JPH05101770A - Field emission type cathode - Google Patents

Field emission type cathode

Info

Publication number
JPH05101770A
JPH05101770A JP28417391A JP28417391A JPH05101770A JP H05101770 A JPH05101770 A JP H05101770A JP 28417391 A JP28417391 A JP 28417391A JP 28417391 A JP28417391 A JP 28417391A JP H05101770 A JPH05101770 A JP H05101770A
Authority
JP
Japan
Prior art keywords
tip
field emission
type cathode
emission type
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28417391A
Other languages
Japanese (ja)
Inventor
Kazuhiro Fujii
一宏 藤井
Shinichi Sakata
信一 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP28417391A priority Critical patent/JPH05101770A/en
Publication of JPH05101770A publication Critical patent/JPH05101770A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)
  • Cold Cathode And The Manufacture (AREA)

Abstract

PURPOSE:To operate at a low voltage, and to stabilize extremely, by making the curvature radius of the tip of an electron emitting material less than 50nm. CONSTITUTION:A needle form of electron emitting material whose tip has the curvature radius less than 50nm is used. As such a material, a substance of a small work function, a good mechanical hardness, and a strong anisotropy, a carbide of a transition metal such as Ti, Zr, Hf, V, Nb, or T, or a high melting point metal such as W, Mo, Ta, Nb, or Ir, for example, is available. Such a material is used by processing in a prismatic form or a cylindrical form, utilizing its cutting surface at first, forming some sharp-pointed tip, and applying an anisotropic etching to the tip in an etching solution. In such a way, a chip having the curvature radius at the tip less than 50nm can be obtained with good reproductivity, and thereby, a field emission type cathode which can be operated at a low voltage, and has a very stabilized function can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電界放射型陰極に関す
る。
FIELD OF THE INVENTION The present invention relates to a field emission cathode.

【0002】[0002]

【従来の技術及びその問題点】走査型電子顕微鏡、電子
顕微鏡、電子ビーム加工装置の電子ビーム応用機器にお
いて、最終電子ビーム径が小さく、かつ高輝度のサブミ
クロン電子源が要望されている。電界放射型陰極は10
9 A/cm2 ・str という高輝度の電子ビームが得られ
るため次世代の電子ビーム源として期待されている。電
界放射型陰極は、曲率半径0.5μm以下に加工した針
状の電子放射材料(以下、チップという)に強電界をか
け電子を取り出す。チップの先端の曲率半径が大きくな
るほど、外部からかける電界は強くなる。先端の曲率半
径が0.5μm以上になると外部からかける電界が大き
くなり、2×10-8Paという高真空下でも放電を起こ
してしまう。このために、外部からかける電界をできる
だけ小さくしたいという要求がある。また低電界で陰極
を作動させることで、ビームの安定性がますことが期待
できる。
2. Description of the Related Art In a scanning electron microscope, an electron microscope, and an electron beam application device such as an electron beam processing apparatus, a submicron electron source having a small final electron beam diameter and high brightness is required. The field emission type cathode is 10
It is expected as a next-generation electron beam source because it can obtain an electron beam with a high brightness of 9 A / cm 2 · str. In the field emission type cathode, a strong electric field is applied to a needle-shaped electron emission material (hereinafter, referred to as a chip) processed to have a radius of curvature of 0.5 μm or less to extract electrons. The larger the radius of curvature of the tip of the chip, the stronger the electric field applied from the outside. When the radius of curvature of the tip is 0.5 μm or more, the electric field applied from the outside is large, and discharge occurs even under a high vacuum of 2 × 10 −8 Pa. Therefore, there is a demand to minimize the electric field applied from the outside. Further, by operating the cathode in a low electric field, the stability of the beam can be expected to increase.

【0003】[0003]

【発明の目的】本発明は、従来にない低電圧で使用でき
る電界放射型陰極を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a field emission type cathode which can be used at an unprecedentedly low voltage.

【0004】[0004]

【問題点を解決するための手段】本発明は、先端が曲率
半径50nm以下である針状の電子放射材料を具備して
なる電界放射型陰極に関する。本発明の電子放射材料と
しては特に制限はないが、仕事関数が小さく、機械的に
硬く、異方性の強い物質が望ましい。例えば、Ti、Z
r、Hf、V、Nb、Ta等の遷移金属の炭化物やW、
Mo、Ta、Nb、Ir等の高融点金属等が挙げられ
る。
The present invention relates to a field emission type cathode comprising a needle-shaped electron emitting material having a tip with a radius of curvature of 50 nm or less. The electron emitting material of the present invention is not particularly limited, but a material having a small work function, mechanical hardness, and strong anisotropy is desirable. For example, Ti, Z
Carbides of transition metals such as r, Hf, V, Nb, and Ta, and W,
Refractory metals such as Mo, Ta, Nb, and Ir can be used.

【0005】本発明の電子放射材料は、角柱状、または
円柱状に加工した材料を用いて、初めに劈開面を利用し
ある程度尖った先端を作り、この先端をエッチング溶液
中で異方性エッチングを施すことにより得られる。この
ようにすることで、先端の曲率半径が50nm以下の曲
率半径を持つチップを再現性良く得ることが出来る。エ
ッチング溶液としては、遷移金属炭化物の場合には、フ
ッ酸と硝酸の混合液、高融点金属の場合には、水酸化カ
リウム、水酸化ナトリウム等のアルカリ水溶液が用いら
れる。
The electron-emitting material of the present invention is a material processed into a prismatic shape or a cylindrical shape, and a cleaved surface is first used to form a pointed tip, and this tip is anisotropically etched in an etching solution. It is obtained by applying. By doing so, a tip having a radius of curvature of the tip of 50 nm or less can be obtained with good reproducibility. As the etching solution, in the case of transition metal carbide, a mixed solution of hydrofluoric acid and nitric acid, and in the case of refractory metal, an alkaline aqueous solution such as potassium hydroxide or sodium hydroxide is used.

【0006】[0006]

【実施例】以下に本発明の実施例を示す。 実施例1 曲率半径30nmの先端をもつ炭化チタン単結晶の電子
放射材料を用いて電界放射型陰極を作り、2×10-8
aの真空中で電子放射を行なった。印加電圧500Vで
電子放出が起こっていることを確認できた。1μAを取
り出した状態で、1%以上のノイズが入らない時間は6
分間であった。
EXAMPLES Examples of the present invention will be shown below. Example 1 A field emission type cathode was prepared by using an electron emission material of titanium carbide single crystal having a tip with a radius of curvature of 30 nm and 2 × 10 −8 P
Electron emission was performed in the vacuum of a. It was confirmed that electron emission occurred at an applied voltage of 500V. With 1 μA taken out, the time that 1% or more of noise does not enter is 6
It was a minute.

【0007】実施例2 曲率半径40nmの先端をもつタングステン単結晶の電
子放射材料を用いて電界放射型陰極を作り、2×10-8
Paの真空中で電子放射を行なった。印加電圧800V
で電子放出が起こっていることを確認できた。1μAを
取り出した状態で、1%以上のノイズが入らない時間は
3分間であった。
Example 2 A field emission type cathode was prepared by using an electron emission material of tungsten single crystal having a tip with a radius of curvature of 40 nm and 2 × 10 −8
Electron emission was performed in a vacuum of Pa. Applied voltage 800V
It was confirmed that electron emission occurred. With 1 μA taken out, the time during which 1% or more of noise did not enter was 3 minutes.

【0008】実施例3 曲率半径30nmの先端をもつ炭化ニオブ単結晶の電子
放射材料を用いて電界放射型陰極を作り、2×10-8
aの真空中で電子放射を行なった。印加電圧700Vで
電子放出が起こっていることを確認できた。1μAを取
り出した状態で、1%以上のノイズが入らない時間は5
分間であった。
Example 3 A field emission type cathode was prepared by using a niobium carbide single crystal electron emitting material having a tip with a radius of curvature of 30 nm, and 2 × 10 -8 P
Electron emission was performed in the vacuum of a. It was confirmed that electron emission occurred at an applied voltage of 700V. With 1 μA taken out, the time for which 1% or more of noise does not enter is 5
It was a minute.

【0009】比較例1 先端の曲率半径が500nmであること以外は実施例1
と同様の電界放射型陰極を作り、同様の真空度で電子放
射を行なった。印加電圧8kVで放電を起こし、陰極が
破壊した。
Comparative Example 1 Example 1 except that the radius of curvature of the tip is 500 nm.
A field emission type cathode similar to that was prepared, and electron emission was performed at the same degree of vacuum. Discharge occurred at an applied voltage of 8 kV, and the cathode was destroyed.

【0010】比較例2 先端の曲率半径が300nmであること以外は実施例1
と同様の電界放射型陰極を作り、同様の真空度で電子放
射を行なった。印加電圧3kVで電子放射が起こってい
ることを確認できた。1μAを取り出した状態で、1%
以上のノイズが入らない時間は10秒であった。
Comparative Example 2 Example 1 except that the radius of curvature of the tip is 300 nm.
A field emission type cathode similar to that was prepared, and electron emission was performed at the same degree of vacuum. It was confirmed that electron emission occurred at an applied voltage of 3 kV. 1% with 1 μA taken out
The time during which the above noise did not enter was 10 seconds.

【0011】比較例3 先端の曲率半径が300nmであること以外は実施例2
と同様の電界放射型陰極を作り、同様の真空度で電子放
射を行なった。印加電圧4kVで電子放射が起こってい
ることを確認できた。1μAを取り出した状態で、1%
以上のノイズが入らない時間は5秒であった。
Comparative Example 3 Example 2 except that the radius of curvature of the tip is 300 nm.
A field emission type cathode similar to that was prepared, and electron emission was performed at the same degree of vacuum. It was confirmed that electron emission occurred at an applied voltage of 4 kV. 1% with 1 μA taken out
The time when the above noise did not enter was 5 seconds.

【0012】[0012]

【発明の効果】本発明によれば、電子放射材料の先端の
曲率半径を50nm以下にすることで、低電圧で作動
し、しかも、非常に安定な電界放射型陰極を作製するこ
とができる。
According to the present invention, by setting the radius of curvature of the tip of the electron emitting material to 50 nm or less, a field emission type cathode which operates at a low voltage and is very stable can be manufactured.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 先端が曲率半径50nm以下である針状
の電子放射材料を具備してなる電界放射型陰極。
1. A field emission cathode comprising a needle-shaped electron emission material having a tip with a radius of curvature of 50 nm or less.
【請求項2】 電子放射材料が遷移金属炭化物からなる
ことを特徴とする請求項1の電界放射型陰極。
2. The field emission type cathode according to claim 1, wherein the electron emitting material comprises a transition metal carbide.
JP28417391A 1991-10-04 1991-10-04 Field emission type cathode Pending JPH05101770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28417391A JPH05101770A (en) 1991-10-04 1991-10-04 Field emission type cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28417391A JPH05101770A (en) 1991-10-04 1991-10-04 Field emission type cathode

Publications (1)

Publication Number Publication Date
JPH05101770A true JPH05101770A (en) 1993-04-23

Family

ID=17675129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28417391A Pending JPH05101770A (en) 1991-10-04 1991-10-04 Field emission type cathode

Country Status (1)

Country Link
JP (1) JPH05101770A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969363A (en) * 1997-04-11 1999-10-19 Hitachi, Ltd. Method for processing electron beam sources
JP2006294283A (en) * 2005-04-06 2006-10-26 Univ Waseda Metal needle structure and its manufacturing method
JP2009134974A (en) * 2007-11-30 2009-06-18 Denki Kagaku Kogyo Kk Electron emitting source

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5969363A (en) * 1997-04-11 1999-10-19 Hitachi, Ltd. Method for processing electron beam sources
US6340860B1 (en) 1997-04-11 2002-01-22 Hitachi, Ltd. Method of manufacturing electron beam emitter having an electron beam emitting axis coincided with crystal axis
JP2006294283A (en) * 2005-04-06 2006-10-26 Univ Waseda Metal needle structure and its manufacturing method
JP4742187B2 (en) * 2005-04-06 2011-08-10 学校法人早稲田大学 Metal needle structure and manufacturing method thereof
JP2009134974A (en) * 2007-11-30 2009-06-18 Denki Kagaku Kogyo Kk Electron emitting source

Similar Documents

Publication Publication Date Title
US8217565B2 (en) Cold field emitter
US5969473A (en) Two-part field emission structure
US5089742A (en) Electron beam source formed with biologically derived tubule materials
US9490098B1 (en) Thermal-field type electron source composed of transition metal carbide material
JP4167917B2 (en) Method for forming an electron emitter
EP2629316B1 (en) Particle source and manufacturing method thereof
EP2546862B1 (en) Particle source and apparatus using particle source
EP2575158B1 (en) Method for manufacturing a particle source
US7828622B1 (en) Sharpening metal carbide emitters
JP2004119018A (en) Electron emission element
JPH05101770A (en) Field emission type cathode
Schiller et al. Decapitation of tungsten field emitter tips during sputter sharpening
Kim et al. Oxygen processed field emission tips for microcolumn applications
US5962961A (en) Thermal field emission electron gun
EP0813221B1 (en) Method of making a needle electrode
US6719602B2 (en) Nanotube length control method
Rakhshandehroo et al. Fabrication of Si field emitters by dry etching and mask erosion
US4482838A (en) Thermionic emission cathode
JP2000223041A (en) Liquid-metal ion source and manufacture thereof
JPWO2019107113A1 (en) Emitter, electron gun using the same, electronic device using the same, and manufacturing method thereof
JPH08222163A (en) Schottky electron source and its stabilizing method
US5727978A (en) Method of forming electron beam emitting tungsten filament
US6400068B1 (en) Field emission device having an emitter-enhancing electrode
JPH0817330A (en) Field emission type electron source and its manufacture
US11373836B2 (en) Method of manufacturing electron source