JPH0510025B2 - - Google Patents

Info

Publication number
JPH0510025B2
JPH0510025B2 JP58029461A JP2946183A JPH0510025B2 JP H0510025 B2 JPH0510025 B2 JP H0510025B2 JP 58029461 A JP58029461 A JP 58029461A JP 2946183 A JP2946183 A JP 2946183A JP H0510025 B2 JPH0510025 B2 JP H0510025B2
Authority
JP
Japan
Prior art keywords
permanent magnet
field
magnetic flux
auxiliary
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58029461A
Other languages
Japanese (ja)
Other versions
JPS59156145A (en
Inventor
Toshimi Abukawa
Kazuo Tawara
Noryoshi Takahashi
Toshio Tomite
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2946183A priority Critical patent/JPS59156145A/en
Publication of JPS59156145A publication Critical patent/JPS59156145A/en
Publication of JPH0510025B2 publication Critical patent/JPH0510025B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/02DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting
    • H02K23/04DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting having permanent magnet excitation

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は永久磁石界磁電動機にかかり、特に内
燃機関始動用として用いるに好適な永久磁石界磁
電動機に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a permanent magnet field motor, and particularly to a permanent magnet field motor suitable for use in starting an internal combustion engine.

〔従来技術〕[Prior art]

界磁に永久磁石を適用する永久磁石界磁電動機
は、界磁に巻線を巻装する必要がないことから制
作工程を短縮できると同時に界磁銅損がないため
に効率が向上するなどの利点があるので多用され
ている。しかし、永久磁石は減磁の問題があり、
かつ通常の巻線界磁に比して高い磁束密度が得に
くい欠点がある。このため、電機子反作用起磁力
の増磁作用に働く界磁の端部に磁性材からなる補
助極を設ける特公昭48−35721号がある。特公昭
48−35721号の2極機の固定子構造を第1図に示
す。第1図に於て、永久磁石8は円筒形継鉄7の
内周面に配置され、電機子鉄心3と適当な空隙を
介して対向している。磁性材からなる補助極9
は、永久磁石8と同様に電機子鉄心3と適当な空
隙を介して対向しており、永久磁石8と周方向空
隙部Wを設け並設されている。
Permanent magnet field motors that use permanent magnets in the field can shorten the production process because there is no need to wind the field, and at the same time improve efficiency because there is no field copper loss. It is widely used because of its advantages. However, permanent magnets have the problem of demagnetization.
Another drawback is that it is difficult to obtain a high magnetic flux density compared to a normal wire-wound field. For this reason, there is Japanese Patent Publication No. 48-35721 in which an auxiliary pole made of a magnetic material is provided at the end of the field that acts to increase the magnetization of the armature reaction magnetomotive force. Tokko Akira
Figure 1 shows the stator structure of the two-pole machine of No. 48-35721. In FIG. 1, the permanent magnet 8 is arranged on the inner peripheral surface of the cylindrical yoke 7, and faces the armature core 3 with a suitable gap in between. Auxiliary pole 9 made of magnetic material
Similar to the permanent magnet 8, the armature core 3 faces the armature core 3 with a suitable gap therebetween, and is arranged in parallel with the permanent magnet 8 with a circumferential gap W provided therebetween.

このようにしてなる電動機において、回転数と
モータトルクの特性は界磁極で発生する主磁束量
の大きさで決定される。すなわち、主磁束量に対
し回転数は(1)式に示すように反比例し、モータト
ルクは(2)式に示すように比例する関係にある。
In the electric motor constructed in this manner, the characteristics of the rotation speed and motor torque are determined by the amount of main magnetic flux generated at the field poles. That is, the rotation speed is inversely proportional to the amount of main magnetic flux as shown in equation (1), and the motor torque is proportional as shown in equation (2).

モータ回転数 N=K1/Φ ……(1) モータトルク T=KΦ ……(2) ここで、Kは比例定数である。 Motor rotation speed N=K1/Φ...(1) Motor torque T=KΦ……(2) Here, K is a proportionality constant.

第1図における補助極付永久磁石界磁電動機の
界磁極で発生する主磁束量の大きさを第6図の破
線で示す。電機子電流の増加に伴い永久磁石の磁
束量ΦMは、電機子反作用の減磁界が増加するこ
とにより、発生する磁束は除々に減少していく。
これに対し、補助極からの磁束量ΦAは電機子電
流の増加に伴い、電機子反作用の増磁界により磁
束は増加する。第6図における界磁極の主磁束量
Φは、永久磁石の磁束量ΦMと補助極の磁束量
ΦAを加えたものになる。第2図に第6図で示し
たN点、すなわち電機子電流の小さい軽負荷時の
界磁極の磁束分布図を示す。電機子電流の小さい
N点においては、電機子反作用による増磁効果や
減磁作用が小さく、しかも漏洩する磁束がないの
で界磁極の磁束量は、ほとんど永久磁石8で発生
する磁石量で決定される。
The magnitude of the main magnetic flux generated at the field poles of the permanent magnet field motor with auxiliary poles in FIG. 1 is shown by the broken line in FIG. 6. As the armature current increases, the amount of magnetic flux ΦM of the permanent magnet gradually decreases due to the increase in the demagnetizing field of the armature reaction.
On the other hand, the amount of magnetic flux ΦA from the auxiliary pole increases as the armature current increases due to the increased magnetic field of armature reaction. The main magnetic flux amount Φ of the field pole in FIG. 6 is the sum of the magnetic flux amount ΦM of the permanent magnet and the magnetic flux amount ΦA of the auxiliary pole. FIG. 2 shows a magnetic flux distribution diagram of the field pole at point N shown in FIG. 6, that is, at a light load with a small armature current. At point N, where the armature current is small, the magnetizing effect and demagnetizing effect due to armature reaction are small, and there is no magnetic flux leaking, so the amount of magnetic flux at the field pole is almost determined by the amount of magnet generated by the permanent magnet 8. Ru.

第1図のものの電機子電流に対するモータ回転
数とモータトルクの特性を第7図の破線に示す。
一般にエンジン始動用のスタータモータでは、第
7図に示すK点の過負荷時すなわち起動時には、
大きなモータトルクが要求される。また、一旦エ
ンジンが始動するとスタータモータはほとんど無
負荷の状態になりN点の位置になる。このN点に
おけるスタータモータの回転数は、エンジンの回
転数(ギヤによる変換分も含めた回転数)より高
くなければならない。しかし、第1図のN点にお
けるモータ回転数は第7図の破線に示したよう
に、界磁極で発生する主磁束量が多いためその軽
負荷回転数は低いものとなつた。このため、スタ
ータモータがエンジンの負荷となり、不具合が生
じた。一方、第1図の起動時のモータトルクは、
第7図に示すように界磁極の主磁束量が多いの
で、大きなトルクが得られる。
The broken line in FIG. 7 shows the characteristics of the motor rotation speed and motor torque with respect to the armature current of the one shown in FIG.
Generally, in a starter motor for starting an engine, when there is an overload at point K shown in Fig. 7, that is, when starting,
Large motor torque is required. Furthermore, once the engine starts, the starter motor is almost in a no-load state and is at the N point. The rotational speed of the starter motor at this point N must be higher than the engine rotational speed (the rotational speed including the conversion by the gear). However, as shown by the broken line in FIG. 7, the motor rotational speed at point N in FIG. 1 is low due to the large amount of main magnetic flux generated at the field poles. As a result, the starter motor became a load on the engine, causing problems. On the other hand, the motor torque at startup in Figure 1 is
As shown in FIG. 7, since the amount of main magnetic flux of the field pole is large, a large torque can be obtained.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、補助極を設けた永久磁石界磁
電動機において、起動時のモータトルクを確保し
つつ、軽負荷時のみの主磁束量を低減することに
より、軽負荷時のモータ回転数を高めることであ
る。
An object of the present invention is to reduce the main magnetic flux only during light loads while ensuring motor torque at startup in a permanent magnet field motor equipped with auxiliary poles, thereby increasing the motor rotation speed during light loads. It is to enhance.

〔発明の概要〕[Summary of the invention]

本発明は、起動時の磁束量を確保し軽負荷時の
みの磁束量を低減する手段として、継鉄の内周面
に配置される異方性永久磁石界磁と、該永久磁石
界磁と円周方向で隣接して並設される補助極とを
備えてなる永久磁石界磁電動機において、 前記永久磁石界磁と隣接する側の補助極端面
は、内周が放射線上に位置した状態で外周が前記
放射線上より反永久磁石界磁側に後退して位置
し、前記補助極の接合部の少なくとも一部が前記
永久磁石界磁の磁束方向と交叉させてある。この
ようにすることにより、起動時の主磁束量が大き
く、軽負荷時では主磁束量の少ない界磁極が得ら
れる。このため、起動時のモータトルクは大き
く、軽負荷時の回転数の高い永久磁石界磁電動機
が得られる。
The present invention provides an anisotropic permanent magnet field disposed on the inner circumferential surface of a yoke, and a permanent magnet field as a means for ensuring the amount of magnetic flux at startup and reducing the amount of magnetic flux only during light loads. In a permanent magnet field motor comprising auxiliary poles arranged adjacently in parallel in the circumferential direction, the auxiliary end face on the side adjacent to the permanent magnet field has an inner circumference located on a radial line. The outer periphery is located on the radiation line away from the permanent magnet field, and at least a part of the joint of the auxiliary pole intersects with the magnetic flux direction of the permanent magnet field. By doing so, a field pole with a large amount of main magnetic flux at startup and a small amount of main magnetic flux at light load can be obtained. Therefore, a permanent magnet field motor with a large motor torque at startup and a high rotational speed during light loads can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第3図から第7図に
示す。補助極付永久磁石界磁電動機は第3図に示
すようにシヤフト1に整流子2と電機子鉄心3に
巻線4を巻装した電機子からなり、軸受5a,5
bを介して固定側のエンドブラケツト6a,6b
によつて支持され、エンドブラケツトは円筒状継
鉄7に固定される。継鉄7の内周には永久磁石8
と補助極9を円周方向に並置して配置している。
An embodiment of the present invention is shown in FIGS. 3 to 7 below. As shown in Fig. 3, the permanent magnet field motor with auxiliary poles consists of an armature in which a commutator 2 is wound around a shaft 1, a winding 4 is wound around an armature core 3, and bearings 5a, 5
Fixed side end brackets 6a, 6b via b
The end bracket is fixed to the cylindrical yoke 7. A permanent magnet 8 is placed on the inner circumference of the yoke 7.
and auxiliary poles 9 are arranged side by side in the circumferential direction.

このようにしてなる補助極付永久磁石界磁電動
機は、電機子電流の小さい軽負荷時には永久磁石
8から主磁束が供給されるが、定格あるいは電機
子電流の大きい過負荷時には、電機子反作用磁束
により補助極9′を介して主磁束が増加する構成
となつている。このとき、軽負荷時の主磁束量を
減少する固定子構造の一実施例を第4図に示す。
第4図において、環状の継鉄7の内周面に配置さ
れる界磁極8,9′は永久磁石8と磁性材料(鉄
性)からなる補助極9′とから構成されている。
前記永久磁石8の円周方向の外周側は、前記界磁
極8,9′の磁極の中心a−a′線より電機子反作
用の増磁界側に突出して位置し、電機子反作用の
増磁界側に位置する補助極9′の円周方向端面9
Aの傾斜面に全面的に接合して並設されている。
In the permanent magnet field motor with auxiliary poles constructed in this manner, the main magnetic flux is supplied from the permanent magnet 8 during light loads where the armature current is small, but when the rated or overloaded armature current is large, the armature reaction magnetic flux Therefore, the main magnetic flux is increased through the auxiliary pole 9'. FIG. 4 shows an example of a stator structure that reduces the amount of main magnetic flux during light loads.
In FIG. 4, field poles 8 and 9' arranged on the inner peripheral surface of an annular yoke 7 are composed of a permanent magnet 8 and an auxiliary pole 9' made of a magnetic material (iron).
The outer peripheral side of the permanent magnet 8 in the circumferential direction is located so as to protrude from the center a-a' line of the magnetic poles of the field poles 8 and 9' toward the increasing field side of the armature reaction, and is located on the side of the increasing field of the armature reaction. The circumferential end face 9 of the auxiliary pole 9' located at
They are arranged side by side and fully connected to the inclined surface of A.

ここで、補助極端面9Aは、内周端9Bが放射
線上O−Rより反永久磁石側に後退して位置し、
補助極9′の接合部を永久磁石8の磁束の方向と
交叉するようにしてある。即ち、本発明の特徴は
前記永久磁石8の端部に磁性体で構成した補助極
の一部を食い込ませたことである。すなわち、永
久磁石と隣接する側の補助極端面は、内周が放射
線上に位置した状態で外周が前記放射線上より反
永久磁石側に後退して位置し、前記補助極の接合
部の少なくとも一部が前記永久磁石の磁束方向と
交叉させる様にしてある。このように永久磁石8
の着磁方向の端部に補助極を食い込ませたことに
より、軽負荷時の磁束量が減少する。第5図に第
4図の軽負荷時の磁束分布図を示す。第5図に示
すように、本発明の場合、軽負荷時には補助極
9′と並置されている永久磁石8の一部の磁束が
磁性体の補助極9′の食い込み部を介して電機子
鉄心に至らずにルーブする磁束10が生ずる。こ
のため、第6図に示すように、軽負荷時における
永久磁石8の磁束量ΦMは実線に示すように低減
する。したがつて、永久磁石の磁束量ΦMと補助
極の磁束量ΦAとの和である界磁極の磁束量Φ
は、実線で示す如く破線で示す従来の第1図のも
のより小さくなる。このため、第7図に示すよう
に軽負荷時の回転数は高くなる。
Here, the inner circumferential end 9B of the auxiliary end face 9A is positioned so as to be retreated from the radiation direction O-R toward the opposite permanent magnet side,
The junction of the auxiliary pole 9' is arranged to intersect the direction of the magnetic flux of the permanent magnet 8. That is, the feature of the present invention is that a part of the auxiliary pole made of a magnetic material is inserted into the end of the permanent magnet 8. That is, the auxiliary end face on the side adjacent to the permanent magnet has an inner periphery located on the radiation line and an outer periphery set back from above the radiation line toward the side opposite to the permanent magnet, and at least one of the joint parts of the auxiliary pole The magnetic flux direction of the permanent magnet is made to intersect with the magnetic flux direction of the permanent magnet. In this way, permanent magnet 8
By making the auxiliary pole bite into the end in the magnetization direction, the amount of magnetic flux during light loads is reduced. FIG. 5 shows the magnetic flux distribution diagram at light load in FIG. 4. As shown in FIG. 5, in the case of the present invention, when the load is light, a part of the magnetic flux of the permanent magnet 8 juxtaposed with the auxiliary pole 9' passes through the biting part of the auxiliary pole 9' made of magnetic material to the armature core. A magnetic flux 10 is generated that lubes without reaching . Therefore, as shown in FIG. 6, the amount of magnetic flux ΦM of the permanent magnet 8 during light load is reduced as shown by the solid line. Therefore, the magnetic flux amount Φ of the field pole is the sum of the magnetic flux amount ΦM of the permanent magnet and the magnetic flux amount ΦA of the auxiliary pole.
, as shown by the solid line, is smaller than the conventional one shown in FIG. 1, shown by the broken line. Therefore, as shown in FIG. 7, the rotational speed becomes high when the load is light.

一方、本発明の場合第6図に示すように起動時
に相当するK点の場合には電機子電流が大きいの
で、電機子反作用効果が大きくなり第5図に示し
たループ磁束10が発生しなくなる。このため、
起動時における界磁極の主磁束量は、従来の第1
図と同様に大きな値が得られる。したがつて、大
きなモータトルクが得られる。
On the other hand, in the case of the present invention, since the armature current is large at point K, which corresponds to the time of starting, as shown in FIG. 6, the armature reaction effect becomes large, and the loop magnetic flux 10 shown in FIG. 5 is no longer generated. . For this reason,
The amount of main magnetic flux of the field pole at startup is different from the conventional first magnetic flux.
As in the figure, large values are obtained. Therefore, a large motor torque can be obtained.

第8図に示すように、永久磁石8の内径方向の
一部に補助極9′の内周端9Bを食い込ませ、並
設させる補助極9′の端面9Aと永久磁石8間の
外周側に空隙部11を設けても、その効果は同じ
である。また、第9図に示すように補助極9′の
端面9AをL字形状にし、その先端部12の内終
端9Bを放射線上O−Rまで食い込ませ永久磁石
8と接合したものでも本発明と同様の効果を示
す。
As shown in FIG. 8, the inner peripheral end 9B of the auxiliary pole 9' is bitten into a part of the inner diameter of the permanent magnet 8, and the outer peripheral end 9B of the auxiliary pole 9' is inserted between the end face 9A of the auxiliary pole 9' and the permanent magnet 8. Even if the cavity 11 is provided, the effect is the same. Further, as shown in FIG. 9, the present invention may also be applied if the end face 9A of the auxiliary pole 9' is made into an L-shape, and the inner terminal end 9B of the tip part 12 is bitten into the radiation line O-R and joined to the permanent magnet 8. Shows similar effects.

このように本発明の場合、永久磁石と補助極に
より構成される界磁極において、永久磁石の磁束
方向部と少なくとも磁性体の補助極の一部が交差
していれば良い。
As described above, in the case of the present invention, in the field pole constituted by a permanent magnet and an auxiliary pole, it is sufficient that the magnetic flux direction portion of the permanent magnet intersects at least a part of the auxiliary pole of the magnetic material.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、永久磁石と隣接する側の補助
極端面を、内周が放射線上に位置した状態で外周
が前記放射線上より反永久磁石界磁側に後退して
位置するようにし、永久磁石の一部に補助極を食
い込ませたことにより、電動機の軽負荷時に電機
子鉄心に至らずに永久磁石と補助極間をループす
る磁束が生ずるため、界磁極の主磁束量が減少す
る。このため、起動時のモータトルクを確保しつ
つ、軽負荷時のみの主磁束量を低減することがで
きるので、軽負荷時のモータ回転数を高めること
が出来る永久磁石界磁電動機を提供できる。
According to the present invention, the auxiliary end face on the side adjacent to the permanent magnet is arranged so that the inner circumference is located on the radiation line and the outer circumference is located on the radiation line away from the side opposite to the permanent magnet field. By making the auxiliary pole bite into a part of the magnet, a magnetic flux is generated that loops between the permanent magnet and the auxiliary pole without reaching the armature core when the motor is under light load, so the amount of main magnetic flux of the field pole decreases. Therefore, it is possible to reduce the amount of main magnetic flux only during light loads while ensuring the motor torque at the time of startup, so it is possible to provide a permanent magnet field motor that can increase the motor rotation speed during light loads.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の補助極付永久磁石界磁電動機の
断面図、第2図は第1図の磁束分布図、第3図は
本発明の一実施例を適用した補助極付永久磁石界
磁電動機の継方向断面図、第4図は第3図の横方
向断面図、第5図は第3図の磁束分布図、第6図
は電機子電流に対する界磁極の磁束量を示す図、
第7図は電機子電流に対する電動機の回転数とト
ルクの特性図、第8図及び第9図は本発明の応用
例断面図である。 3……継鉄、8,9′……界磁磁極、8……永
久磁石、9′……磁性材料からなる補助極、9A
……補助極端面、9B……補助極端内周端、9C
……補助極外周端。
Fig. 1 is a sectional view of a conventional permanent magnet field motor with auxiliary poles, Fig. 2 is a magnetic flux distribution diagram of Fig. 1, and Fig. 3 is a permanent magnet field motor with auxiliary poles to which an embodiment of the present invention is applied. 4 is a cross-sectional view of the electric motor in the connecting direction, FIG. 4 is a horizontal sectional view of FIG. 3, FIG. 5 is a magnetic flux distribution diagram of FIG. 3, and FIG. 6 is a diagram showing the amount of magnetic flux of the field poles with respect to armature current.
FIG. 7 is a characteristic diagram of motor rotation speed and torque with respect to armature current, and FIGS. 8 and 9 are cross-sectional views of applied examples of the present invention. 3...Yoke, 8,9'...Field magnetic pole, 8...Permanent magnet, 9'...Auxiliary pole made of magnetic material, 9A
...Auxiliary extreme surface, 9B...Auxiliary extreme inner peripheral end, 9C
...Auxiliary pole outer peripheral edge.

Claims (1)

【特許請求の範囲】 1 継鉄3と、界磁極8,9′とを有する永久磁
石界磁電動機であつて、 継鉄3は、環状に形成されてなり、 界磁磁極8,9′は、継鉄3の内周面に配置さ
れる永久磁石8と、磁性材料からなる補助極9′
とから構成され、 補助極9′は、永久磁石8の電機子反作用の増
磁界側の円周方向端面に円周方向端面9Aが接合
して並設され、 前記補助極端面9Aは、内周端9Bが放射線上
O−Rに位置した状態で外周端9Cが前記放射線
上O−Rより反永久磁石側に後退して位置し、前
記補助極9′の接合部の少なくとも一部が前記永
久磁石8の磁束方向と交叉させてある。 永久磁石界磁電動機。 2 特許請求範囲第1項記載において、前記永久
磁石8と補助極端面9Aは全面接触していること
を特徴とした永久磁石界磁電動機。 3 特許請求範囲第1項記載において、前記永久
磁石8と補助極端面9Aは内周端9Bで接し外周
端9Cで空隙を持つて対向していることを特徴と
した永久磁石界磁電動機。
[Claims] 1. A permanent magnet field motor having a yoke 3 and field poles 8, 9', wherein the yoke 3 is formed in an annular shape, and the field poles 8, 9' are formed in an annular shape. , a permanent magnet 8 disposed on the inner peripheral surface of the yoke 3, and an auxiliary pole 9' made of a magnetic material.
The auxiliary pole 9' is arranged in parallel with a circumferential end surface 9A joined to the circumferential end surface of the permanent magnet 8 on the magnetizing field side of the armature reaction, and the auxiliary end surface 9A is arranged in parallel with the inner circumferential end surface. With the end 9B positioned at the radial line O-R, the outer peripheral end 9C is positioned backward from the radial line O-R toward the opposite permanent magnet side, and at least a part of the joint of the auxiliary pole 9' is located at the permanent magnet line. It is made to intersect with the magnetic flux direction of the magnet 8. Permanent magnet field motor. 2. The permanent magnet field motor according to claim 1, wherein the permanent magnet 8 and the auxiliary end face 9A are in full contact with each other. 3. The permanent magnet field motor according to claim 1, wherein the permanent magnet 8 and the auxiliary end face 9A are in contact with each other at an inner peripheral end 9B and face each other with a gap at an outer peripheral end 9C.
JP2946183A 1983-02-25 1983-02-25 Permanent magnet field motor Granted JPS59156145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2946183A JPS59156145A (en) 1983-02-25 1983-02-25 Permanent magnet field motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2946183A JPS59156145A (en) 1983-02-25 1983-02-25 Permanent magnet field motor

Publications (2)

Publication Number Publication Date
JPS59156145A JPS59156145A (en) 1984-09-05
JPH0510025B2 true JPH0510025B2 (en) 1993-02-08

Family

ID=12276734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2946183A Granted JPS59156145A (en) 1983-02-25 1983-02-25 Permanent magnet field motor

Country Status (1)

Country Link
JP (1) JPS59156145A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2594922B2 (en) * 1986-11-05 1997-03-26 株式会社日立製作所 Operating method of permanent magnet field type motor
JPH0787685B2 (en) * 1988-04-25 1995-09-20 株式会社日立製作所 Permanent magnet field type DC rotating electric machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937871A (en) * 1982-08-24 1984-03-01 Mitsubishi Electric Corp Manufacture of magnetic type motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937871A (en) * 1982-08-24 1984-03-01 Mitsubishi Electric Corp Manufacture of magnetic type motor

Also Published As

Publication number Publication date
JPS59156145A (en) 1984-09-05

Similar Documents

Publication Publication Date Title
US5708318A (en) AC generator
US5298827A (en) Permanent magnet type dynamoelectric machine rotor
EP0740397B1 (en) Stator structure for rotary electric machine
US6194806B1 (en) Compact cylindrical radial gap type motor
US3842300A (en) Laminated rotor structure for a dynamoelectric machine
JP2000156947A (en) Magnet-type motor and power generator
JP2594922B2 (en) Operating method of permanent magnet field type motor
US4156821A (en) Capacitor run motor
JPH04217833A (en) Improved elctric motor and manufacture thereof
JPS627767B2 (en)
US4510407A (en) Permanent magnet type motor having improved pole structure
JPH0824420B2 (en) Permanent magnet field type DC machine
JP2001186735A (en) Reluctance motor
US5089737A (en) Dc rotary electric machine of permanent magnet field type
JPS6158459A (en) Permanent magnet field type dc machine
JPH0510025B2 (en)
JPS6146149A (en) Inductor type brushless generator
JPS614448A (en) Motor
JPH06319238A (en) Rotor for permanent magnet generator
JP2001061241A (en) Stator core of half-pitched motor
JPS5829359A (en) Rotor with permanent magnet
JPH10336927A (en) Rotor structure for permanent-magnet synchronous rotary electric machine
JPS5883571A (en) Permanent magnet type dc electric machine
JPS6145740Y2 (en)
JPS60152245A (en) Stator of magnet generator