JPH0510140B2 - - Google Patents

Info

Publication number
JPH0510140B2
JPH0510140B2 JP20909283A JP20909283A JPH0510140B2 JP H0510140 B2 JPH0510140 B2 JP H0510140B2 JP 20909283 A JP20909283 A JP 20909283A JP 20909283 A JP20909283 A JP 20909283A JP H0510140 B2 JPH0510140 B2 JP H0510140B2
Authority
JP
Japan
Prior art keywords
perforated plate
coal
wheel
air
air injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20909283A
Other languages
Japanese (ja)
Other versions
JPS60102962A (en
Inventor
Hiroyuki Kako
Kazunori Shoji
Yasutsune Katsuta
Naruhito Takamoto
Nobuyasu Meguri
Toshinobu Shima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP20909283A priority Critical patent/JPS60102962A/en
Publication of JPS60102962A publication Critical patent/JPS60102962A/en
Publication of JPH0510140B2 publication Critical patent/JPH0510140B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は粉砕装置に係り、特に装置下部に落
下する粉砕物の量を大幅に低減し得るよう構成し
た粉砕装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pulverizer, and more particularly to a pulverizer configured to significantly reduce the amount of pulverized material falling to the bottom of the device.

最近の燃料事情の変化により火力発電所用大型
ボイラ等の事業所用大型ボイラにおいても燃料と
して石炭を使用するものが増加しているがこの場
合、石炭は粉砕装置において微粉化されバーナ部
に気流輸送される。この様に石炭を微粉化(例え
ば200メツシユ通過率70%以上)することにより
単位量当りの石炭の表面積は増大して燃焼性が向
上し、かつ短時間で燃焼するため制御性も大幅に
向上するという利点がある。第1図はこの石炭を
粉砕する竪型粉砕装置の一例としての竪型ボール
ミルと称される粉砕装置を示す。粉砕を行うべき
石炭cは粉砕装置本体1の給炭管8を落下し粉砕
部に至る。粉砕部は加圧装置4により押圧力を加
えられた上部固定輪6、駆動装置41によつて回
転する下部転輪9、これら上部固定輪6及び下部
転輪9の間に配置し下部転輪9の回転と共に転動
する粉砕部材たる複数個の粉砕用ボール7とから
形成してある。粉砕部に至つた石炭は下部転輪9
の回転により生じる遠心力によつて粉砕ボール配
置部に移動し粉砕され転輪の外周部に排出され
る。粉砕された石炭はガス体供給口たる空気口1
7から供給され、かつ複数の弧状スリツトを有す
る環状の板(以下単に多孔体と称する)15のス
リツトから噴出するガス体(通常は石炭の乾燥も
行うため高温の空気としている)により装置内を
上昇し、この間大径粒子は矢印14の如く粉砕部
に落下して一次分級され、残りの粉砕炭を含有す
る気流は分級器11のガイドベーン12において
旋回力を与えられ、この分級器11内に流入す
る。分級器11においてはこの気流の旋回により
大径粒子は分級器内を下降して粉砕部に落下し再
粉砕され、一方微粉炭は気流と共に微粉炭管13
に流入し一次空気として微粉炭と共にバーナに気
流輸送される。
Due to recent changes in the fuel situation, the number of large boilers for business use such as large boilers for thermal power plants that use coal as fuel is increasing. Ru. By pulverizing the coal in this way (e.g. 200 mesh passing rate of 70% or more), the surface area of the coal per unit amount increases, improving combustibility, and since it burns in a short time, controllability is also greatly improved. There is an advantage of doing so. FIG. 1 shows a crushing device called a vertical ball mill as an example of a vertical crushing device for crushing this coal. Coal c to be pulverized falls through the coal feed pipe 8 of the pulverizer main body 1 and reaches the pulverizer. The crushing section includes an upper fixed wheel 6 to which a pressing force is applied by the pressurizing device 4, a lower roller 9 rotated by the drive device 41, and a lower roller 9 disposed between the upper fixed wheel 6 and the lower roller 9. It is formed from a plurality of grinding balls 7 which are grinding members that roll together with the rotation of the ball 9. The coal that has reached the crushing section passes through the lower roller 9
Due to the centrifugal force generated by the rotation of the ball, the powder is moved to the crushing ball arrangement section, crushed, and discharged to the outer periphery of the wheel. The pulverized coal is passed through air port 1, which is the gas supply port.
The inside of the device is heated by gas (usually high-temperature air to dry the coal) supplied from 7 and ejected from the slits of an annular plate 15 (hereinafter simply referred to as a porous body) having a plurality of arcuate slits. During this time, the large-diameter particles fall into the crushing section as shown by the arrow 14 and are primarily classified, and the air flow containing the remaining crushed coal is given a swirling force by the guide vanes 12 of the classifier 11, and the air flow inside the classifier 11 is flows into. In the classifier 11, large-diameter particles descend through the classifier due to the swirl of this airflow, fall into the crushing section, and are re-pulverized, while the pulverized coal is transported to the pulverized coal pipe 13 along with the airflow.
The pulverized coal flows into the burner as primary air and is transported to the burner together with the pulverized coal.

第2図および第3図は以上の装置に取り付けた
多孔板の構造に関する。多孔板15は下部転輪9
の周縁に沿つて環状に形成し配置されており、こ
の多孔板に対しては形状スリツト状のものを含む
空気噴射開口が形成してある。この空気噴射開口
は第3図の如くスリツトとして形成してあり、空
気はこのスリツト18及び多孔板15と下部転輪
9との間の周間隙19から噴出する。この場合、
スリツト18は第2図の如く多孔板15の板面に
対してその開口側面に垂直に開口している。また
運転に際しては多孔板の上面に沿い粉砕炭の流れ
があり、多孔板から噴射する空気によつて上方に
吹き上げられるわけである。しかし詳細に検討し
てみると、スリツト18のガス通路壁面部には噴
射気体の渦流が生じており、この渦流に誘引され
るようにして粉砕炭の一部がこのスリツト壁面に
沿い引き込まれ装置下部に落下することになる。
最近の粉砕装置容量の増大に伴う下部空気室容量
の増加により、空気室内の偏流も大きくなりこの
偏流によつて落下する粉砕炭の量をさらに増加さ
せる傾向にある。
2 and 3 relate to the structure of the perforated plate attached to the above apparatus. The perforated plate 15 is the lower roller 9
The perforated plate is formed and arranged in an annular manner along the periphery of the perforated plate, and air injection openings including those having a slit shape are formed in this perforated plate. The air injection opening is formed as a slit as shown in FIG. 3, and air is ejected from the slit 18 and the circumferential gap 19 between the perforated plate 15 and the lower roller 9. in this case,
As shown in FIG. 2, the slit 18 opens perpendicularly to the opening side surface of the perforated plate 15. Also, during operation, there is a flow of pulverized coal along the upper surface of the perforated plate, and it is blown upward by the air injected from the perforated plate. However, when examined in detail, a vortex of the injected gas is generated on the wall of the gas passage of the slit 18, and a part of the pulverized coal is drawn along the wall of the slit as it is attracted by this vortex. It will fall to the bottom.
With the recent increase in the capacity of the lower air chamber due to the increase in the capacity of the crusher, the uneven flow within the air chamber becomes larger, and this uneven flow tends to further increase the amount of pulverized coal that falls.

落下した粉粒状の石炭は高温の気体によつて加
熱されているため発火し易く危険であるため水散
布等によつて冷却しているが、落下炭の排出は人
手に頼つているため、水分を含んだ石炭の排出に
は大きな労力を必要とすることになる。
Fallen powdered coal is heated by high-temperature gas and is dangerous and easily ignites, so it is cooled down by water spraying, etc. However, since the removal of fallen coal relies on manual labor, moisture Discharging coal containing carbon dioxide requires a great deal of effort.

なお、粉砕炭の落下を減少させる一つの方法と
してスリツトの幅を小さくして噴射速度を増加さ
せる方法も採用されているが、多孔板における圧
力損失が増大して送風機の動力費が大幅に上昇す
るという問題がある。また孔状の小口径化をする
と、一度粉砕炭が詰ると、長時間噴射口が閉塞し
てしまうという問題もある。
In addition, one method to reduce the fall of pulverized coal is to reduce the width of the slit and increase the injection speed, but this increases the pressure loss in the perforated plate and significantly increases the power cost of the blower. There is a problem with doing so. Furthermore, when the diameter of the hole is reduced, there is a problem that once the pulverized coal becomes clogged, the injection port becomes clogged for a long time.

この発明は上述した問題点に鑑み構成したもの
であり、多孔板の圧力損失を増大させずに粉砕物
の落下を防止する粉砕装置に関する。
The present invention has been constructed in view of the above-mentioned problems, and relates to a pulverizer that prevents the pulverized material from falling without increasing the pressure loss of the perforated plate.

要するにこの発明は、装置内に設けられ回転す
る転輪と、該転輪上に転輪に対し加圧状態で設け
られた粉砕部材と、上記転輪と粉砕部材で粉砕さ
れて転輪外周部に排出された粉砕物を分級するた
め下方から上方に向けてガス体を通過する開口を
有する多孔板とを備えた竪型粉砕装置において、
上記多孔板開口の孔の深さと開口の転輪半径方向
の長さとの比を1.3以上としたことを特徴とする
竪型粉砕装置である。
In short, the present invention provides a rotating wheel provided in an apparatus, a crushing member provided on the wheel to pressurize the wheel, and an outer circumferential portion of the wheel that is crushed by the wheel and the crushing member. In a vertical crusher equipped with a perforated plate having an opening through which a gas body passes from the bottom to the top in order to classify the crushed material discharged from the
The vertical crushing device is characterized in that the ratio between the depth of the hole in the perforated plate opening and the length of the opening in the radial direction of the rolling wheels is 1.3 or more.

先ず発明者等はこの発明を行うに先立つて以下
に示す様な実験を行い多孔板開口の孔の深さをT
とし、スリツトの転輪半径方向の寸法(幅)をb
とした場合におけるT/bと落下した粉砕炭量と
の関係を調べた。なお通常は空気噴射開口の側壁
は多孔板面に直交するよう形成してある。なおこ
こに空気噴射開口とは必ずしも空気のみを噴射す
るものを意味するものではなく、装置の運転条件
によつては燃焼ガスとの混合気体その他を噴射す
ることもある。
First, prior to carrying out this invention, the inventors conducted the following experiment and determined the depth of the holes in the perforated plate to be T.
The dimension (width) of the slit in the radial direction of the wheel is b
The relationship between T/b and the amount of fallen pulverized coal was investigated in the case where: Note that the side wall of the air injection opening is normally formed to be perpendicular to the surface of the perforated plate. Note that the air injection opening does not necessarily mean one that injects only air, but may also inject a gas mixture with combustion gas or the like depending on the operating conditions of the device.

第4図は板厚の異なる複数枚の金属板に対し
夫々所定のb寸法の空気噴射開口を各々形成する
ことによりT/bの異なる空気噴射開口による粉
砕炭落下実験を行つた結果を示す。図中イは孔径
28mmの、ロは20mmの、ハは15mmの空気噴射開口を
形成し、各T/bにおける石炭落下量の変化を計
測したものである。この図から明らかにようにい
づれの孔径の空気噴射開口の場合でもT/bが約
1の場合に落下量は最大となり、また空気噴射開
口のb寸法が大きいほど落下量が多いことが確認
できた。しかしいづれの外径のものでもT/bが
約1.3以上になると落下炭量は大幅に減少し、し
かも落下炭の絶対量も孔径とは係りなくほぼ同じ
になることが確認できた。但し、多孔板は主とし
てその強度を確保する必要上、あまり薄板にする
ことはできず肉厚は20〜30mm程度のものが多い
が、従来はこの肉厚の多孔板に対してb寸法20〜
30mmの空気噴射開口が形成されており、今回の実
験により従来型の多孔板の孔長/孔径比は約0.7
から約1.2までの間となり、粉砕炭落下防止の点
から最悪に近い値が設定されていたことが判明し
た。
FIG. 4 shows the results of a pulverized coal drop experiment using air injection openings with different T/b by forming air injection openings with a predetermined dimension b on a plurality of metal plates having different thicknesses. A in the figure is the hole diameter
An air injection opening of 28 mm, B of 20 mm, and C of 15 mm was formed, and the changes in the amount of coal falling at each T/b were measured. As is clear from this figure, the falling amount is maximum when T/b is approximately 1 for air injection openings of any hole diameter, and it can be confirmed that the larger the b dimension of the air injection opening, the greater the falling amount. Ta. However, it was confirmed that for any outer diameter, the amount of falling coal decreases significantly when T/b becomes about 1.3 or more, and the absolute amount of falling coal remains almost the same regardless of the hole diameter. However, mainly due to the need to ensure its strength, perforated plates cannot be made very thin, and the wall thickness is often around 20 to 30 mm. Conventionally, for perforated plates of this thickness, b dimension is 20 to 30 mm.
A 30 mm air injection opening is formed, and the hole length/hole diameter ratio of the conventional perforated plate is approximately 0.7 according to this experiment.
It was found that the value was set to be close to the worst value from the viewpoint of preventing crushed coal from falling.

次に第5図によつてこのT/bの変化により粉
砕炭の落下の変化が生じる理由を説明する。なお
この粉砕炭の挙動は発明者等の実験によつて確認
したものである。実験に際して供給する空気の
量、従つて供給する空気の風速は実機の粉砕装置
の風速に対応するようにした。発明者等は板厚の
異なる多孔板に対してb寸法の等しい空気噴射開
口を形成することによりT/bを変化させた。各
空気噴射開口18のb寸法はいずれも28mmとし、
A多孔板20の肉厚は5mm、Bの多孔板21の肉
厚は25mm、Cの多孔板22の肉厚は50mmとした。
つまりAのT/bは約0.18Bは約0.9、Cは約1.8
である。先ずAの場合は多孔板20裏面から噴射
する空気Aによつて多孔板20の表面に形成され
た粉砕炭層23は飛散するが、この空気噴射孔1
8を空気が通過する際に噴射孔側壁に沿つて渦流
24が形成され、この渦流24によつて粉砕炭の
一部が誘引されて多孔板下部に落下することにな
る。しかし板厚が薄くb寸法に比較して側壁部が
短くて渦流が小さなものなので誘引される粉砕炭
の量はあまり多くない。これに対してBのT/b
が約0.9の場合には形成される渦流域25は大き
く、大きな誘引力をもつて粉砕炭を誘引するので
落下する石炭の量も多くなる。さらにCの場合に
は整流が形成されまた小渦流が形成されても孔長
が長いためこの渦流域は多孔板表面まで届かず、
従つて粉砕炭を殆んど誘引することができない。
このため多孔板下部に落下する石炭の量は大幅に
減少することになる。
Next, the reason why the fall of the pulverized coal changes due to the change in T/b will be explained with reference to FIG. The behavior of this pulverized coal was confirmed through experiments by the inventors. During the experiment, the amount of air supplied and therefore the wind speed of the supplied air were made to correspond to the wind speed of the actual crushing device. The inventors changed T/b by forming air injection openings with the same dimension b in perforated plates having different thicknesses. The b dimension of each air injection opening 18 is 28 mm,
The thickness of the perforated plate 20 of A was 5 mm, the thickness of the perforated plate 21 of B was 25 mm, and the thickness of the perforated plate 22 of C was 50 mm.
In other words, A's T/b is about 0.18, B's is about 0.9, and C's is about 1.8.
It is. First, in case A, the crushed coal layer 23 formed on the surface of the perforated plate 20 is scattered by the air A injected from the back surface of the perforated plate 20, but the air injection holes 1
When air passes through 8, a vortex 24 is formed along the side wall of the injection hole, and a part of the pulverized coal is attracted by this vortex 24 and falls to the lower part of the perforated plate. However, since the plate thickness is thin, the side wall portion is short compared to dimension b, and the vortex is small, the amount of pulverized coal that is attracted is not very large. On the other hand, B's T/b
When is about 0.9, the vortex region 25 that is formed is large and attracts the crushed coal with a large attractive force, so that the amount of coal that falls also increases. Furthermore, in the case of C, even if a rectified flow is formed and a small eddy current is formed, the vortex area does not reach the perforated plate surface because the hole length is long.
Therefore, almost no pulverized coal can be attracted.
Therefore, the amount of coal falling to the bottom of the perforated plate will be significantly reduced.

以上の説明より明らかなように、多孔板に形成
する空気噴射開口たるスリツトのT/b値は1.3
以上にする必要がある。
As is clear from the above explanation, the T/b value of the slit, which is the air injection opening formed in the perforated plate, is 1.3.
It is necessary to do more than that.

第6図はT/bをより容易に変更し得るよう構
成したものである。T/bは空気噴射開口のb寸
法の減少、もしくは多孔板の肉厚を増加させるこ
とにより増加させることができるが、空気噴射開
口のb寸法を減少させると送風機の動力費が大幅
に上昇し、また多孔板の肉厚を要求される多孔板
強度以上の厚さにすることは不経済でありかつ装
置の重量も増加して好しくない。この対策として
空気噴射開口18に対して多孔板15の肉厚より
も長さLの長い整流板30を配置することにより
T/bを大にするように構成したものである。こ
の実施例は噴射開口のb寸法を大きくとりたい場
合の多孔板の肉厚を増加させるのが困難な場合等
において効果的であり、特に従来型の装置の多孔
板に対しても容易に実施することができる。例え
ば前述の孔径28mmの空気噴射孔に対して長さLが
約55mmの整流板を取り付けてT/bを約2にする
とT/bが約1の場合に比較して落下炭量は約
1/35に低減できることが確認された。また空気
流入側の端面を第5図cに示す如く面取り又はR
面の曲面(第6図30a)とし渦流形成を防止す
ることは効果がある。そのRはほぼ1.5mm以上に
するのが望ましい。
FIG. 6 shows a configuration in which T/b can be changed more easily. T/b can be increased by decreasing the b dimension of the air injection opening or increasing the wall thickness of the perforated plate, but reducing the b dimension of the air injection opening will significantly increase the power cost of the blower. Furthermore, it is not preferable to make the perforated plate thicker than the required perforated plate strength because it is uneconomical and increases the weight of the device. As a countermeasure for this, a rectifying plate 30 having a length L longer than the wall thickness of the perforated plate 15 is arranged with respect to the air injection opening 18 to increase T/b. This embodiment is effective in cases where it is difficult to increase the wall thickness of the perforated plate when it is desired to increase the b dimension of the injection opening, and in particular, it can be easily applied to the perforated plate of a conventional device. can do. For example, if a straightening plate with a length L of about 55 mm is attached to the air injection hole with a hole diameter of 28 mm, and T/b is about 2, the amount of falling coal will be about 1 compared to when T/b is about 1. It was confirmed that it can be reduced to /35. In addition, the end face on the air inflow side is chamfered or rounded as shown in Figure 5c.
It is effective to curve the surface (FIG. 6, 30a) to prevent the formation of eddies. It is desirable that the radius is approximately 1.5 mm or more.

この発明を実施することにより多孔板の圧力損
失を増大させることなく粉砕物の落下量を大幅に
減少させることができる。
By carrying out this invention, the amount of falling pulverized material can be significantly reduced without increasing the pressure loss of the perforated plate.

またT/bを適切な値に設定するだけでこの発
明は効果を発揮するので、装置が複雑化すること
なく、かつ装置製造費等が上昇することもない。
Further, since the present invention is effective simply by setting T/b to an appropriate value, the device does not become complicated and the manufacturing cost of the device does not increase.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は石炭粉砕装置の断面図、第2図は多孔
板の断面図、第3図は第2図のA−A線による視
図、第4図はT/bと落下石炭量の相対値との関
係を示す線図、第5図AないしCは空気噴射開口
からの石炭の落下状態を示す多孔板の断面図、第
6図はこの発明の実施例を示す多孔板の断面図で
ある。 15,20,21,22……多孔板、18……
空気噴射開口、30……整流板、30a……曲
面。
Figure 1 is a sectional view of the coal crusher, Figure 2 is a sectional view of the perforated plate, Figure 3 is a view taken along line A-A in Figure 2, and Figure 4 is the relative relationship between T/b and the amount of falling coal. Figures 5A to C are cross-sectional views of a perforated plate showing the state of coal falling from the air injection opening, and Figure 6 is a cross-sectional view of a perforated plate showing an embodiment of the present invention. be. 15, 20, 21, 22...perforated plate, 18...
Air injection opening, 30... rectifying plate, 30a... curved surface.

Claims (1)

【特許請求の範囲】[Claims] 1 装置内に設けられ回転する転輪と、該転輪上
に転輪に対し加圧状態で設けられた粉砕部材と、
上記転輪と粉砕部材で粉砕されて転輪外周部に排
出された粉砕物を分級するため下方から上方に向
けてガス体を通過する開口を有する多孔板とを備
えた竪型粉砕装置において、上記多孔板開口の孔
の深さと開口の転輪半径方向の長さとの比を1.3
以上としたことを特徴とする竪型粉砕装置。
1. A rotating wheel installed in the device, and a crushing member provided on the wheel in a pressurized state against the wheel,
In a vertical crushing device comprising the above-mentioned wheel and a perforated plate having an opening through which a gas body passes from the bottom to the top in order to classify the crushed material crushed by the crushing member and discharged to the outer periphery of the wheel, The ratio between the depth of the hole in the perforated plate opening and the length of the opening in the radial direction of the rolling wheel is 1.3.
A vertical crusher characterized by the above.
JP20909283A 1983-11-09 1983-11-09 Pulverizer Granted JPS60102962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20909283A JPS60102962A (en) 1983-11-09 1983-11-09 Pulverizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20909283A JPS60102962A (en) 1983-11-09 1983-11-09 Pulverizer

Publications (2)

Publication Number Publication Date
JPS60102962A JPS60102962A (en) 1985-06-07
JPH0510140B2 true JPH0510140B2 (en) 1993-02-08

Family

ID=16567146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20909283A Granted JPS60102962A (en) 1983-11-09 1983-11-09 Pulverizer

Country Status (1)

Country Link
JP (1) JPS60102962A (en)

Also Published As

Publication number Publication date
JPS60102962A (en) 1985-06-07

Similar Documents

Publication Publication Date Title
JP4865865B2 (en) Classification device, vertical pulverizer equipped with the same, and coal fired boiler device
KR102254790B1 (en) Crusher and method of operating the crusher
GB1584390A (en) Apparatus for pulverising solid materials
US4522343A (en) Micronized grinding apparatus
JP2015205245A (en) Classifier and vertical pulverization classifier comprising the same
JPH0510140B2 (en)
US7252253B2 (en) Bowl mill for a coal pulverizer with an air mill for primary entry of air
JP2742066B2 (en) Rotary classifier fine crusher
JP7258581B2 (en) Crusher, boiler system and method of operating the crusher
JPH0347899B2 (en)
JP2002273251A (en) Roller mill and air purge method therefor
JP2000140662A (en) Roller mill
JP3718608B2 (en) Vertical roller mill
JPH08266922A (en) Roller mill for fine crushing
US2710148A (en) Pulverizer grinding rings
CA1166218A (en) Method and apparatus for the feeding of solid particles to a pressurized vessel
JPS6061045A (en) Crusher for preventing crushed substance
JPS6064645A (en) Crusher
JP2855211B2 (en) Vertical mill
JP2681839B2 (en) Vertical crusher
JPH031067Y2 (en)
JPH1119529A (en) Roller mill and air purge method thereof
JPS6138669Y2 (en)
JPS6221326Y2 (en)
JPH0433954Y2 (en)