JPH05103154A - Optical reader - Google Patents

Optical reader

Info

Publication number
JPH05103154A
JPH05103154A JP26178091A JP26178091A JPH05103154A JP H05103154 A JPH05103154 A JP H05103154A JP 26178091 A JP26178091 A JP 26178091A JP 26178091 A JP26178091 A JP 26178091A JP H05103154 A JPH05103154 A JP H05103154A
Authority
JP
Japan
Prior art keywords
lens
reading
transparent substrate
reflective
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26178091A
Other languages
Japanese (ja)
Inventor
Teruhiro Shiono
照弘 塩野
Kuni Ogawa
久仁 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26178091A priority Critical patent/JPH05103154A/en
Publication of JPH05103154A publication Critical patent/JPH05103154A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Facsimile Heads (AREA)

Abstract

PURPOSE:To provide the optical reader which is easy to be assembled from its optical parts and easy to be aligned and it is possible to be miniaturize and to make thin in thickness and to be reduced in cost with regard to the optical reader which utilizes neural net function to read original character and graphic. CONSTITUTION:A light source 1, a reflecting type collimator lens 3, a reflecting type lens array 4 and a spatial light modulating element 7 are arranged on the surface of a transparent substrate 2. Further, an photodetector array 5 is provided on the spatial light modulating element 7. Reflected and scattered light is introduced into the transparent substrate 2 and transferred in zigzag. Then it is made incident on the collimator lens 3 and lens eye 4, and then it is imaged on the photodetector 5 through the spatial light modulating element 7, thus the signal of the medium 9 to be read, is read.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原稿等の読み取り媒体
の文字、図表等を、誤り補正をして読み取るニューラル
ネットの機能を備えた読み取り光学装置に関するもので
あり、特に、薄型化が可能であり、さらに各光学部品の
組立、位置合わせが容易である読み取り光学装置に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reading optical apparatus having a function of a neural network for reading characters, figures and tables of a reading medium such as a manuscript with error correction, and in particular, it can be made thin. Further, the present invention relates to a reading optical device in which it is easy to assemble and position each optical component.

【0002】[0002]

【従来の技術】文字、画像を読み取る光学装置は、ファ
クシミリや複写装置等に用いられているが、最近では、
かすれた文字や、印刷文字以外の手書き文字でも、人工
頭脳(AI)・ニューラルネット機能を備えて、光学的
に読みとる光学的読み取り装置が開発されている。
2. Description of the Related Art Optical devices for reading characters and images are used in facsimiles, copying machines, etc., but recently,
Optical reading devices have been developed that are capable of optically reading even faint characters and handwritten characters other than printed characters by providing an artificial brain (AI) / neural network function.

【0003】従来のニューラルネットの機能を備えた読
み取り光学装置として、図4に示すものがあった(浜中
他、マイクロオフ゜ティクス ニュース゛ (Microoptics News), Vol. 9,
No.2, pp. 59-64, 1991)。面光源17から出力された
光は、読み取り媒体である液晶の表示板12に照射さ
れ、その表示板12からの透過光は、コリメータレンズ
13であるロッドレンズに入射し、レンズアレイ14を
通して、表示板12上の文字または図形が、レンズアレ
イ14のレンズ素子数だけ多重に展開され、透過形の空
間光変調素子15を通過し、光検出器アレイ16上に結
像され、読みだしされるものである。このとき、不鮮明
な文字や図形、あるいは手書き文字等は、空間光変調素
子15の透過率分布を適当にすることにより、ニューラ
ルネットの機能で補正しながら読みとることが可能であ
る。
A conventional reading optical device having a function of a neural network is shown in FIG. 4 (Hamachu et al., Microoptics News, Vol. 9,).
No. 2, pp. 59-64, 1991). The light output from the surface light source 17 is applied to the liquid crystal display plate 12 which is a reading medium, and the transmitted light from the display plate 12 is incident on the rod lens which is the collimator lens 13 and is displayed through the lens array 14. Characters or figures on the plate 12 are multiply developed by the number of lens elements of the lens array 14, pass through the transmissive spatial light modulator 15, are imaged on the photodetector array 16, and are read out. Is. At this time, unclear characters, figures, handwritten characters, and the like can be read while being corrected by the function of the neural network by making the transmittance distribution of the spatial light modulator 15 appropriate.

【0004】[0004]

【発明が解決しようとする課題】図4に示した従来の読
み取り光学装置では、各光学部品の組立の際の位置合わ
せが面倒であり、また、バルクのレンズアレイ14やロ
ッドレンズ13を用いているため、小形軽量化、低価格
化が困難であるという課題があった。
In the conventional reading optical device shown in FIG. 4, alignment of each optical component during assembly is troublesome, and a bulk lens array 14 or rod lens 13 is used. Therefore, there is a problem that it is difficult to reduce the size, weight and cost.

【0005】本発明は、上記課題に鑑みてなされたもの
で、各光学部品の位置合わせが容易で薄型化、低価格化
可能な読み取り光学装置を提供するものである。
The present invention has been made in view of the above problems, and provides a reading optical device in which the position of each optical component can be easily adjusted, and the thickness and cost can be reduced.

【0006】[0006]

【課題を解決するための手段】光源と、透明基板と、上
記透明基板の表面または裏面に形成した反射形コリメー
タレンズ及び反射形レンズアレイと、空間光変調素子
と、光検出器アレイとを備え、上記光源からの光を、読
み取り媒体に照射し、上記読み取り媒体からの反射散乱
光を、上記透明基板内の伝搬光として導き、上記伝搬光
を上記基板内をジグザグ状に伝搬させて、上記反射形コ
リメータレンズ、上記反射形レンズアレイ、上記空間光
変調素子、上記光検出器アレイに順次導くように構成す
る。
A light source, a transparent substrate, a reflective collimator lens and a reflective lens array formed on the front surface or the back surface of the transparent substrate, a spatial light modulator, and a photodetector array. , The light from the light source, irradiating a reading medium, the reflected scattered light from the reading medium is guided as a propagating light in the transparent substrate, the propagating light is propagated in a zigzag shape in the substrate, The reflection type collimator lens, the reflection type lens array, the spatial light modulator, and the photodetector array are sequentially guided.

【0007】[0007]

【作用】上記の構成によれば、従来の読み取り光学装置
において自由空間中にとっていた光学系の光路を、境界
面の反射を利用してジグザグ状に光が伝搬する基板内に
とることにより、光学部品を1つの基板上に設置するこ
とが可能になり、従って、本発明の読み取り光学装置は
光学的位置合わせが容易になり、小形薄型化、低価格化
が実現できる。
According to the above construction, the optical path of the optical system, which has been set in the free space in the conventional reading optical apparatus, is set in the substrate in which the light propagates in a zigzag shape by utilizing the reflection of the boundary surface. Since the components can be installed on one substrate, the reading optical device of the present invention can easily perform optical alignment, and can be reduced in size, thickness and cost.

【0008】[0008]

【実施例】図1(a)、(b)は、本発明の一実施例の
読み取り光学装置の基本構成を示す、それぞれ、平面
図、断面図である。なお、図1(a)の平面図は、分か
りやすくするために、最上部に形成した光吸収層8aを
除去した構成にしてある。また、図2は本発明の一実施
例の読み取り光学装置を構成する反射形コリメータレン
ズの断面図(a)と平面図(b)、図3は本発明の一実
施例の読み取り光学装置を構成する反射形レンズアレイ
の平面図である。本発明の実施例の読み取り光学装置に
ついて、図1、図2、図3を用いて詳細に説明する。
1 (a) and 1 (b) are a plan view and a sectional view, respectively, showing the basic construction of a reading optical apparatus according to an embodiment of the present invention. In the plan view of FIG. 1A, the light absorption layer 8a formed on the uppermost part is removed for the sake of clarity. 2 is a cross-sectional view (a) and a plan view (b) of a reflective collimator lens constituting the reading optical device according to the embodiment of the present invention, and FIG. 3 is a diagram showing the reading optical device according to the embodiment of the present invention. It is a top view of the reflective lens array which does. A reading optical device according to an embodiment of the present invention will be described in detail with reference to FIGS. 1, 2, and 3.

【0009】同図において、透明基板2は、例えば厚さ
(Z方向サイズ)1mm、幅(X方向サイズ)15m
m、長さ(Y方向サイズ)30mmのガラス基板であ
り、その透明基板2上に、光源1である例えばLEDア
レイを設けている。光源1から出射された、例えば波長
0.5μmの照明光10は、読み取り媒体9である原稿上
に照射される。読み取り媒体9から反射散乱された一部
の光は、透明基板2中に入射し、例えば伝搬角θ=30
°(伝搬角:垂直(Z)方向と伝搬光の光軸のなす角
度)近傍の伝搬光11となり、透明基板2の表面に設け
た、例えばAgやAl、Au等の金属層または誘電体の
多層膜である反射層6aで反射され、同様に基板2の裏
面及び表面に設けた反射層6d、6b、6e、6c、6
fに順にジグザグ状に入射反射され、基板2の表面上に
設けた、例えば焦点距離8.7mm、Y方向サイズ2m
mの反射形コリメータレンズ3に入射し、さらに反射層
6gで反射をして、例えばレンズ素子1つがY方向サイ
ズ100μm、焦点距離2.3mmである、例えばアレイ
数15×15個の同じく透明基板2の表面上に設けた反
射形レンズアレイ4に入射し、さらにジグザグ伝搬し
て、透明基板2上に形成した空間光変調素子7、その素
子7上に形成した光検出器アレイ5に順に入射し、電気
信号に変換され読み取り媒体9の情報が読み取りされ
る。このとき、空間光変調素子7の透過率分布を適当に
設定することにより、ニューラルネットの機能を用い
て、媒体9の情報が補正されて読み出すことが可能であ
る。
In the figure, the transparent substrate 2 has, for example, a thickness (size in the Z direction) of 1 mm and a width (size in the X direction) of 15 m.
A glass substrate having m and a length (size in the Y direction) of 30 mm, and a light source 1, for example, an LED array is provided on the transparent substrate 2. Illumination light 10 emitted from the light source 1 and having a wavelength of 0.5 μm, for example, is applied to the document as the reading medium 9. A part of the light reflected and scattered from the reading medium 9 enters the transparent substrate 2 and, for example, the propagation angle θ = 30.
Propagation light 11 in the vicinity of (propagation angle: angle formed by the optical axis of the propagation light: the vertical (Z) direction) is formed, and a metal layer such as Ag, Al, or Au provided on the surface of the transparent substrate 2 or a dielectric The reflective layers 6d, 6b, 6e, 6c, 6 which are reflected on the reflective layer 6a, which is a multilayer film, are similarly provided on the back and front surfaces of the substrate 2.
The light is incident and reflected in a zigzag shape in order on f, and is provided on the surface of the substrate 2, for example, a focal length of 8.7 mm and a Y-direction size of 2 m.
It is incident on the reflective collimator lens 3 of m and further reflected by the reflective layer 6g, and for example, one lens element has a size in the Y direction of 100 μm and a focal length of 2.3 mm. 2 is incident on the reflective lens array 4 provided on the surface thereof, further propagates in a zigzag manner, and is sequentially incident on the spatial light modulation element 7 formed on the transparent substrate 2 and the photodetector array 5 formed on the element 7. Then, it is converted into an electric signal and the information on the reading medium 9 is read. At this time, by appropriately setting the transmittance distribution of the spatial light modulator 7, the information of the medium 9 can be corrected and read using the function of the neural network.

【0010】本実施例では、反射層6は、伝搬光11の
光軸が基板2と交わる(反射する)近傍の点を中心に、
矩形形状のものを透明基板2の表面と裏面に複数個反射
する数だけ島状に設けた。島状の反射層6の大きさは反
射形コリメータレンズ3と同じかあるいはそれ以下にし
た。このようにすることによって、反射層6間に隙間が
できるために、設定した伝搬角近傍の伝搬光11が最も
強く伝搬できるようになり、クロストークとなってノイ
ズ成分になる伝搬光は、ジグザグ伝搬するうちに反射層
6の間を通り、その反射層6の上に形成した、例えば染
料または顔料を含むポリイミド等の有機膜である光吸収
手段8a、8bで吸収されるため減少し、光検出器アレ
イ5のSN比が良くなるという効果がある。しかしなが
ら、基板2の表面か裏面のどちらか一方の反射層6を島
状にしても効果は半減するが動作可能である。
In this embodiment, the reflective layer 6 is centered on a point in the vicinity where the optical axis of the propagating light 11 intersects (reflects) the substrate 2.
The rectangular substrate was provided on the front and back surfaces of the transparent substrate 2 in an island shape by the number of reflections. The size of the island-shaped reflective layer 6 is the same as or smaller than that of the reflective collimator lens 3. By doing so, since a gap is formed between the reflection layers 6, the propagating light 11 near the set propagation angle can be propagated most strongly, and the propagating light that becomes crosstalk and becomes a noise component is zigzag. The light passes through between the reflection layers 6 while propagating, and is reduced by being absorbed by the light absorption means 8a, 8b formed on the reflection layer 6 which is an organic film such as polyimide containing a dye or a pigment. This has the effect of improving the SN ratio of the detector array 5. However, even if the reflecting layer 6 on either the front surface or the back surface of the substrate 2 is formed in an island shape, the effect is reduced by half but the operation is possible.

【0011】本実施例では、読み取り媒体9から反射形
コリメータレンズ3までの光路長を、コリメータレンズ
3の焦点距離fに設定し、また、レンズアレイ4から空
間光変調素子7までの光路長を、レンズアレイ4の焦点
距離f1に設定した。レンズアレイ4によって、光検出
器アレイ5上に、レンズの数だけ結像される、読み取り
媒体9の像の大きさの比率は、f1/fになる。本実施
例では、像の比率は例えば0.26である。しかし、そ
れぞれの焦点距離を調整することにより、比率の増減が
可能であり、その比率に応じて、空間光変調素子7のパ
ターン形状サイズ及び光検出器アレイ5の素子サイズが
決まる。
In this embodiment, the optical path length from the reading medium 9 to the reflection type collimator lens 3 is set to the focal length f of the collimator lens 3, and the optical path length from the lens array 4 to the spatial light modulator 7 is set. , The focal length f 1 of the lens array 4 was set. The ratio of the image sizes of the reading medium 9 formed by the lens array 4 on the photodetector array 5 by the number of lenses is f 1 / f. In this embodiment, the image ratio is 0.26, for example. However, the ratio can be increased or decreased by adjusting each focal length, and the pattern shape size of the spatial light modulator 7 and the device size of the photodetector array 5 are determined according to the ratio.

【0012】反射形コリメータレンズ3及び、反射形レ
ンズアレイ4は、例えば溝の最大深さ0.19μmの複数
のグレーティングゾーン18と反射層19から構成され
た反射形の回折光学素子である。このような回折光学素
子を用いることにより膜厚がせいぜい1μm以下であ
り、さらに透明基板2に集積化可能であるため、大幅に
小形薄型化、安定化される。
The reflective collimator lens 3 and the reflective lens array 4 are reflective diffractive optical elements composed of a plurality of grating zones 18 having a maximum groove depth of 0.19 μm and a reflective layer 19, for example. By using such a diffractive optical element, the film thickness is at most 1 μm or less, and since it can be integrated on the transparent substrate 2, it can be made much smaller, thinner and stable.

【0013】光源1と、空間光変調素子7及び光検出器
5、光学素子3、4はすべて基板2の表面に配置するこ
とにより、読み取り媒体9のある裏面は、ほとんどフラ
ットにすることができる。また、読み取り媒体9が基板
2の裏面に接触しても、構成部品は表面にあるため、損
傷の心配がほとんどなく耐環境性が向上する。
By arranging the light source 1, the spatial light modulator 7, the photodetector 5, and the optical elements 3 and 4 on the front surface of the substrate 2, the back surface having the reading medium 9 can be made almost flat. .. Further, even if the reading medium 9 comes into contact with the back surface of the substrate 2, since the components are on the front surface, there is almost no fear of damage and the environmental resistance is improved.

【0014】図2に示すように、本実施例の反射形レン
ズ3、さらには反射形のレンズアレイ4を構成するレン
ズ素子は、複数のグレーティングゾーン18と、上記グ
レーティングゾーン18上に設けた反射層19からな
り、各グレーティングゾーン18は、伝搬光11bの光
軸方向であるY軸方向に長軸をもつ同じ離心率の楕円形
状で、外周になるにつれて周期が小さくなる。楕円の長
軸と短軸の比(長軸/短軸)は1/cosθ(θ:上記
伝搬光の伝搬角)とし、さらに楕円形の中心位置は、上
記グレーティングゾーンの外周部にいくにしたがって、
上記楕円形の一方の長軸方向(コリメータレンズ3では
Y方向、レンズアレイ4を構成するレンズでは−Y方
向)に、徐々にずれている。このような形状のレンズと
することにより、斜め入射の影響で生じる収差をほぼな
くし(光軸上では完全に無収差)、良好に結像すること
ができた。さらに図3に示すように、反射形レンズアレ
イ4では、その1つのレンズ素子のグレーティングゾー
ン18のパターン形状は反射形コリメータレンズ3と同
じであるが、レンズ開口が矩形開口で、そのレンズ素子
を密接してレンズ間の隙間なくアレイ構造を形成してお
り、レンズ間のデッドスペースをなくすることができる
ために、光を有効利用することができた。
As shown in FIG. 2, the lens elements constituting the reflective lens 3 and the reflective lens array 4 of this embodiment are composed of a plurality of grating zones 18 and the reflection zones provided on the grating zones 18. Each grating zone 18 is made of a layer 19 and has an elliptical shape with the same eccentricity with a major axis in the Y-axis direction, which is the optical axis direction of the propagating light 11b, and the period becomes smaller toward the outer circumference. The ratio of the major axis to the minor axis of the ellipse (major axis / minor axis) is 1 / cos θ (θ: the propagation angle of the above-mentioned propagating light), and the center position of the ellipse further increases toward the outer periphery of the above-mentioned grating zone. ,
It is gradually shifted in one major axis direction of the ellipse (Y direction in the collimator lens 3 and -Y direction in the lenses forming the lens array 4). By using a lens having such a shape, aberrations caused by the influence of oblique incidence were almost eliminated (completely aberration-free on the optical axis), and good image formation was possible. Further, as shown in FIG. 3, in the reflective lens array 4, the pattern shape of the grating zone 18 of the one lens element is the same as that of the reflective collimator lens 3, but the lens aperture is a rectangular aperture, and the lens element is Since the array structure is formed in close contact with no gap between the lenses and the dead space between the lenses can be eliminated, the light can be effectively used.

【0015】レンズ3、レンズアレイ4は高効率となる
ように断面を鋸歯状化した。原盤の光学素子3、4は、
別の基板上に例えば、PMMA、CMS等の電子ビーム
レジストをコーティングし、作製する素子の膜厚に応じ
て照射量を制御する電子ビーム描画法を行ない、現像処
理をしてレジストの膜厚を変化させることにより形成し
た。このように形成した光学素子(原盤)から、例えば
ニッケル電鋳法により光学素子3、4を同時に含む金形
を作製し、例えばUV硬化樹脂を用いて、透明基板2上
に原盤と同一レンズ素子3、4を複製した。この方法に
よれば、一度にレンズ3とレンズアレイ4の回折光学素
子を位置精度よく透明基板2上に容易に形成可能であ
り、同時に低価格化の効果がある。反射層19は、複製
の後、例えばAgやAl、Au等の金属層をその上に堆
積した。
The lens 3 and the lens array 4 have a saw-toothed cross section for high efficiency. The optical elements 3 and 4 of the master are
For example, an electron beam resist such as PMMA or CMS is coated on another substrate, an electron beam drawing method is performed to control the irradiation amount according to the film thickness of a device to be manufactured, and a development process is performed to adjust the resist film thickness. It was formed by changing. From the thus formed optical element (master), a mold including the optical elements 3 and 4 at the same time is manufactured by, for example, a nickel electroforming method, and the same lens element as that of the master is formed on the transparent substrate 2 by using, for example, a UV curing resin. 3, 4 were duplicated. According to this method, the diffractive optical elements of the lens 3 and the lens array 4 can be easily formed on the transparent substrate 2 with high positional accuracy, and at the same time, the cost can be reduced. After the replication, the reflection layer 19 was formed by depositing a metal layer of Ag, Al, Au, or the like on the reflection layer 19.

【0016】光検出器アレイ5は、例えばCdS−Cd
Seの薄膜を用い、1つの開口サイズ100×100μ
m2で、空間光変調素子7上に、例えば15×15を集積
化した。CdS−CdSeの代わりにa−Siを用いて
構成してもよく、また基板2上に一体化せずに、例えば
バルクのSiの光検出器を設置しても良いが、一体化す
ると薄型化、安定化が実現できる。
The photodetector array 5 is, for example, CdS-Cd.
Using Se thin film, one opening size 100 × 100μ
For example, 15 × 15 is integrated on the spatial light modulator 7 at m 2 . A-Si may be used instead of CdS-CdSe, and, for example, a bulk Si photodetector may be installed on the substrate 2 without being integrated, but it becomes thin when integrated. , Stabilization can be realized.

【0017】空間光変調素子7は、透過率分布をつけた
銀塩乾板を用いた。本実施例では、透明基板2上に反射
層6を形成して伝搬光11を反射させたが、基板2内の
全反射を用いてもジグザグ伝搬が可能である。このとき
は、反射層6の形成の必要がないが、基板2内への読み
取り媒体9からの反射散乱光の入射部にグレーティング
あるいはプリズムを設ける必要がある。
As the spatial light modulator 7, a silver salt dry plate having a transmittance distribution is used. In this embodiment, the reflective layer 6 is formed on the transparent substrate 2 to reflect the propagating light 11. However, zigzag propagation is also possible using total internal reflection within the substrate 2. At this time, it is not necessary to form the reflective layer 6, but it is necessary to provide a grating or a prism at the incident portion of the reflected and scattered light from the reading medium 9 into the substrate 2.

【0018】[0018]

【発明の効果】以上のように本発明によれば、各光学部
品の位置合わせが容易で薄型化可能であり、しかもニュ
ーラルネット機能を用いた読み取り光学装置が実現可能
である。
As described above, according to the present invention, the alignment of each optical component can be easily performed and the thickness can be reduced, and a reading optical device using a neural network function can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の一実施例の読み取り光学装置
の基本構成を示す平面図 (b)は同読み取り光学装置の基本構成を示す断面図
FIG. 1A is a plan view showing the basic configuration of a reading optical apparatus according to an embodiment of the present invention, and FIG. 1B is a sectional view showing the basic configuration of the reading optical apparatus.

【図2】(a)は本発明の一実施例の読み取り光学装置
に用いる反射形コリメータレンズの断面図 (b)は同反射形コリメータレンズの平面図
FIG. 2A is a cross-sectional view of a reflective collimator lens used in a reading optical device according to an embodiment of the present invention, and FIG. 2B is a plan view of the reflective collimator lens.

【図3】本発明の一実施例の読み取り光学装置の反射形
レンズアレイの平面図
FIG. 3 is a plan view of a reflective lens array of a reading optical device according to an embodiment of the present invention.

【図4】従来の読み取り光学装置の構成図FIG. 4 is a configuration diagram of a conventional reading optical device.

【符号の説明】[Explanation of symbols]

1 光源 2 透明基板 3 反射形コリメータレンズ 4 反射形レンズアレイ 5 光検出器アレイ 6 反射層 7 空間光変調素子 8 光吸収層 9 読み取り媒体 10 照明光 11 伝搬光 18 グレーティングゾーン 19 反射層 1 Light Source 2 Transparent Substrate 3 Reflective Collimator Lens 4 Reflective Lens Array 5 Photodetector Array 6 Reflective Layer 7 Spatial Light Modulator 8 Light Absorbing Layer 9 Reading Medium 10 Illuminating Light 11 Propagating Light 18 Grating Zone 19 Reflective Layer

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】光源と、透明基板と、上記透明基板の表面
または裏面に形成した反射形コリメータレンズ及び反射
形レンズアレイと、空間光変調素子と、光検出器アレイ
とを備え、上記光源からの光を、読み取り媒体に照射
し、上記読み取り媒体からの反射散乱光を、上記透明基
板内の伝搬光として導き、上記伝搬光を上記基板内をジ
グザグ状に伝搬させて、上記反射形コリメータレンズ、
上記反射形レンズアレイ、上記空間光変調素子、上記光
検出器アレイに順次導くように構成されたことを特徴と
する読み取り光学装置。
1. A light source, a transparent substrate, a reflective collimator lens and a reflective lens array formed on the front or back surface of the transparent substrate, a spatial light modulator, and a photodetector array. Of the reading medium, the reflected and scattered light from the reading medium is guided as propagating light in the transparent substrate, the propagating light is propagated in a zigzag manner in the substrate, and the reflective collimator lens is used. ,
A reading optical device, which is configured to sequentially lead to the reflective lens array, the spatial light modulator, and the photodetector array.
【請求項2】透明基板の表面と裏面に反射層を設けたこ
とを特徴とする請求項1に記載の読み取り光学装置。
2. The reading optical device according to claim 1, wherein a reflective layer is provided on the front surface and the back surface of the transparent substrate.
【請求項3】透明基板の表面または裏面に設けた反射層
のうちの少なくとも一方は、伝搬光の光路上に島状に複
数個設け、上記島状の反射層の大きさは反射形コリメー
タレンズと同じかあるいはそれ以下であり、上記島状の
反射層の設ける位置は、上記伝搬光の光軸と上記基板面
との交点近傍とすることを特徴とする請求項2に記載の
読み取り光学装置。
3. At least one of the reflection layers provided on the front surface or the back surface of the transparent substrate is provided in a plurality of islands on the optical path of the propagating light, and the size of the island reflection layers is a reflection type collimator lens. 3. The reading optical device according to claim 2, wherein the position is equal to or less than that, and the position where the island-shaped reflective layer is provided is near the intersection of the optical axis of the propagating light and the substrate surface. ..
【請求項4】反射形コリメータレンズ、及び反射形レン
ズアレイは、複数のグレーティングゾーンと、上記グレ
ーティングゾーン上に設けた反射層からなり、上記グレ
ーティングゾーンのパターン形状は伝搬光の光軸方向に
長軸を有する楕円形であり、上記長軸と短軸の比(長軸
/短軸)は1/cosθ(θ:上記伝搬光の伝搬角)で
あり、上記楕円形の中心位置は、上記グレーティングゾ
ーンの外周部にいくにしたがって、上記楕円形の一方の
長軸方向に、徐々にずれていることを特徴とする請求項
1に記載の読み取り光学装置。
4. A reflection type collimator lens and a reflection type lens array are composed of a plurality of grating zones and a reflection layer provided on the grating zones, and the pattern shape of the grating zones is long in the optical axis direction of propagating light. The ellipse has an axis, the ratio of the long axis to the short axis (long axis / short axis) is 1 / cos θ (θ: propagation angle of the propagation light), and the center position of the ellipse is the grating. The reading optical device according to claim 1, wherein the reading optical device is gradually shifted in one major axis direction of the elliptical shape toward the outer peripheral portion of the zone.
【請求項5】反射形レンズアレイを構成する1つのレン
ズは、矩形開口であり、上記矩形開口のレンズを隙間な
く配列して上記レンズアレイを構成したことを特徴とす
る請求項1に記載の読み取り光学装置。
5. A lens according to claim 1, wherein one lens constituting the reflective lens array has a rectangular aperture, and the lenses having the rectangular aperture are arranged without a gap to constitute the lens array. Reading optics.
【請求項6】少なくとも反射層間に光吸収手段を設けた
ことを特徴とする請求項3に記載の読み取り光学装置。
6. The reading optical apparatus according to claim 3, wherein light absorbing means is provided at least between the reflecting layers.
【請求項7】光吸収手段は染料もしくは顔料を含んだ有
機膜であることを特徴とする請求項6に記載の読み取り
光学装置。
7. The reading optical apparatus according to claim 6, wherein the light absorbing means is an organic film containing a dye or a pigment.
【請求項8】透明基板表面または裏面に空間光変調素子
を設け、上記空間光変調素子上に光検出器アレイを設け
たことを特徴とする請求項1に記載の読み取り光学装
置。
8. The reading optical apparatus according to claim 1, wherein a spatial light modulator is provided on the front or back surface of the transparent substrate, and a photodetector array is provided on the spatial light modulator.
JP26178091A 1991-10-09 1991-10-09 Optical reader Pending JPH05103154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26178091A JPH05103154A (en) 1991-10-09 1991-10-09 Optical reader

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26178091A JPH05103154A (en) 1991-10-09 1991-10-09 Optical reader

Publications (1)

Publication Number Publication Date
JPH05103154A true JPH05103154A (en) 1993-04-23

Family

ID=17366600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26178091A Pending JPH05103154A (en) 1991-10-09 1991-10-09 Optical reader

Country Status (1)

Country Link
JP (1) JPH05103154A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9573388B2 (en) 2014-11-10 2017-02-21 Seiko Epson Corporation Printing method and printing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9573388B2 (en) 2014-11-10 2017-02-21 Seiko Epson Corporation Printing method and printing apparatus

Similar Documents

Publication Publication Date Title
Daly Microlens arrays
US5506701A (en) Hologram color filter, liquid crystal display device using the same, and fabrication process of hologram color filter
KR970009135B1 (en) Display system utilizing light transmitting screen and method of manufacturing same
JP2889216B2 (en) Reflection type holographic optical element manufacturing equipment
JP3893421B2 (en) Light modulation element, light modulation element array, and exposure apparatus using the same
US20050259302A9 (en) Holographic light panels and flat panel display systems and method and apparatus for making same
US11868050B2 (en) Non-telecentric light guide elements
EP0671638B1 (en) A method of manufacturing a diffuser and a diffuser
US5145756A (en) Method for making a holographic mirror
US20020001110A1 (en) Holographic light panels and flat panel display systems and method and apparatus for making same
US4863225A (en) Reflection holograms formed by scanning
JPH05103154A (en) Optical reader
US20070218372A1 (en) Method For Production Of Micro-Optics Structures
JP4614193B2 (en) Reflective display
JPH10239503A (en) Micro lens array, and manufacture thereof
KR102665879B1 (en) Digital exposing device having liquid shutter array and method for exposing using the same
JP3048841B2 (en) Apparatus and method for manufacturing liquid crystal display element containing photosensitive material
JPH04309266A (en) Image sensor
US5652612A (en) Apparatus and method for enhancing printing efficiency to reduce artifacts
JP2003054025A (en) Image transmitter
JP3171013B2 (en) Method and apparatus for producing article comprising diffraction grating
JPH04310639A (en) Optical head and its manufacture
JP2000050010A (en) Optical waveguide type image sensor
KR20190044333A (en) Method of manufacturing laminate
JPH0375721A (en) Unmagnification imaging element