ν 5 = 55.52 r 10 = -0.9191 d 10 = 0.2609 n 6 = 1.84666 ν 6 = 23.78 r 11 = -3.8252 d 11 = 0.0870 r 12 = ∞ d 12 = 0.3478 n 7 = 1.52287 ν 7 = 59.89 r 13 = ∞ ( aspherical) d 13 = 0.5739 r 14 = ∞ d 14 = 0.8696 8 = 1.51633 ν 8 = 64.15 r 15 = ∞ aspherical coefficients (first surface) B = 0.14670, (thirteenth surface) B = .25000 paraxial ray height k Y 1 0.114503 2 0.111146 3 0.186486 4 0.255252 5 0.250925 6 0.239561 7 0.238263 8 0.220616 9 0.213693 10 0.138704 11 0.127643 12 0.118377 13 0.094040 14 0.046998 15 -0.000008 E i = 0, F i = 0, G i = 0, φ y1 = 0.25907, φ y14 = -0.2614 φ z1 = 0, φ z14 = 0 (φ zi −φ yi ) · (φ zj −φ yj ) = (− φ 1 ) · (−φ 14 ) = − 0.06772 <0 Σ (φ zn h zn −φ yn h yn ) = 0.00508, 1 / 3 (φ z h zo + φ y hyo ) = 0.0653 φ y1 h y1 = 0.02966, φ z1 h z1 = 0, φ y14 h y14 = -0.02458, φ z14 h z14 = 0, h yo = h zo = 0.114503, φ y h yo = 0.08155, φ z h zo = 0.1145 Example 2 (z direction) f z = 1.000, F N0z = 5.906, NA = -0.0075, ω = 57.282 ° IH = 0.8948, β z = -0.08859 Object distance = -10.8696 r 1 = ∞ d 1 = 0.3304 n 1 = 1.88 300 v 1 = 40.78 r 2 = 0.6783 d 2 = 0.6000 r 3 = 3.5348 d 3 = 1.3652 n 2 = 1.72916 v 2 = 54.68 r 4 = -1.3600 d 4 = 0.0870 r 5 = ∞ (aperture) d 5 = 0.3478 n 3 = 1.52287 ν 3 = 59.89 r 6 = ∞ d 6 = 0.0261 r 7 = ∞ d 7 = 0.5391 n 4 = 1.52000 ν 4 = 74.00 r 8 = ∞ d 8 = 0.1391 r 9 = 2.9104 d 9 = 1.2609 n 5 = 1.69680 v 5 = 55.52 r 10 = -0.9191 d 10 = 0.2609 n 6 = 1.84666 v 6 = 23.78 r 11 = -3.8252 d 11 = 0.0870 r 12 = ∞ d 12 = 0.3478 n 7 = 1.52287 v 7 = 59.89 r 13 = ∞ d 13 = 0.5739 r 14 = ∞ d 14 = 0.8696 n 8 = 1.51633 ν 8 = 64.15 r 15 = ∞ Paraxial ray height k Y 1 0.081522 2 0.082838 3 0.152044 4 0.218348 5 0.215471 6 0.207913 7 0.207050 8 0.195315 9 0.190711 0.132196 11 0.124117 12 0.116755 13 0.097417 14 0.048828 15 0.000276 (y direction) fy = 1.000, F N0y = 5.924, NA = -0.0075, ω = 41.248 ° IH = 0.8948, β y = -0.08859, Δ = 0, object distance = -10.8696 r 1 = ∞ (aspherical surface) d 1 = 0.3304 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.6783 d 2 = 0.6000 r 3 = 3.5348 d 3 = 1.3652 n 2 = 1.72916 ν 2 = 54.68 r 4 = -1.3600 d 4 = 0.0870 r 5 = ∞ ( stop) d 5 = 0.3478 n 3 = 1.52287 ν 3 = 59.89 r 6 = ∞ d 6 = 0.0261 r 7 = ∞ d 7 = 0.5391 n 4 = 1.52000 ν 4 = 74.00 r 8 = ∞ d 8 = 0.1391 r 9 = 2.9104 d 9 = 1.2609 n 5 = 1.69680 ν 5 = 55.52 r 10 = -0.9191 d 10 = 0.2609 n 6 = 1.84666 ν 6 = 23.78 r 11 = -3.8252 (aspherical surface) d 11 = 0.0870 r 12 = ∞ d 12 = 0.3478 n 7 = 1.52287 ν 7 = 59.89 r 13 = ∞ d 13 = 0.5739 r 14 = ∞ d 14 = 0.8696 n 8 = 1.51633 ν 8 = 64.15 r 15 = ∞ Aspheric surface coefficient (1st surface) E = 0.13000, (11th surface) E = 0.18000 Paraxial ray height k Y 1 0.081275 2 0.082587 3 0.151583 4 0.217686 5 0.214818 6 0.207284 7 0.2064 23 8 0.194723 9 0.190134 10 0.131796 11 0.123741 12 0.116401 13 0.097122 14 0.048680 15 0.000275 B y1 = B z1 = F j1 = G j1・ ・ ・ ・ ・ = 0, E 11 = 0.13, E 21 = 0.065, E 31 =
0, E 114 = 0.18, E 214 = 0.09, E 314 = 0, By 14 = B z14 = F j14 = G
j14 ... ・ = 0 (j = 1,2,3, ...) where r 1 , r 2 , ... Are the radii of curvature of each surface of the lens, d
1 , d 2 , ... Is the thickness of each lens and the lens interval, n
1 , n 2 , ... Are the refractive indices of the respective lenses, ν 1 , ν 2 ,.
Is the Abbe number of each lens.

【0040】実施例1は、図5,図6に示す構成で、そ
のうち図5はz方向の断面図、図6はy方向の断面図で
ある。この実施例1は、絞りの前後に夫々シリンドリカ
ルレンズを用い長方形の物体範囲を正方形のCCDに写
し込むことが出来るようにしたものである。
Example 1 has the structure shown in FIGS. 5 and 6, of which FIG. 5 is a sectional view in the z direction and FIG. 6 is a sectional view in the y direction. In the first embodiment, cylindrical objects are used before and after the diaphragm so that a rectangular object range can be imaged on a square CCD.

【0041】ただしβH はβz と同一のものであり、β
v はβy と同一のものである。
However, β H is the same as β z, and β H
v is the same as β y .

【0042】この実施例の光学系は、βz =-0.08859,
βy =-0.12852で、βzy =0.6893≒9/16≒0.5625で
ある。
The optical system according to this embodiment has β z = -0.08859,
β y = -0.12852 and β z / β y = 0.6893≈9 / 16≈0.5625.

【0043】βzy の値と9/16との間に差があるよう
にみえるが、水平方向半画角ωH=-43 °87で、垂直方
向半画角ωV =-27 °596 であって、撮像される物体面
の縦と横の比は下記の通りである。 tan27 °596/tan43 °87=0.5437≒9/16 したがって物体面の寸法で考えると、高品位テレビのア
スペクト比に合っている。
It seems that there is a difference between the values of β z / β y and 9/16, but the horizontal half angle of view ω H = −43 ° 87 and the vertical half angle of view ω V = −27. The angle ratio is 596, and the aspect ratio of the imaged object surface is as follows. tan27 ° 596 / tan43 ° 87 = 0.5437 ≒ 9/16 Therefore, considering the dimensions of the object plane, it matches the aspect ratio of high-definition television.

【0044】上記のくいちがいは、歪曲収差により生ず
る。
The above distortion is caused by distortion.

【0045】したがって、実用的にはβzy の値は、
9/16からかなり離れていてもよい。文字等のデーターを
画像と一緒に表示することもあるので、この点を考慮し
てもβzy は、次の範囲内であればよい。 0.25<βzy <0.97 (24) 図7,図8は、本発明の実施例2の構成を示す図で、図
7はy方向、図8はz方向の断面図である。
Therefore, practically, the value of β z / β y is
It may be quite far from 9/16. Since data such as characters may be displayed together with the image, β z / β y may be within the following range even in consideration of this point. 0.25 <β z / β y <0.97 (24) FIGS. 7 and 8 are views showing the configuration of the second embodiment of the present invention, FIG. 7 is a y-direction and FIG. 8 is a z-direction sectional view.

【0046】この実施例2は、垂直、水平方向の近軸倍
率が等しいが、z方向の歪曲収差の発生量を変えて横長
の物体範囲を横方向に縮めて撮像するようにした。
In the second embodiment, the paraxial magnifications in the vertical and horizontal directions are equal, but the amount of distortion aberration in the z direction is changed to contract the laterally long object range in the lateral direction for imaging.

【0047】この実施例では、4次の項に回転非対称成
分を持つ非球面を絞りの前後に一つづつ設けたものであ
る。
In this embodiment, one aspherical surface having a rotationally asymmetric component in the fourth-order term is provided before and after the diaphragm.

【0048】絞りの前の非球面の面番号をp、絞りの後
の非球面の面番号をqとする時、 E1p(np −np-1 )=ψyp (25) E3p(np −np-1 )=ψzp (26) とすると(pをqにおきかえれば式(25),式(2
6)は、q面に対しても同様に定義できる)、y,z方
向それぞれの像面湾曲を小さくするためには、次の式
(27),(28)を満足することが望ましい。 ψyp・ψyq<0 (27) ψzp・ψzq<0 (28) それは4次の項Eap(a=1又は3)は、P面の3次の
非点収差Ap に次のように寄与するからである。 Ap =8hap 2 ・hbp 2 ・ψyp (29) 同様にq面について、3次の非点収差係数Aq は次のよ
うになる。 Aq =8haq 2 ・hbq・ψyp (30) 上記式(29)中のhap,hbpは夫々p面での近軸マー
ジナル光線高、近軸主光線高である。同様に式(30)
中のhaq,hbqはq面における近軸マージナル光線高、
近軸主光線高である。
When the surface number of the aspherical surface before the stop is p and the surface number of the aspherical surface after the stop is q, E 1p (n p −n p-1 ) = φ yp (25) E 3p ( If n p −n p−1 ) = φ zp (26), then (p is replaced by q, equation (25) and equation (2
(6) can be similarly defined for the q-plane), and it is desirable to satisfy the following equations (27) and (28) in order to reduce the field curvature in each of the y and z directions. ψ yp · ψ yq <0 (27) ψ zp · ψ zq <0 (28) It means that the fourth-order term E ap (a = 1 or 3) is the next to the third-order astigmatism A p of the P-plane. This is because it contributes. A p = 8h ap 2 · h bp 2 · ψ yp (29) Similarly, for the q-plane, the third-order astigmatism coefficient A q is as follows. A q = 8h aq 2 · h bq · ψ yp (30) h ap and h bp in the above equation (29) are the paraxial marginal ray height and paraxial chief ray height on the p-plane, respectively. Similarly, equation (30)
Where h aq and h bq are paraxial marginal ray heights in the q-plane,
It is the paraxial chief ray height.

【0049】上記の式から、Ap +Aq ≒0にするため
には、ψypとψyqは、異符号でなければならない。
From the above equation, in order to make A p + A q ≈0 , ψ yp and ψ yq must have opposite signs.

【0050】同様にz方向のψzp,ψzqも異符号でなけ
ればならない。
Similarly, ψ zp and ψ zq in the z direction must also have different signs.

【0051】この実施例2は、βy =βz 、fy =fz
であって、Δ=0であるが、水平方向の半画角ωH =57
°282 、垂直方向の半画角ωV =41°248 である。
In the second embodiment, β y = β z and f y = f z
And Δ = 0, but the horizontal half angle of view ω H = 57
The angle is 282 and the vertical half angle of view ω V = 41 ° 248.

【0052】したがって下記の通りになる。 (tan ωH /tan ωV-1=0.5634≒9/16 即ち、この実施例2は、歪曲収差のコントロールによっ
て、水平方向と垂直方向の画角をコントロールした例で
ある。
Therefore, it becomes as follows. (Tan ω H / tan ω V ) −1 = 0.5634≈9 / 16 That is, the second embodiment is an example in which the angle of view in the horizontal and vertical directions is controlled by controlling the distortion aberration.

【0053】このように実施例2は、Δ=0であるの
で、重要な視野中心の解像が良いことが特徴である。
As described above, the second embodiment is characterized in that the resolution of the important visual field center is good because Δ = 0.

【0054】以上の説明は、一般に固体撮像素子を用い
てテレビモニターで観察する等のために使用される撮像
装置に本発明を適用した場合について述べたが、例え
ば、内視鏡で固体撮像素子を用いてテレビモニター等に
て観察する電子内視鏡等においても、前述の本発明をそ
のまま適用することが出来る。
In the above description, the case where the present invention is applied to an image pickup apparatus which is generally used for observing on a TV monitor using a solid-state image pickup element is described. The above-described present invention can be applied as it is to an electronic endoscope or the like that is observed on a television monitor or the like using the.

【0055】図13は、本発明の電子内視鏡で用いられ
る照明光学系を示す図である。本発明で撮像される物体
は横長なので、照明光学系も横長の範囲を照明するもの
でなければならない。図13はその一つの例を示すもの
で、ライトガイド21の前方に凹レンズ22,23を配
置し、この凹レンズをライトガイドに対しz方向偏芯さ
せたものである。これによって照明光をz方向に広げて
いる。この時、凹レンズ22は図13に示すようにz方
向でライトガイドに対して内側に偏芯させるとよい。
FIG. 13 is a diagram showing an illumination optical system used in the electronic endoscope of the present invention. Since the object imaged in the present invention is horizontally long, the illumination optical system must also illuminate the horizontally long range. FIG. 13 shows an example thereof, in which concave lenses 22 and 23 are arranged in front of the light guide 21, and these concave lenses are decentered in the z direction with respect to the light guide. This spreads the illumination light in the z direction. At this time, the concave lens 22 may be decentered inward with respect to the light guide in the z direction as shown in FIG.

【0056】図14は本発明で用いる他の照明光学系の
例で、端面の丸いライトガイドの前にアナモルフィック
凹レンズ24を配置している。図15は、図14の断面
図で(A)は水平方向、(B)は垂直方向の図である。
図のように凹レンズのパワーは、垂直方向の断面の方が
水平方向の断面より弱くなっている。この面形状は、同
様に式(5)にて表わされる。この図のようにして丸い
ライトガイドを用いても水平方向に広がった配光が得ら
れる。
FIG. 14 shows an example of another illumination optical system used in the present invention, in which an anamorphic concave lens 24 is arranged in front of a light guide having a round end surface. FIG. 15 is a cross-sectional view of FIG. 14, where (A) is a horizontal direction and (B) is a vertical direction.
As shown in the figure, the power of the concave lens is weaker in the vertical section than in the horizontal section. This surface shape is similarly expressed by the equation (5). Even if a round light guide is used as shown in this figure, a light distribution spread in the horizontal direction can be obtained.

【0057】尚、本発明は電子内視鏡に限らずテレビカ
メラ、電子カメラ等の撮像装置にも応用出来る。また電
子回路による形状補正を行なわなくともよく、あるいは
必要に応じて可変にしてもよい。又ハイビジョンテレビ
に限らずNTSC、PAL等のテレビ方式も表示画面形
状が正方形でないので、本発明を応用することが可能で
ある。
The present invention is not limited to electronic endoscopes and can be applied to image pickup devices such as television cameras and electronic cameras. Further, the shape correction by the electronic circuit does not have to be performed, or may be variable as necessary. The present invention can be applied to not only high-definition television but also television systems such as NTSC and PAL because the display screen shape is not square.

【0058】固体撮像素子の形状がテレビモニター表示
部と相似形である場合でも、文字データー等をあわせて
表示するため表示画像の形状を変えたい場合にも、本発
明を応用することが出来る。
The present invention can be applied even when the shape of the solid-state image pickup device is similar to that of the display section of the television monitor, or when the shape of the display image is desired to be changed because character data and the like are also displayed.

【0059】更に縦横比に限らず斜め方向の比率を変え
て撮像し、それを電子回路で変形してテレビモニターに
表示してもよい。その場合斜めの直交する二つの方向の
倍率が前述の本発明におけるβH ,βv に対応する。又
前記の二つの方向がy方向、z方向に対応する。
Further, not only the aspect ratio but also the ratio in the diagonal direction may be changed to pick up an image, which may be transformed by an electronic circuit and displayed on a television monitor. In that case, the magnifications in the two directions orthogonal to each other correspond to β H and β v in the present invention described above. The above two directions correspond to the y direction and the z direction.

【0060】尚本発明に用いるCCDは、水平方向の1
画素の長さが垂直方向の1画素の長さより小さいものを
用いるのが望ましい。その理由は、水平方向に広げて画
像を表示するため、水平方向の画素ピッチが密である方
が良いからである。これは、現行のNTSC方式のCC
Dが今後そのようになると思われることから有望であ
る。この場合、アスペクト比は、4/3 であるので、A=
4/3 とすれば本発明の式はそのまま適用出来、次の式
(29),(30)に示すようであればよい。 βzy ≒1/A =0.75 (31) (tan ωH /tan ωv-1≒1/A =0.75 (32)
The CCD used in the present invention is a horizontal CCD.
It is desirable to use a pixel whose length is smaller than the length of one pixel in the vertical direction. The reason is that it is preferable that the pixel pitch in the horizontal direction is dense because the image is displayed in a widened manner in the horizontal direction. This is the current NTSC CC
It is promising because D is expected to do so in the future. In this case, the aspect ratio is 4/3, so A =
If it is set to 4/3, the formula of the present invention can be applied as it is, and the formulas (29) and (30) below can be used. β z / β y ≈1 / A = 0.75 (31) (tan ω H / tan ω v ) −1 ≈1 / A = 0.75 (32)

【0061】[0061]

【発明の効果】本発明によれば、小型でかつ迫力のある
映像をテレビモニター表示部の無駄なしに表示出来る。
According to the present invention, a compact and powerful image can be displayed without wasting the television monitor display section.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の撮像装置の構成を示す図FIG. 1 is a diagram showing a configuration of an image pickup apparatus of the present invention.

【図2】本発明の他の例の構成を示す図FIG. 2 is a diagram showing the configuration of another example of the present invention.

【図3】本発明の撮像装置で用いる光学系の構成を示す
FIG. 3 is an example showing a configuration of an optical system used in the image pickup apparatus of the present invention.

【図4】前記光学系で用いる非球面形状の概略図FIG. 4 is a schematic view of an aspherical shape used in the optical system.

【図5】本発明で用いる光学系の実施例1の水平方向の
断面図
FIG. 5 is a horizontal sectional view of Example 1 of the optical system used in the present invention.

【図6】上記実施例1の垂直方向の断面図FIG. 6 is a vertical sectional view of the first embodiment.

【図7】本発明で用いる光学系の実施例2の断面図FIG. 7 is a sectional view of a second embodiment of the optical system used in the present invention.

【図8】上記実施例2の垂直方向の断面図FIG. 8 is a vertical sectional view of the second embodiment.

【図9】上記実施例1の水平方向の収差曲線図9 is a horizontal aberration curve diagram of the first embodiment. FIG.

【図10】上記実施例1の垂直方向の収差曲線図FIG. 10 is a vertical aberration curve diagram of the first embodiment.

【図11】上記実施例2の水平方向の収差曲線図FIG. 11 is a horizontal aberration curve diagram of Example 2 above.

【図12】上記実施例2の垂直方向の収差曲線図FIG. 12 is a vertical aberration curve diagram of the second embodiment.

【図13】本発明撮影装置を適用した電子内視鏡で用い
る照明光学系の構成を示す図
FIG. 13 is a diagram showing a configuration of an illumination optical system used in an electronic endoscope to which an image pickup apparatus of the present invention is applied.

【図14】上記電子内視鏡で用いる照明光学系の他の例
を示す図
FIG. 14 is a diagram showing another example of the illumination optical system used in the electronic endoscope.

【図15】図14に示す照明光学系の水平および垂直方
向断面図
FIG. 15 is a horizontal and vertical sectional view of the illumination optical system shown in FIG.

【図16】従来の撮像装置の構成の概要を示す図FIG. 16 is a diagram showing an outline of a configuration of a conventional imaging device.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H04N 5/225 C 9187−5C 7/18 M 8626−5C ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical display location H04N 5/225 C 9187-5C 7/18 M 8626-5C

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】対象物の像を形成する対物レンズと、前記
対物レンズによる像を受ける団体撮像素子と、前記撮像
素子からの出力信号を生成する信号処理手段と、前記映
像信号により対象物の像を表示する表示手段とを備え、
前記対物レンズが下記の式(5)で表わされる回転非対
称な屈折面を有し対象物の変形した像を前記固体撮像素
子に投影し、前記信号処理手段が前記の変形した像を更
に変形させて表示する撮像装置。 ただしx,y,zは光軸方向をx軸とし面の頂点を原点
とした時のxyz座標の座標値である。
1. An objective lens for forming an image of an object, a collective image pickup device for receiving an image by the objective lens, a signal processing unit for generating an output signal from the image pickup device, and an object for the image signal. A display means for displaying an image,
The objective lens has a rotationally asymmetric refracting surface represented by the following formula (5) and projects a deformed image of the object onto the solid-state imaging device, and the signal processing unit further deforms the deformed image. Image display device that displays the image. However, x, y, and z are coordinate values of xyz coordinates when the optical axis direction is the x axis and the vertex of the surface is the origin.
【請求項2】対象物を照明する照明手段と、対象物の像
を形成する対物レンズと、前記対物レンズによる像を受
ける固体撮像素子と、前記固体撮像素子からの出力信号
から映像信号を生成する信号処理手段と、前記映像信号
により対象物の像を表示する表示手段とを備え、前記対
物レンズが回転非対称な屈折面を有し対象物の変形した
像を前記固体撮像素子に投影し、前記信号処理手段が前
記の変形した像を更に変形させて表示する電子内視鏡。
2. An illuminating means for illuminating an object, an objective lens for forming an image of the object, a solid-state image sensor for receiving an image by the objective lens, and a video signal generated from an output signal from the solid-state image sensor. Signal processing means and a display means for displaying an image of the object by the video signal, the objective lens has a rotationally asymmetric refracting surface to project a deformed image of the object on the solid-state imaging device, An electronic endoscope in which the signal processing unit further deforms and displays the deformed image.
JP3281995A 1991-10-03 1991-10-03 Imaging device Expired - Fee Related JP2984954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3281995A JP2984954B2 (en) 1991-10-03 1991-10-03 Imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3281995A JP2984954B2 (en) 1991-10-03 1991-10-03 Imaging device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP11041511A Division JPH11326786A (en) 1999-02-19 1999-02-19 Illumination optical system used for electronic endoscope

Publications (2)

Publication Number Publication Date
JPH05103271A true JPH05103271A (en) 1993-04-23
JP2984954B2 JP2984954B2 (en) 1999-11-29

Family

ID=17646764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3281995A Expired - Fee Related JP2984954B2 (en) 1991-10-03 1991-10-03 Imaging device

Country Status (1)

Country Link
JP (1) JP2984954B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5598205A (en) * 1994-04-22 1997-01-28 Olympus Optical Co., Ltd. Imaging apparatus
JPH09222556A (en) * 1995-12-11 1997-08-26 Konica Corp Wide-angle lens
JPH1020188A (en) * 1996-07-03 1998-01-23 Asahi Optical Co Ltd Photographing lens
JP2001159732A (en) * 1999-12-02 2001-06-12 Nikon Corp Super wide angle lens and photographic device having the lens
JP2007163549A (en) * 2005-12-09 2007-06-28 Konica Minolta Opto Inc Superwide angle imaging optical system, superwide angle imaging lens apparatus and imaging apparatus
JP2008237790A (en) * 2007-03-29 2008-10-09 Olympus Medical Systems Corp Endoscope
WO2014168110A1 (en) * 2013-04-09 2014-10-16 株式会社ニコン Image-capturing device
US10330898B2 (en) 2016-04-07 2019-06-25 Canon Kabushiki Kaisha Imaging optical system
WO2021189644A1 (en) * 2020-03-27 2021-09-30 东莞市宇瞳光学科技股份有限公司 Prime lens

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5598205A (en) * 1994-04-22 1997-01-28 Olympus Optical Co., Ltd. Imaging apparatus
JPH09222556A (en) * 1995-12-11 1997-08-26 Konica Corp Wide-angle lens
JPH1020188A (en) * 1996-07-03 1998-01-23 Asahi Optical Co Ltd Photographing lens
JP2001159732A (en) * 1999-12-02 2001-06-12 Nikon Corp Super wide angle lens and photographic device having the lens
JP2007163549A (en) * 2005-12-09 2007-06-28 Konica Minolta Opto Inc Superwide angle imaging optical system, superwide angle imaging lens apparatus and imaging apparatus
CN100432737C (en) * 2005-12-09 2008-11-12 柯尼卡美能达精密光学株式会社 Ultra wide angle imaging optical system, ultra wide angle imaging lens device, and image sensing apparatus
US7457044B2 (en) 2005-12-09 2008-11-25 Konica Minolta Opto, Inc. Ultra wide angle imaging optical system, ultra wide angle imaging lens device, and image sensing apparatus
JP2008237790A (en) * 2007-03-29 2008-10-09 Olympus Medical Systems Corp Endoscope
JP4704386B2 (en) * 2007-03-29 2011-06-15 オリンパスメディカルシステムズ株式会社 Endoscope
WO2014168110A1 (en) * 2013-04-09 2014-10-16 株式会社ニコン Image-capturing device
US10330898B2 (en) 2016-04-07 2019-06-25 Canon Kabushiki Kaisha Imaging optical system
WO2021189644A1 (en) * 2020-03-27 2021-09-30 东莞市宇瞳光学科技股份有限公司 Prime lens

Also Published As

Publication number Publication date
JP2984954B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
CN113703134B (en) Optical lens group for camera shooting
US5598205A (en) Imaging apparatus
CN112612112B (en) Optical image capturing lens
CN110068911B (en) Image capturing lens assembly, image capturing device and electronic device
CN107942476B (en) Imaging optical system and image capturing device
CN112147760A (en) Image lens system, image capturing device and electronic device
US6707621B2 (en) Wide-angle lens
CN103969812A (en) Zoom lens and image pickup apparatus including the same
JP2010243711A (en) Wide-angle lens and imaging apparatus
US8045274B2 (en) Zoom lens and image pickup apparatus using the same
US10948683B2 (en) Imaging lens, camera, and portable information terminal device
JPWO2007119647A1 (en) Imaging lens and imaging apparatus
JP2984954B2 (en) Imaging device
CN111538153B (en) High definition camera device and deformation doubling mirror
JPH11326786A (en) Illumination optical system used for electronic endoscope
US20230119358A1 (en) Image-capturing optical system, image-capturing device, and vehicle
JP2003185917A (en) Wide angle lens
JPS6396617A (en) Image pickup device
CN115236832B (en) Optical lens, camera module and terminal
WO2023185942A1 (en) Telephoto lens, camera module and electronic device
JP2007264086A (en) Imaging lens and imaging device
JPH0862494A (en) Focusing optical system using anamorphic lens
JP2005045670A (en) Imaging apparatus
JPH0432374A (en) Electronic image pickup device
JPH02188710A (en) Image photographing device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees